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Abstract
Most research on query optimization has centered on binary join algorithms like hash join and sort-

merge join. However, recent years have seen growing interest in theoretically optimal algorithms, notably
Yannakakis’ algorithm. These algorithms rely on join trees, which differ from the operator trees for binary
joins and require new optimization techniques. We propose three approaches to constructing join trees
for acyclic queries. First, we give an algorithm to enumerate all join trees of an α-acyclic query by edits
with amortized constant delay, which forms the basis of a cost-based optimizer for acyclic joins. Second,
we show that the Maximum Cardinality Search algorithm by Tarjan and Yannakakis constructs a unique
shallowest join tree, rooted at any relation, for a Berge-acyclic query; this tree enables parallel execution
of large join queries. Finally, we prove that any connected left-deep linear plan for a γ-acyclic query
can be converted into a join tree by a simple algorithm, allowing reuse of optimization infrastructure
developed for binary joins.

1 Introduction
The query optimizer sits at the heart of a database system. It takes a query as input and generates a
plan for efficient execution, allowing users to program declaratively without worrying about evaluation.
Among the many relational algebra operators, join has received significant attention in optimization research.
Its compositional nature allows for combining information from multiple relations, constructing complex
queries from simple ones, and producing an output asymptotically larger than the inputs. The primary
challenge is the join ordering problem to find the best arrangement of many join operations. Most existing
research has focused on binary join algorithms such as hash join and sort-merge join, but these can produce
unnecessarily large intermediates. Recent work has revived interest in optimal join algorithms, notably
Yannakakis’ instance-optimal algorithm [44] for acyclic queries, which runs in linear time in the input and
output size, O(|IN|+ |OUT|). Its execution is guided by join trees whose nodes are relations, different from
traditional binary join plans with relations at the leaves and join operators at the internal nodes. Although
the algorithm is optimal regardless of the join tree, the choice of plan can affect practical performance. In
this paper, we study the optimization problem in the context of Yannakakis-style algorithms.

A query optimizer typically has two parts: a plan generator and a cost model to assess each plan. This
paper focuses on plan generation and presents three approaches:

• An algorithm that enumerates all join trees of an acyclic query by edits, with amortized constant time
delay.

• A proof that Maximum Cardinality Search [40] yields a unique shallowest join tree for any Berge-acyclic
query, enabling parallel execution for very large queries.

• A characterization of when the algorithm by Hu et al. [20] can convert a binary join plan into a valid
join tree, allowing reuse of existing optimizers.

The rest of the paper is organized as follows: Section 2 discusses related work; Section 3 introduces
relevant concepts and notations; Section 4 presents the join tree enumeration algorithm; Section 5 introduces
canonical join trees and their construction; Section 6 discusses the conversion from binary plans to join trees;
finally, Section 7 points to avenues for future work and concludes the paper. All missing proofs can be found
in the appendix, which also contains additional figures, tables and algorithms.
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2 Related Work
Join order optimization is well studied, with algorithms based on dynamic programming (DP) from the
bottom up [28, 34, 30], cost-based pruning from the top down [11, 15], greedy heuristics [5, 14, 38], and
randomized search [36]. Since the plan space is exponential, most methods prune it: some restrict to
left-deep plans [21, 23], while others avoid Cartesian products [28, 29]. Our algorithms restrict the query
plans to those running in linear time for acyclic queries. In particular, while avoiding Cartesian products
requires each subplan to form a spanning tree of the corresponding subquery’s join graph,1 our algorithms
find maximum spanning trees of the weighted join graph. Several algorithms for ordering binary joins are
based on dynamic programming and tabulate shared structures among different plans [28, 29]. This is
desirable because subplans are grouped into equivalence classes, and the optimal plan can be constructed in
a bottom-up manner. Our enumeration algorithm avoids redundant work by enumerating join trees by edits,
i.e., it outputs the difference between consecutive join trees instead of the trees themselves. Future work
may explore constructing compact representations of join trees, suitable for dynamic programming.

Several recent papers have proposed practical implementations of Yannakakis’ algorithm for acyclic
queries [2, 20, 42, 47]. For example, Zhao et al. [47] find that different query plans perform similarly,
thanks to the optimality of Yannakakis’ algorithm. They adopt a simple heuristic to construct the join tree
by picking the largest input relation as the root, and then greedily attaching the remaining relations into
the tree. Inspired by this algorithm, we prove in Section 5 that for Berge-acyclic queries there is a unique
shallowest join tree for any given root where the depth of each node is minimized. Furthermore, this tree
can be constructed in linear time by Tarjan and Yannakakis’ Maximum Cardinality Search algorithm [40].
Shallow trees are desirable for parallel execution, where the depth of the tree determines the number of
sequential steps. Other practical implementations of Yannakakis’ algorithm leverage existing optimizers for
binary joins and convert a binary plan into a join tree [2, 20]. In particular, Hu et al. [20] find that every
left-deep linear plan encountered in practice can be converted into a join tree by a simple algorithm. This is
not surprising, as we will prove in Section 6 that every connected left-deep linear plan of a γ-acyclic query
must traverse some join tree from root to leaves.

