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Can Language Models Perform Logical Reasoning?
Language Models achieve high performance on “reasoning” benchmarks. 

Reasoning Example 
from the CLUTRR 

dataset

Unclear whether they follow the rules of logical deduction. 

Language Models: 
input → ? → Carol is the grandmother of Justin.

Logical Reasoning: 
input → Justin in Kristin’s son; Carol is Kristin’s mother; → Carol is Justin’s mother’s mother; if 
X is Y’s mother’s mother then X is Y’s grandmother → Carol is the grandmother of Justin.



SimpleLogic

Generate textual train and test examples of the form:

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Training a transformer on SimpleLogic

Test accuracy for different reasoning depths

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Has the transformer learned to reason from data?

1. Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)

2. RP/LP data covers the whole problem space

3. The learned model has almost 100% test accuracy

4. There exist transformer parameters that compute the ground-truth reasoning function:

Surely, under these conditions, the transformer has 
learned the ground-truth reasoning function!

Theorem: For a BERT model with n layers and 12 attention heads, by construction, 
there exists a set of parameters such that the model can correctly solve any 
reasoning problem in SimpleLogic that requires at most n − 2 steps of reasoning.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


The Paradox of Learning to Reason from Data

1. If the transformer has learned to reason, 
it should not exhibit such generalization failure. 
 

2. If the transformer has not learned to reason, 
it is baffling how it achieves near-perfect in-distribution test accuracy.

The BERT model trained on one distribution fails to generalize 
to the other distribution within the same problem space.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Why? Statistical Features

Monotonicity of entailment: 
Any rules can be freely added to the axioms of any proven fact.

The more rules given, the more likely a predicate will be proven.

Pr(label = True | Rule # = x) should increase (roughly) monotonically with x



Model leverages statistical features to make predictions

1. Accuracy drop from RP to RP_b indicates that 
the model is using rule# as a statistical feature to make predictions.
 

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


First Conclusion

Experiments unveil the fundamental difference between 

1. learning to reason, and 

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying AI in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate…

FAQ: Will reasoning emerge? Perhaps on 99% of predictable human behavior…

                                                We won’t invent jazz or calculus that way…

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Current investigation…

Initialize with the perfect parameters 

that simulate the ground-truth reasoning algorithm.

Then SGD will un-learn the algorithm that generalizes OOD?

                     … we don’t understand what is going on …
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ChatGPT



ChatGPT

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

ChatGPT

Ctrl-G



Train some              for a specific task distribution

Train                                      and avoid symbolic reasoning

What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does



What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization! Probabilistic Reasoning!

Generate from



Representing Logical Constraints as DFAs
A deterministic finite automaton (DFA) checks whether a string satisfies certain constraints.

Example. Check if a string contains “gets cold”.

≠“gets”

“cold”

“gets”

≠“gets” or “cold”

“gets”

all

initial state accept state

String: “The weather gets cold in the winter.”
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Representing Logical Constraints as DFAs
A deterministic finite automaton (DFA) checks whether a string satisfies certain constraints.

Can represent:
1. Phrases/words must/must not appear
2. Exactly k words/sentences/paragraphs.
3. Only words from a given vocabulary.
4. String must end a certain way
5. Any regex
6. Anything over fixed sequence lengths
7. …

≠“gets”

“cold”

“gets”

≠“gets” or “cold”

“gets”

all



Keep it simple… just a classic Hidden Markov Model (HMM) with 
32,768 hidden states and 2 billion parameters… on the GPU

Tractable Deep Generative Models

Model joint probability distributions and 
allow efficient probabilistic inference

HCLT

Mixture of Trees

DPP
SPN

HMM

Probabilistic Circuits

Theorem. Given a DFA constraint α with m edges and an HMM p(x) with h hidden 
states, computing p(α | x1:t+1 ) over a sequence of n tokens takes O(nmh2) time.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892


The Ctrl-G Architecture



By Bayes rule,
pLM(next-token | α, prefix) 

               ∝ 

pLM(next-token | prefix)
⋅ pLM(α | next-token, 

prefix)

The Ctrl-G Architecture



By Bayes rule,
pCTRL-G(next-token | α, prefix) 

               ∝ 

pLM(next-token | prefix)
⋅ pTPM(α | next-token, prefix)

The Ctrl-G Architecture



CommonGen Benchmark
Generate a sentence using 3 to 5 concepts (keywords).

