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Most language models represent distributions over tokens (subwords), not strings.

Tokenization in NLP

For example:

↪ Why tokens instead of bytes?
(for autoregressive models, 
e.g. transformers)

Harder to capture long term dependency

↪ Why tokens instead of words?

Robustness to typos and new words
Tokens capture morphology



Tokenization in NLP

A string can be tokenized in an exponential number of ways (784 here!)

Common assumption:

✘ 

How do you do learning and inference?

Define a unique canonical tokenization of a string!

Example:



Why does this tokenization problem matter?

Tokenization in NLP

We’re ignoring an exponential number of tokenizations!

How canonical are unconditional samples?

Less likely for non-English (code, 
unicode characters, etc)



Tokenization is a Neurosymbolic Problem!
But why do we care? What is the neurosymbolic problem here?

↪ Tokens are symbols.
↪ A tokenization of a text is a constraint over these symbols.

Example:

From Gemma 2B

concatenation



Tokenization in NLP

A string can be tokenized in an exponential number of ways (784 here!)

Common assumption:

✘ ✔

How do you do learning and inference?

Define a unique canonical tokenization of a string!

Example:



Reasoning in Tokenization Space

1. The most likely tokenization

2. The true marginal probability of a text

Instead of the canonical tokenization, we might want to compute:

✘ Theorem. The most likely 
tokenization problem is NP-hard.

Theorem. The marginal string 
probability problem is #P-hard.

✘ 

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. Where is the signal in tokenization space?, 2024

For autoregressive models, e.g. 
transformers and state space models

Proof Intuition: Choice of tokens can encode Boolean variables, 
                        LLM probability encodes which clauses in a CNF are satisfied

https://arxiv.org/abs/2408.08541


(Approximate) Reasoning in Tokenization Space
1. The most likely tokenization

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. Where is the signal in tokenization space?, 2024

Branch-and-bound
↪ Lower bound: canonical likelihood
↪ Anytime: candidate at least as good as canonical
↪ Runtime exponential on string length!
↪ Canonical best candidate for almost all cases…

Is there signal in 
non-canonical tokenizations?

canonical tokenization

most likely tokenization

canonical tokenization

whitespace character

From Gemma 2B

…but not always!

https://arxiv.org/abs/2408.08541


(Approximate) Reasoning in Tokenization Space
2. The true probability of a text

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. Where is the signal in tokenization space?, 2024

Sequential importance sampling

LLM forward 
pass

proposal distribution

One step look-ahead 
proposal distribution:

Unbiased estimator converging to 
the true probability of text as 
#samples grows

zero-out next tokens 
inconsistent with constraint

https://arxiv.org/abs/2408.08541


Where is the signal in tokenization space?

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. Where is the signal in tokenization space?, 2024

California experiences heavy 
earthquake activity due to
(a) erosion
(b) techtonics
(c) volcanic activity
(d) fire

what’s going on here?

There is signal in non-canonical tokenizations!

━━━ Llama2 ━━━ Gemma
━━━ Mamba  ╍╍╍ canonical

Most of the time, canonical is overwhelmingly more likely in English.

So text probability estimate will eventually converge 
to canonical in almost all cases.

But before it does, non-canonical tokenizations are 
given more weight!

https://arxiv.org/abs/2408.08541


Neurosymbolic reasoning can boost LLM accuracy!

Renato Lui Geh, Honghua Zhang, Kareem Ahmed, Benjie Wang and Guy Van den Broeck. Where is the signal in tokenization space?, 2024

Can we quantify how much signal is in non-canonical tokenizations?

canonical non-canonicals

Tune for α

Consistent improvement!

only non-canonicals only canonical

https://arxiv.org/abs/2408.08541
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Can Language Models Perform Logical Reasoning?
Language Models achieve high performance on “reasoning” benchmarks. 

Reasoning Example 
from the CLUTRR 

dataset

Unclear whether they follow the rules of logical deduction. 

Language Models: 
input → ? → Carol is the grandmother of Justin.

Logical Reasoning: 
input → Justin in Kristin’s son; Carol is Kristin’s mother; → Carol is Justin’s mother’s mother; if 
X is Y’s mother’s mother then X is Y’s grandmother → Carol is the grandmother of Justin.



SimpleLogic

Generate textual train and test examples of the form:

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Training a transformer on SimpleLogic

Test accuracy for different reasoning depths

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Has the transformer learned to reason from data?

1. Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)

2. RP/LP data covers the whole problem space

3. The learned model has almost 100% test accuracy

4. There exist transformer parameters that compute the ground-truth reasoning function:

Surely, under these conditions, the transformer has 
learned the ground-truth reasoning function!

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction, 
there exists a set of parameters such that the model can correctly solve any 
reasoning problem in SimpleLogic that requires at most n − 2 steps of reasoning.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


The Paradox of Learning to Reason from Data

1. If the transformer has learned to reason, 
it should not exhibit such generalization failure. 
 

2. If the transformer has not learned to reason, 
it is baffling how it achieves near-perfect in-distribution test accuracy.

The BERT model trained on one distribution fails to generalize 
to the other distribution within the same problem space.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Why? Statistical Features

Monotonicity of entailment: 
Any rules can be freely added to the axioms of any proven fact.

The more rules given, the more likely a predicate will be proven.