On the theoretical side, attention has been focused on finding (hyper-)tree decompositions to improve
the asymptotic complexity of query processing [37, 19, 16]. The general goal is to find a decomposition
with small width which can be used to guide the execution of join algorithms. Most algorithms find a single
decomposition with minimum width to achieve the optimal asymptotic complexity [37, 19, 16]. Nevertheless,
different decompositions with the same width may still lead to different performance in practice, and cost-
based optimization remains crucial. For this, Carmeli et al. [6] propose an algorithm to enumerate tree
decompositions with polynomial delay. In this paper, we focus on acyclic queries and their join trees, which
are precisely the decompositions with width 1. Our enumeration algorithm can generate all join trees by
edits with amortized constant delay.

3 Preliminaries
We focus on full conjunctive queries [1] in this paper and identify each query with its hypergraph, where
there is a vertex for each variable and a hyperedge for each relation.

Definition 1. A hypergraph is a tuple (X,R, χ) where X is a set of vertices, R a set of hyperedges, and
χ : R→ 2X is a function that assigns to each hyperedge a set of vertices.

Without loss of generality, we limit the scope of our discussion to queries which admit connected hyper-
graphs. For queries with disconnected hypergraphs, we treat each component separately. We do not consider
isolated vertices, empty hyperedges or duplicated hyperedges containing the same set of vertices. Therefore,
each hyperedge can be identified with its vertex set. We will use x ∈ r interchangeably with x ∈ χ(r) and
apply the common set operations to hyperedges. The size of a hypergraph is the sum of all hyperedges
|H| =

∑
r∈R |r|. We let H|x denote the neighborhood of x in H, consisting of all hyperedges containing

vertex x.
1The join graph of a query has a vertex for each relation and an edge for each pair of relations that join with each other.

We later define this as the line graph of the query hypergraph in Definition 2.
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Algorithm 1: MCS from r ∈ R(H)

Input: Hypergraph H, root r
Output: Join tree Tr rooted at r

1 p(r)← null
2 i← 0
3 while R ̸= ∅ do
4 i← i+ 1
5 ri ← r
6 for x ∈ ri ∩X do
7 for r′ ∈ R : x ∈ r′ do
8 p(r′)← ri

9 X ← X \ ri
10 R← R \ {ri}
11 r ← argmaxr∈R |r \X|

a c

b

d

ef

P

S
T

U

W

Y

(a) Hypergraph H6

P

S

T W

U

Y

{a, c}

{a, c}

{a,
c}

{a, d}

(b) Line graph L6

P

T

W

U

S

Y

{a, c}

{a, c}

{a, d}

{a}{a}

(c) TG by GYO

P

T

W U

S

{a}{a}

{a, c} {a, c}

Y

{a, d}

(d) TM by MCS

Figure 1: A hypergraph H6, its line graph L6, and two
join trees TG and TM .

Definition 2. The line graph L(H) of a hypergraph H = (X,R, χ) is an undirected simple graph (R,E)
whose vertices R are the hyperedges of H, and there is an edge (r1, r2) ∈ E whenever r1 ∩ r2 ̸= ∅. We extend
χ such that χ(e) = χ(r1, r2) := r1 ∩ r2 for each edge e = (r1, r2) ∈ E, and define the edge-weight function
ω(r1, r2) := |r1 ∩ r2|.

When there is no ambiguity from the context, we simply write L(H) as L. The size of a line graph is the
sum of all edge weights |L| =

∑
e∈E(L) ω(e). It reflects the number of join clauses in a SQL query with one

clause per variable shared between two relations. We let L|x denote the subgraph of L(H) induced by H|x.

Example 3. Figure 1a shows an example hypergraph of size 14. The line graph L6 = L(H6) is shown in
Figure 1b. For instance, hyperedges Y and U share two vertices a and d, so they are connected by an edge
in the line graph. The edge weight is given by ω(Y, U) = |{a, d}| = 2. Each unannotated edge in L6 connects
two hyperedges sharing only the vertex a. Otherwise, the common vertices shared by a pair of hyperedges are
annotated next to the corresponding edge. The size of the line graph is |L6| = 19.

Definition 4. A join tree T of hypergraph H is a spanning tree of L(H) such that T |x is a connected subtree
for each x ∈ X(H). If a certain vertex is specified as the root, T becomes a rooted join tree where the edges
are oriented away from the root.