Input: snow drive car

Reference 1: A car drives down a snow-covered road.

Reference 2: Two cars drove through the snow.

α = ("car" ∨ "cars"…) ∧ ("drive" ∨ "drove"…) ∧ 
…

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892


Interactive Text Editing

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892


Interactive Text Editing

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

Does the output satisfy the constraints?

Ask humans to assign quality scores (out of 5)

How often does the output satisfy the constraints 
and achieve a quality above 3?

Ctrl-G based on TULU2-7B wipes the floor with 
GPT4, which is a >100x bigger LLM

Insert with key phrase (K) or length (L) constraints

https://arxiv.org/pdf/2406.13892


Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass 
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy 
16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So 
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.
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actually costs 5 + 3 = $8. He wants 16 / 2 = 8 sets of two. That means he needs to 
pay 8 * 8 = $64. So the answer is 64.
 

Which constraint improves accuracy?
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costs $5, but every second glass costs only 60% of the price. Kylar wants to buy 
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Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

Use all the numbers in the problem statement!

https://arxiv.org/pdf/2406.13892


Advantages of Ctrl-G:

1. Constraint α is guaranteed to be satisfied: 
for any next-token xt+1 that would make α unsatisfiable, p(xt+1 | x1:t, α) = 0.

2. Training the tractable deep generative model does not depend on α, 
which is only imposed at inference (generation) time. 

Conclusion: 
You can control an intractable generative model using a 
generative model that is tractable for reasoning.
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Neurosymbolic learning of transformers
Given: 

1. constraint α (a list of 403 toxic words not to say) 
2. training data D

Learn: a transformer Pr(.) that 

1. satisfies the constraint α:      Pr(α)↑

2. maximizes the likelihood:      Pr(D)↑

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf
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Pr(α) is computationally hard, even when α is trivial:
What is probability that LLM ends the sentence with “UCLA”?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.
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Autoregressive distributions are hard…
Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Why did it work before?

We were using a separate tractable proxy model…

Now we need to train the actual intractable transformer…
Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Neuro-Symbolic AI: A Probabilistic Perspective

A neural network 
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]

http://starai.cs.ucla.edu/papers/XuICML18.pdf


Neuro-Symbolic AI: A Probabilistic Perspective

A neural network 
induces a distribution

Impose structure 
using symbolic 
knowledge
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Neuro-Symbolic AI: A Probabilistic Perspective

Move mass around to be 
consistent with structure

Impose structure 
using symbolic 
knowledge

A neural network 
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]

http://starai.cs.ucla.edu/papers/XuICML18.pdf


Basic Idea: 

Use how likely a constraint is to be 

satisfied around a model sample (x) 

as a proxy for how likely it is to be 

satisfied under the entire distribution. 

Average over many such samples.

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

Neurosymbolic learning of transformers

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Formally, minimize the pseudo-semantic loss 

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Formally, minimize the pseudo-semantic loss 

x

x

Basic Idea: 

Pick a location to build the 

approximation around



Formally, minimize the pseudo-semantic loss 

x

x

Basic Idea: 

Extract a local tractable probabilistic 

model around the point 

(independent in each dimension)



How to compute pseudo-semantic loss?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

Just reuse these probabilities

Transformer output gives all alternative next-token logits for ỹ: 

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Formally, minimize the pseudo-semantic loss 

x

x

Basic Idea: 

Compute Pr(α) locally and maximize it



Formally, minimize the pseudo-semantic loss 

How good is this approximation?
● Local: 

~30 bits entropy vs ~80 for GPT-2. 
● Fidelity: 

4 bits KL-divergence from GPT-2.

x

x



Detoxify LLMs by disallowing bad words 

Constraint α is a list of 403 toxic words not to say
Evaluation is a toxicity classifier

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf
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Thanks

This was the work of many wonderful 
students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/ 

http://starai.cs.ucla.edu/publications/