Pr(label = True | Rule # = x) should increase (roughly) monotonically with x



Model leverages statistical features to make predictions

1. Accuracy drop from RP to RP_b indicates that 
the model is using rule# as a statistical feature to make predictions.
 

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


First Conclusion

Experiments unveil the fundamental difference between 

1. learning to reason, and 

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying AI in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate…

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior…

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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ChatGPT



ChatGPT

ChatGPT



ChatGPT

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

ChatGPT

GeLaTo



Train some              for a specific task distribution
   (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train                                      and avoid symbolic reasoning

What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does



What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization!

Generate from



For now… keep it simple… just a Hidden Markov Model (HMM) with 
4096 hidden states and 50k emission tokens

Tractable Probabilistic Models

Tractable Probabilistic Models (TPMs) 
model joint probability distributions 
and allow efficient probabilistic inference.

HCLT

Mixture of Trees

DPP
SPN

HMM

Probabilistic Circuits

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Computing p(α | x1:t+1) on an HMM

For constraint α in CNF:

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

e.g.,  α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Efficient algorithm: 
For m clauses and sequence length n, time-complexity for HMM generation is O(2|m|n)

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


CommonGen: a Challenging Benchmark

Given 3-5 keywords, generate a sentence using all keywords, 
in any order and any form of inflections. e.g.,

 Reference 1: A car drives down a snow covered road.

 Input: snow drive car

 Reference 2: Two cars drove through the snow. 

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

Each clause represents the inflections for one keyword.

Constraint α in CNF:



GeLaTo 
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


GeLaTo 
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Language model is not fine-tuned/prompted to satisfy constraints

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Advantages of GeLaTo:

1. Constraint α is guaranteed to be satisfied: 
for any next-token xt+1 that would make α unsatisfiable, p(xt+1 | x1:t, α) = 0.

2. Training phmm does not depend on α, 
which is only imposed at inference (generation) time. 

Conclusion: you can control an intractable generative model 
using a tractable probabilistic circuit.

What about more powerful constraints? 
                    more powerful LLMs? 



More powerful constraints?  Tractable Control with Ctrl-G

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892


More powerful constraints?
Tractable Control with Ctrl-G

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892


Tractable Control with Ctrl-G

Ctrl-G (applied to TULU2-7B) significantly 
outperforms GPT4 in generating text 
continuations/insertions under constraints. 
Notably for insertion, while GPTs produce 
lower quality outputs as the constraints 
become more complex, Ctrl-G consistently 
produce high-quality output.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.

https://arxiv.org/pdf/2406.13892
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Neurosymbolic learning of transformers
Given: 

1. constraint α (a list of 403 toxic words not to say) 
2. training data D

Learn: a transformer Pr(.) that 

1. satisfies the constraint α:      Pr(α)↑

2. maximizes the likelihood:      Pr(D)↑

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Neurosymbolic learning of transformers
Given: 

1. constraint α (a list of 403 toxic words not to say) 
2. training data D

Learn: a transformer Pr(.) that 

1. satisfies the constraint α:      Pr(α)↑

2. maximizes the likelihood:      Pr(D)↑

Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Autoregressive distributions are hard…
Pr(α) is computationally hard, even when α is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Why did it work before?

We were using a separate tractable proxy model…

Now we need to train the actual intractable transformer…
Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Neuro-Symbolic AI: A Probabilistic Perspective

A neural network 
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]

http://starai.cs.ucla.edu/papers/XuICML18.pdf


Neuro-Symbolic AI: A Probabilistic Perspective

A neural network 
induces a distribution

Impose structure 
using symbolic 
knowledge

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]

http://starai.cs.ucla.edu/papers/XuICML18.pdf


Neuro-Symbolic AI: A Probabilistic Perspective

Move mass around to be 
consistent with structure

Impose structure 
using symbolic 
knowledge

A neural network 
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]

http://starai.cs.ucla.edu/papers/XuICML18.pdf


The Problem

We want to shift the model’s output distribution away from violating the constraint

 

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]

http://starai.cs.ucla.edu/papers/XuICML18.pdf


Basic Idea: 

Use how likely a constraint is to be 

satisfied around a model sample (x) 

as a proxy for how likely it is to be 

satisfied under the entire distribution. 

Average over many such samples.

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

Neurosymbolic learning of transformers

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Formally, minimize the pseudo-semantic loss 

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Formally, minimize the pseudo-semantic loss 

x

x

Basic Idea: 

Pick a location to build the 

approximation around



Formally, minimize the pseudo-semantic loss 

x

x

Basic Idea: 

Extract a local tractable probabilistic 

model around the point 

(independent in each dimension)



How to compute pseudo-semantic loss?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

I saw a dog today

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Formally, minimize the pseudo-semantic loss 

x

x

Basic Idea: 

Compute Pr(α) locally and maximize it



Formally, minimize the pseudo-semantic loss 

How good is this approximation?
● Local: 

~30 bits entropy vs ~80 for GPT-2. 
● Fidelity: 

4 bits KL-divergence from GPT-2.

x

x



Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf


Detoxify LLMs by disallowing bad words 

Constraint α is a list of 403 toxic words not to say
Evaluation is a toxicity classifier

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurIPS), 2023.

http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf
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Thanks

This was the work of many wonderful 
students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/ 

http://starai.cs.ucla.edu/publications/