A join tree T (L) is a subgraph of L, so we use R(T ) to denote the set of tree nodes and E(T ) to denote
the set of tree edges. Because T is spanning and acyclic, we always have R(T ) ≡ R(L) and E(T ) ⊆ E(L).
The requirement that T |x∈X(H) is connected is also known as the running intersection property [13]. We
write T (L(H)) or T (H) to denote the set of unrooted join trees. The union join graph U(L(H)) or U(H)
is a spanning subgraph of L(H) where the edge set is the union of all join trees E(U(H)) =

⋃
T∈T (H) E(T ).

We use Tr to denote a join tree rooted at r ∈ R(T ). When there is no ambiguity, we simply write T . The
depth of a node ri in the rooted tree Tr, denoted d(Tr, ri), is defined as its distance from the root. Join trees
can be constructed by a procedure called GYO reduction.

Definition 5. A GYO reduction order is a sequence of hyperedges r1, r2, . . . , rk such that for each ri<k,
there is some rp>i, called the parent of ri, such that ∀rj>i : ri ∩ rj ⊆ rp.

The GYO reduction algorithm finds such an order iteratively, and attaches each hyperedge to its parent
to form a join tree. It generates the join tree TG as shown in Figure 1c. Readers may refer to the work of
Yu and Ozsoyoglu [45] for details.

Four common notions of hypergraph acyclicity are defined in decreasing order of strictness, following
the seminal work by Fagin [13], namely Berge-acyclic ⇒ γ-acyclic ⇒ β-acyclic ⇒ α-acyclic. The detailed
definitions are given by Definition 41 in Section A.
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Another algorithm for checking acyclicity of hypergraphs and constructing join trees is the Maximum
Cardinality Search (MCS) algorithm by Tarjan and Yannakakis [40]. Algorithm 1 shows a simplified pseu-
docode of MCS. We discuss the properties of MCS and how it constructs the join trees TM in Figure 1d
with Example 42 in Section A.

Computation model. Throughout the paper we assume the Random Access Machine model of com-
putation, where one can allocate an array of size n in O(n) time. Constant-time operations include accessing
and updating an array element, adding or deleting an element in a linked list, and the common arithmetic
operations on integers.

4 Enumerating Join Trees
Our strategy for enumerating join trees is based on the following classic result relating join trees of a
hypergraph to maximum spanning trees (MSTs) of its line graph:

Proposition 6 (Maier [27]). A subgraph of L(H) is a join tree of H if and only if it is a maximum spanning
tree of L(H) according to the weight function ω.

A naïve approach is to apply an off-the-shelf algorithm for enumerating the maximum spanning trees of
L(H). The best known algorithm for this purpose is due to Eppstein [12], and it works by deriving from
the input graph G a so-called equivalent graph G≡. Every spanning tree of G≡ corresponds to an MST of G
and vice versa. Eppstein proves a lower bound of Ω(m+ n logn) on constructing the equivalent graph from
an arbitrary weighted graph with m edges and n vertices. Then to enumerate all k MSTs of G, Eppstein
applies existing algorithms to enumerate the spanning trees of G≡. Since there are optimal spanning tree
enumeration algorithms that run in O(m+ n+ k) [22, 35], the overall time complexity to enumerate MSTs
is O(m+ n log n+ k).

The main result of this section is an algorithm for enumerating join trees leveraging the structure of
acyclic hypergraphs and their line graphs. In particular:

• for any α-acyclic hypergraph H, we can construct an equivalent graph in O(|L|) = O(m + n), where
m and n are the numbers of edges and vertices in L(H), thus enumerating the join trees in O(|L|+ k).

• for any γ-acyclic hypergraph H, we can construct an equivalent graph from the union join graph
U(H) which can be built in O(|H|+ |U(H)|), lowering the overall time complexity of enumeration to
O(|H|+ k).

In the rest of this section, we formally introduce the notion of the equivalent graph G≡. Thereafter,
we outline the main algorithm for enumerating join trees, prove its correctness and analyze its complexity.
Finally, we consider the case of γ-acyclic queries.

4.1 Equivalent Graph
The construction of the equivalent graph G≡ for a given edge-weighted graph G, is based on the following
local graph modification, sliding transformation.

Definition 7 (Sliding Transformation [12]). Let G be an edge-weighted graph with weight function ω. Given
edges e∗ = (u, v) and e = (v, w) where ω(e) < ω(e∗), sliding e along e∗ moves e’s end node v to u such that
e = (u,w).

We can construct an equivalent graph by repeatedly performing sliding transformations. Sliding may
create parallel edges, cycles, and self-loops, so the result is a multigraph.

