Bit Blasting Probabilistic Programs

Poorva Garg, Steven Holtzen, Guy Van den Broeck, Todd Millstein

FPTalks - July 112024

What are Probabilistic Programs?

Programs that represent probability distributions:

```
a ~ flip(0.7)
b ~ if a
    then normal(0, 1)
    else normal(2, 1)
return b
```

Primary analysis task is probabilistic inference:

$$
\begin{aligned}
\operatorname{pr}(b) & =\sum_{a_{i}} \operatorname{pr}\left(a=a_{i}\right) \operatorname{pr}\left(b \mid a=a_{i}\right) \\
& =\frac{7}{10} \operatorname{pr}(b \mid a=1)+\frac{3}{10} \operatorname{pr}(b \mid a=0) \\
& =\frac{7}{10} e^{-\frac{1}{2} b^{2}}+\frac{3}{10} e^{-\frac{1}{2}(2-b)^{2}}
\end{aligned}
$$

What are Probabilistic Programs?

Programs that represent probability distributions:

Primary analysis task is probabilistic inference:

$$
\begin{aligned}
\operatorname{pr}(b) & =\sum_{a_{i}} p r\left(a=a_{i}\right) \operatorname{pr}\left(b \mid a=a_{i}\right) \\
& =\frac{7}{10} \operatorname{pr}(b \mid a=1)+\frac{3}{10} \operatorname{pr}(b \mid a=0) \\
& =\frac{7}{10} e^{-\frac{1}{2} b^{2}}+\frac{3}{10} e^{-\frac{1}{2}(2-b)^{2}}
\end{aligned}
$$

discrete + continuous $=$ hybrid probabilistic program

Hybrid is Not Well Supported

Hamiltonian Monte Carlo ग Pyro $\Leftarrow \operatorname{Stan}$

Sequential Monte Carlo WebPPL

Algebraic Evaluation
${ }^{P S I}$ sOLVER
Knowledge Compilation
Dice ProbLog

Limited support for discreteness

Scalability and accuracy issues

Closed form does not always exist

No support for continuous

Bit Blasting a Continuous Random Variable

Infinite binary representation in $[0,1): \quad X \sim 0 . b_{1} b_{2} b_{3} \ldots$
\checkmark all random variables are discrete
\checkmark representation is exact
\checkmark exposes useful structure (e.g., arithmetic)
X infinite number of random bits

Bit Blasting a Continuous Random Variable

Finite binary representation in $[0,1): \quad X \sim 0 . b_{1} b_{2} b_{3} \ldots b_{k}$
\checkmark all random variables are discrete
\checkmark representation is exact up to \mathbf{k} bits
\checkmark exposes useful structure (e.g., arithmetic)
? does the distribution over k bits have a program using a few independent coin flips?

Bit Blasting the Uniform

$$
\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}
$$

represent bits using a probabilistic program of coin flips

Bit Blasting the Uniform

$$
\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}
$$

Naive discretization

```
if flip(1/8) [0, 0, 0]
elif flip(1/7) [0, 0, 1]
elif flip(1/6) [0, 1, 0]
elif flip(1/5) [0, 1, 1]
elif flip(1/4) [1, 0, 0]
elif flip(1/3) [1, 0, 1]
elif flip(1/2) [1, 1, 0]
else [1, 1, 1] end
```

How many coin flips?

- 3 bits: 7 flips
- 32 bits: 4,294,967,295 flips
- k bits: $2^{\mathrm{k}}-1$ flips
see GuBPI, AQUA, etc.

Bit Blasting the Uniform

Bit Blast

$$
x \sim 0 . b_{1} b_{2} b_{3}
$$

$$
\begin{aligned}
& \mathrm{a}=\mathrm{flip}(0.5) \\
& \mathrm{b}=\mathrm{flip}(0.5) \\
& \mathrm{c}=\mathrm{flip}(0.5) \\
& {[\mathrm{a}, \mathrm{~b}, \mathrm{c}]}
\end{aligned}
$$

How many coin flips?

- 3 bits: 3 flips
- 32 bits: 32 flips
- k bits: k flips \vee

Essence of Bit Blasting

Which continuous distributions can be bit blasted?

Bit Blasting the Exponential $\lambda e^{-\lambda x}$

$$
\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}
$$

represent bits using a probabilistic program of coin flips

Bit Blasting the Exponential $\lambda e^{-\lambda x}$

$$
\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}
$$

Bit Blast

```
```

a = flip(0.1824)

```
```

a = flip(0.1824)
b = flip(0.3208)
b = flip(0.3208)
c = flip(0.4073)
c = flip(0.4073)
[a, b, c]

```
```

[a, b, c]

```
```

How many flips? k bits: k flips

Cannot go beyond the exponential with just independent coins!

Bit Blasting the Gamma $\frac{1}{\Gamma(k) \theta^{k}} x^{k-1} e^{-x / \theta}$
$\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}$

represent bits using a probabilistic program of coin flips

A Purely Continuous Gamma $x e^{-3 x}$

Continuous Program
 $X=$ exponential (-3)
 $\mathrm{Y}=\operatorname{uniform}(0,1)$
 observe (Y
 return X

Bit Blasting the Gamma

Bit Blast

$\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}$


```
X = bitblast(exponential(-3))
Y = bitblast(uniform(0, 1))
observe(Y < X)
return X
```


Bit Blasting the Gamma

Bit Blast

```
X = bitblast(exponential(-3))
Y = bitblast(uniform(0, 1))
observe(Y < X)
return X
```


Wrong

Bit Blasting the Gamma

$$
\mathrm{X} \sim 0 . \mathrm{b}_{1} \mathrm{~b}_{2} \mathrm{~b}_{3}
$$

Bit Blast

```
X = [flip(.182), flip(.320), flip(.407)]
Y = [flip(.5), flip(.5), flip(.5)]
Z = [flip(.182), flip(.320), flip(.407)]
observe(Y < X)
return (if flip(0.208) then Z else X)
```

How many coin flips?

- 3 bits: 10 flips
- 32 bits: 97 flips
- k bits: $3 k+1$ flips \vee

Paper shows more:

- Efficient bit blasting for other common continuous distributions
- HyBit system for hybrid probabilistic programming https://github.com/Tractables/Dice.j//tree/hybit
- Supports scalable probabilistic inference in Dice (core language guarantees BDDs of size O(poly(k)))
- Comprehensive evaluation on suite of hybrid programs:
- HyBit supports all benchmarks
- Gets the best accuracy on 11 out of 19 of them
- Check out our paper: https://dl.acm.org/doi/10.1145/3656412