Definition 8 (Equivalent Graph [12]). Given weighted graph G with MST T rooted, an equivalent graph
G≡ is obtained from G by exhaustively sliding every edge e = (v, w) ∈ E(G) along another e∗ = (u, v) ∈ T
as long as d(T, u) < d(T, v).

4
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Figure 2: TW is an MST of the line graph in Figure 1b where the black solid lines stand for the tree edges,
the dashed line for an MST edge (S,U), the dotted line for a non-MST edge (T, Y ) and gray solid lines
for the remaining non-tree edges. G≡ is the resulting equivalent graph where the thick lines highlight the
parallel edges.

Sliding transformation preserves the identity of each edge e ∈ E(G) as explained in Example 10. Every
spanning tree of G≡ is an MST of G and vice versa.

Theorem 9 (by Eppstein [12]). The maximum spanning trees of a weighted graph G are in one-to-one
correspondence with the spanning trees of its equivalent graph G≡.2

In the following, we use p(r) to denote the parent of r in a given rooted tree, and c(r) to denote
its children. We extend the notation of parent to edges as follows: for any edge e ∈ E(T ), its parent
p(e) ∈ E(T ) is another tree edge incident to e and closer to the root r. The edges incident to the root do
not have a parent and are all siblings. Otherwise, the siblings of e are incident to the same parent, denoted
as s(e) = {e′ ∈ E(T ) \ {e} | p(e′) = p(e)}.

Example 10. Given the 6-clique line graph L6 in Figure 1b, we find a rooted MST TW as shown in Figure 2a.
Among all the tree edges shown as black solid lines, we can only apply the sliding transformation to the edge
(T, P ) whose weight ω(T, P ) = |{a}| = 1 is lighter than its parent tree edge (W,T ) with ω(W,T ) = |{a, c}| =
2. We slide along the tree edge (W,T ) to the root so that the edge (T, P ) becomes (W,P ) as shown by the
solid curve in Figure 2b. Non-tree edges can slide similarly. We consider two examples, (S,U) illustrated
with a dashed line and (Y, T ) with a dotted line in Figure 2a. All other non-tree edges are shown in light
gray. We can slide along tree edge (U,W ) to the root so that the edge (S,U) becomes (S,W ) as shown by
the dashed curve in Figure 2b. Both ends of (Y, T ) can slide along the tree edges to the root so that the edge
becomes a self-loop as shown by the dotted loop in Figure 2b. This edge will not appear in any spanning tree
of G≡, and therefore not a part of any MST of L6. We refer to such an edge as a non-MST edge, as opposed
to an MST edge. By applying sliding transformations to a fixpoint, we obtain an equivalent graph G≡, where
there are two sets of parallel edges highlighted by thick lines in Figure 2c. For example, the tree edge (T, P )
in TW and non-tree edges (P,U), (P, T ), (P, Y ) are parallel in G≡ between P and W . We can easily verify
that each spanning tree of G≡ corresponds to an MST of L6, such as T ′

W in Figure 2d.

The choice of the initial spanning tree can affect the structure of the equivalent graph, but the order of
sliding transformations performed has no impact [12].

4.2 Enumerating Join Trees of α-Acyclic Hypergraphs
The bottleneck of Eppstein’s algorithm for constructing equivalent graphs of general graphs comes from a
subroutine that identifies where each edge will eventually slide to. Because each edge can only slide along a
heavier edge, it will eventually be “blocked” by a lighter or equally weighted edge along its path to the root.
The subroutine essentially performs binary search to find the blocking edge, leading to the log n factor in
the overall complexity. The key to our improvement is to show that for every acyclic hypergraph H, we can
construct an “equivalent hypergraph” H∗ that shares the same structure with H and has the same set of
join trees, but H∗ admits a special join tree with monotonically increasing weight from root to leaf, which
enables constant-time identification of the blocking edge.

2Minimum spanning trees are considered in the original literature [12].
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Definition 11. A monotonic weight join tree T̂ ∈ T (H) is a rooted join tree of H such that for any e ∈ T̂
that has a parent p(e), ω(e) > ω(p(e)).

Example 12. H∗
6 in Figure 3a is a hypergraph with similar structure to H6 in Figure 1a. H∗

6 differs from
H6 by one vertex d′ and admits the same set of join trees. Therefore, finding an equivalent graph G≡(H∗

6 ) is
sufficient for enumerating the join trees of H6. H∗

6 also admits a monotonic weight join tree T̂P in Figure 3b.
This means each tree edge in T̂P is already in place, because it cannot slide along the lighter parent. For each
non-tree edge, we can identify its destination in constant time using algorithms for finding lowest common
ancestors [3] and level ancestors [4], as detailed in Algorithm 3.

The example shows we can enumerate join trees of H by constructing H∗ and its equivalent graph
G≡(H∗), then enumerate spanning trees of G≡(H∗). However, constructing H∗ has a cost that may exceed
our target time complexity. We show that, perhaps surprisingly, running Algorithm 3 directly on H produces
the same equivalent graph G≡(H∗), so we can skip the costly construction of H∗.

Before presenting the algorithm, we first formalize the relationship between H and H∗ using the concept
of hypergraph homomorphisms. Note the definition of homomorphisms is not standardized in the litera-
ture, and we choose ours carefully to simplify the proofs. In particular, our definition is equivalent to the
homomorphism of incidence graphs [32].

Definition 13 (Hypergraph Homomorphism). For two hypergraphs H1, H2, a homomorphism f is a pair
of functions (fX : X(H1)→ X(H2), fR : R(H1)→ R(H2)) such that:

∀r1 ∈ R(H1), x1 ∈ r1 : fX(x1) ∈ fR(r1)

We write H1 → H2 to denote that there is a homomorphism from H1 to H2.

When there is no ambiguity from the context, we simply write f for fX or fR. Intuitively, homomorphisms
preserve relations. A strong homomorphism also reflects relations:

Definition 14 (Strong Homomorphism). A homomorphism f : H1 → H2 is called strong if it also satisfies:

∀r1 ∈ R(H1), x
′
1 ̸∈ r1 : fX(x′

1) ̸∈ fR(r1)

We write H1 ↠ H2 to denote that there is a strong homomorphism from H1 to H2.

In this paper we only consider hypergraphs over the same set of edges,3 and from now on we assume fR
is the identity function.

We now show that if there is a strong homomorphism f : H ′ ↠ H, then every join tree of H is also a join
tree of H ′.

Lemma 15. If H ′ ↠ H then T (H) ⊆ T (H ′).

We construct H∗ such that H∗ ↠ H and H∗ admits a monotonic weight join tree T̂ , by first using the
MCS algorithm to construct a join tree T of H called the MCS tree. Then, we perturb the weights of T so
that they increase monotonically from the root to leaves. Finally, we construct H∗ such that the perturbed
tree is a join tree of H∗.

The next result shows every MCS tree is already “somewhat monotonic”, in that every edge must contain
some variable not in its parent. With abuse of notation we write e1 ⊆ e2 for χ(e1) ⊆ χ(e2) and use the
common set operations directly on edges to reduce clutter.

Lemma 16. Let T be an MCS tree. For any edge e ∈ T that has a parent, then e ̸⊆ p(e).

Furthermore, if two edges share any variable not in their parents, they must be siblings.

Lemma 17. Let T be an MCS tree. For two edges e, e′ ∈ T that have parents,

(e \ p(e)) ∩ (e′ \ p(e′)) ̸= ∅ =⇒ p(e) = p(e′).

3The hypergraphs share the same hyperedge set R but differ in the hyperedge-to-vertices functions χ, i.e., an edge may have
different sets of vertices in different hypergraphs.
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We now show how to derive from an α-acyclic hypergraph H an equivalent hypergraph H ′ that preserves
T (H) and admits a monotonic weight join tree T̂ .

Definition 18 (Vertex Duplication). Given a hypergraph H and a vertex x ∈ X(H), duplicating x produces
a new hypergraph H ′ that differs from H by only one vertex {x′} = X(H ′) \X(H) which is added to each
r ∈ H|x.

We will refer to such a hypergraph H ′ as a vertex duplication of H or simply a duplicated hypergraph
of H. We generalize duplication to a set of vertices in the natural way. Importantly, vertex duplication
preserves the set of join trees of the original hypergraph.

Lemma 19. Let H ′ be a duplicated hypergraph of H. Then,

1. H ′ ↠ H and H ′ ↞ H

2. T (H ′) = T (H)

3. L(H ′) = L(H)

We are now ready to construct H∗ by vertex duplication.

Algorithm 2: Construction of H∗

Input: MCS tree Tr(H)
1 for r′ ∈ c(r) do
2 e← (r, r′); q.enqueue(e)

3 while q ̸= ∅ do
4 e← q.dequeue()
5 ∆← ω(p(e))− ω(e) + 1
6 if ∆ > 0 then
7 x← a vertex in χ(e) \ χ(p(e))
8 make ∆ duplicates of x

9 for e′ ∈ c(e) do
10 q.enqueue(e′)

a c

b

d

e
f

P

S
T

U

W

Y

d′

(a) H∗
6

P

T

W U

S
{a, c}

Y

{a, d, d′}

{a}

{a, c}

{a}

(b) T̂p

Figure 3: An equivalent hypergraph H∗
6 and its mono-

tonic weight join tree T̂P

Theorem 20. Given an MCS tree T of an α-acyclic hypergraph H, there exists a hypergraph H∗ that

• admits a monotonic weight join tree T̂ ∈ T (H∗) whose edges are in a one-to-one correspondence to
those of T

• satisfies T (H∗) = T (H).

Proof. To prove the existence, we construct such a hypergraph H∗ by vertex duplication. Lemma 19 guar-
antees that T (H∗) = T (H). We only need to show the existence of T̂ ∈ T (H∗). Algorithm 2 constructs H∗

by vertex duplication in a breadth-first manner from the root of T to make it a monotonic weight join tree
in H∗.

Algorithm 2 starts with enqueuing each edge incident to the root. Once a tree edge e ∈ E(Tr) is
dequeued, we check for the number of duplications needed to make it heavier than its parent edge p(e),
namely ∆ = ω(p(e)) − ω(e) + 1. The duplication is performed only if ∆ > 0. Lemma 16 guarantees that
χ(e) \ χ(p(e)) ̸= ∅. Therefore, we can always duplicate a vertex x ∈ χ(e) \ χ(p(e)) for ∆ times such that
ω(e) > ω(p(e)).

Let e = (ru, rd) where d(T, ru) < d(T, rd), x only occurs in the subtree rooted at ru. Otherwise, it
violates the running intersection property. Therefore, the duplication of x does not affect the weight of
any edge closer to the root than e in T . By Lemma 17, duplication in a sibling edge e′ ∈ s(e) would not
affect the weight of e either, and ω(e) > ω(p(e)) will continue to hold. The tree has monotonic weights
when Algorithm 2 terminates.
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Given a rooted join tree T of a hypergraph H, a non-tree edge is e = (ri, rj) ∈ E(L(H)) \ E(T ). There
is a path in T between ri and rj via their lowest common ancestor LCA(ri, rj). We define the LCA edges
λ(e) = λ(ri, rj) as a set of at most two tree edges on the path and incident to LCA(ri, rj). If ri, rj are
ancestor and child, then |λ(e)| = 1, otherwise, |λ(e)| = 2.

In the process of building G≡(H∗) from a monotonic weight join tree T̂ of H∗, Definition 7 and Defini-
tion 11 guarantee that:

• no tree edge in T̂ needs to be slid;

• each non-tree edge e can be removed if it is lighter than all e′ ∈ λ(e);

• otherwise, the non-tree edge e can be slid directly to be incident to each e′ ∈ λ(e).

Algorithm 3 constructs G≡(H∗) from the line graph L(H) weighted by ω and an MCS tree Tr. Full
details on the constant-time operations on graphs and data structures to support operations performed in
Algorithm 3 can be found in Section B. As a part of pre-processing, we first conduct a breadth-first search
on T̂r to obtain the depth table d of each tree node in O(|R(T̂r)|). We will also use the algorithms proposed
by Michael Bender [3, 4] to build the data structures in O(|R(T̂r)|) to facilitate the constant-time query of
lowest common ancestors (LCAs) and level ancestors (LAs). The constant-time query of depth, LCA and
LA allows for finding the λ(e) of any non-tree edge e in constant time as shown from Line 4 to Line 6 in
Algorithm 3.

Algorithm 3: buildEG

Input: MCS tree Tr(H) of line graph L(H) with
weight function ω

1 G≡ ← L(H)
2 for e∗ = (ri, rj) ∈ R(L(H)) \R(Tr(H)) do

// where d(Tr(H), ri) ≤ d(Tr(H), rj)

3 w∗ = ω(e∗)
4 l← LCA(ri, rj); d← d(l) + 1
5 e1 = (l, r1 ← LA(ri, d));w1 = ω(e1)
6 e2 = (l, r2 ← LA(rj , d));w2 = ω(e2)
7 if w∗ < w1 ∧ w∗ < w2 then
8 delete e∗ from R(G≡)

9 if e1 = e2 ∧ w∗ = w1 then
10 slide rj to r1

11 else if e1 ̸= e2 ∧ w∗ = w1 = w2 then
12 slide ri to r1 and rj to r2

13 else if e1 ̸= e2 ∧ w∗ = w1 < w2 then
14 slide ri to l and rj to r1

15 else if e1 ̸= e2 ∧ w∗ = w2 < w1 then
16 slide ri to l and rj to r2

17 return G≡

P

T

W U

S
{a, c}

Y

{a, d, d′}

{a}

{a}
{a}

{a}

{a}

(a) Monotonic Weight Join Tree T̂P (H
∗
6 )

P

T

W U

S
{a, c}

Y

{a, d, d′}

{a} {a}

{a}

(b) 3 Non-tree Edges Processed
P

T

W U

S

Y

(W,S), (U, S),

(Y, S)

(W,P ), (U, P ),

(Y, P )

(c) Equivalent Graph G≡(H∗
6 )

Figure 4: Algorithm 3 on H∗
6 of Figure 3a

Example 21. We consider T̂P in Figure 3b of an equivalent hypergraph H∗
6 in Figure 3a. Three of T̂P ’s

non-tree edges are shown in Figure 4a where the non-MST edges (Y,W ), (Y, T ) are dotted and the MST edge
(Y, S) is dashed. We can identify λ(Y,W ) = {(T,W ), (T,U)} in constant time. Because ω(Y,W ) = |{a}| = 1
is lighter than ω(T,W ) = ω(T,U) = |{a, c}| = 2, it is removed. (Y, T ) is also removed, for it is lighter than
its LCA edge (T,U). We compare (Y, S) with λ(Y, S) = {(P, T ), (P, S)}. Because they have the same weight
with ω(Y, S) = ω(P, T ) = ω(P, S) = |{a}| = 1, we slide (Y, S) directly to (T, S). The intermediate graph
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with those three non-tree edges processed is shown in Figure 4b. The resulting equivalent graph G≡(H∗
6 ) is

shown in Figure 4c.

The next result follows immediately from the construction of the equivalent hypergraph.

Lemma 22. Let H∗ = (X∗, R, χ∗) be an equivalent hypergraph derived from H = (X,R, χ) by vertex
duplication. For any non-tree edge e of an MCS tree T of H,

• If χ(e) = χ(e′) for some e′ ∈ λ(e), then χ∗(e) = χ∗(e′)

• If χ(e) ⊂ χ(e′) for some e′ ∈ λ(e), then χ∗(e) ⊂ χ∗(e′)

Proof. The duplication of a vertex x ∈ χ(e) adds x′ to both χ(e) and χ(e′). If χ(e) = χ(e′), χ∗(e) =
χ(e) ∪ {x′} = χ(e′) ∪ {x′} = χ∗(e′). A similar argument applies if χ(e) ⊂ χ(e′).

Lemma 22 allows us to produce G≡(H∗) by keeping all tree edges of the MCS tree T (H) in place and
sliding the non-tree edges directly to their LCA edges. For example, running Algorithm 1 on the MCS tree
T (H6) in Figure 1d produces an identical G≡(H∗

6 ) in Figure 4c.

Theorem 23. Let H be an α-acyclic hypergraph with weight function ω, line graph L and MCS tree T . Let
H∗ be the equivalent hypergraph of H with weight function ω∗. Applying Algorithm 3 to inputs L, T and ω
produces the same equivalent graph as applying Algorithm 3 to inputs L, T and ω∗.

Proof. One can readily check that for any non-tree edge e of T , the conditions of each if statement in
Algorithm 3 hold under ω if and only if they hold under ω∗ by Lemma 22.

Theorem 24. Given line graph L of α-acyclic hypergraph H with weight function ω and an MCS tree T of
H, Algorithm 3 returns equivalent graph G≡ of equivalent hypergraph H∗ in O(m+n) where n is the number
of vertices and m is the number of edges in L.

Proof. The construction of each data structure d(·), LA(·) and LCA(·) can be done in O(m + n) [3, 4].
Execution of the rest of the algorithm also takes time O(m + n), as it requires examining each non-tree
edge to either delete it or slide it directly to its LCA edges in the MCS tree. For each non-tree edge, the
lookup of at most two LCA edges takes time O(1), as does the comparison of weights and the direct sliding
transformation.

Once we have the equivalent graph G≡, the existing algorithm allows for enumerating all its spanning
trees with an amortized constant delay. The total time complexity of enumerating |T (H)| given the line
graph L(H) as input is O(|L(H)|+ |T (H)|).

Starting from an α-acyclic query Q, Section C.1 describes how to convert it into a hypergraph H.
Section C.2 describes how to convert it into a weighted line graph L(H). Both conversions take linear
time O(|Q|) with respect to the query size as defined in Section C. Algorithm 1 constructs an MCS tree
T in O(|H|) ≤ O(|Q|). With the inputs L(H) and T , we can run Algorithm 3 to construct G≡(H∗) in
O(m+ n) ≤ O(|Q|) (where n is the number of vertices and m is the number of edges in L(H)). Finally, we
apply the spanning tree enumeration algorithm by Kapoor and Ramesh [22] on G≡(H∗) to enumerate all
join trees |T (H)| in O(m+ n+ |T (H)|) ≤ O(|Q|+ |T (H)|) = O(|L(H)|+ |T (H)|).

4.3 γ-Acyclic Queries
The run time of Algorithm 3 depends on the size of the line graph which can be quadratically larger than
the input hypergraph. But if H is γ-acyclic, we can bring the total time complexity of enumeration down to
O(|H|+ |T (H)|). The line graph of a γ-acyclic hypergraph H is its union join graph [25] L(H) = U(H), i.e.,
every edge e ∈ E(L(H)) in the line graph is an MST edge. By modifying the MCS algorithm to Algorithm 7
in Section F, we can construct a weighted MCS tree T and an unweighted line graph L(H), namely the
union join graph, in O(|H| + |E(U(H))|). We simplify Algorithm 3 to Algorithm 8 in Section F, which
compares the LCA edges λ(e) of each non-tree edge e and slides it to construct the equivalent graph G≡(H)
in O(|E(U(H))|). As γ-acyclicity guarantees that every non-tree edge e is an MST edge, we can use the
weights of the LCA edges to determine how to slide e. Let λ(e) = {el, er}. If el = er, we slide e to be parallel
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to el. Otherwise, if el and er have different weights, we slide e to be parallel to the heavier one. If they have
the same weight, we slide e to form a triangle with them.

The number of join trees is lower bounded by the number of non-tree edges in its line graph, namely
|T (H)| = Ω(|E(U(H))| − |E(T )|). The total time complexity of enumerating all join trees is O(|H| +
|E(U(H))|+ |T (H)|) = O(|H|+ |T (H)|).

5 The Canonical Join Tree of a Berge-Acyclic Query
An acyclic query can have exponentially many join trees with respect to its size. For example, the line
graph of a clique query with n relations is an n-clique Kn with nn−2 join trees by Cayley’s formula [7].
Enumerating all join trees can be prohibitive for large queries. On the other hand, the query optimizer does
not need to consider all possible join trees to achieve good performance. For example, the implementation
of Yannakakis’ algorithm by Zhao et al. [47] has similar performance on any join tree rooted at the largest
relation. An alternative to enumeration is therefore to simply construct an arbitrary join tree for a given
root. This can be done in linear time by the Maximum Cardinality Search (MCS) algorithm from a chosen
relation as shown in Algorithm 1. In this section, we show that the MCS algorithm produces a shallowest
tree for a Berge-acyclic query, in the sense that the depth of every node in the tree is minimized. We prove
that this shallowest tree is unique, and therefore call it the canonical join tree:

Definition 25. A join tree Tr rooted at r is canonical if d(Tr, ri) ≤ d(T ′
r, ri) for any other join tree T ′

r

rooted at r and any ri ∈ R(Tr) = R(T ′
r).

A shallow join tree has practical benefits. For example, the depth of the join tree determines the number
of sequential steps required in a parallel join algorithm. A shallow join tree tends to be wide and have more
leaves, allowing better utilization of indices.

Although Berge-acyclicity was thought to be too restrictive when it was first introduced to database
theory [13], we found it to be general enough to cover almost all acyclic queries encountered in the wild.
As shown in Table 1 of Section F, among 10 454 queries from five popular benchmarks, 9285 are α-acyclic,
and only 8 of these are not Berge-acyclic. In retrospect, this should not be surprising, as most joins in
relational databases are over primary/foreign keys. Emerging workloads in graph databases usually involve
simple graphs and seldom require composite key joins. A query without composite key joins admits a linear
hypergraph, where each pair of hyperedges shares at most one vertex. The following result establishes an
equivalence between α-acyclicity with linearity and Berge-acyclicity.

Proposition 26. An α-acyclic hypergraph is Berge-acyclic if and only if it is linear.

By Proposition 26, every edge in the line graph of a Berge-acyclic hypergraph is labeled with a single
variable, thus having a weight of 1. Every spanning tree is a maximum spanning tree, therefore a join tree.

Corollary 27. For a Berge-acyclic hypergraph H, any spanning tree of L(H) is a join tree.

In the rest of this section, we prove the existence and uniqueness of the canonical join tree rooted at any
relation of a Berge-acyclic hypergraph, and show that it can be constructed by MCS as in Algorithm 1.

5.1 Existence & Uniqueness of the Canonical Join Tree
The key insight leading to the existence and uniqueness of the canonical join tree is that the line graph of a
Berge-acyclic hypergraph is geodetic [31], meaning that there is a unique shortest path between any pair of
vertices. To prove this, we first review some relevant concepts and properties of graphs. All graphs below
are simple and undirected.

Definition 28. A cycle in a graph is a sequence of distinct vertices v0, . . . , vk−1≥2 such that there is an edge
between vi and v(i+1) mod k for all 1 ≤ i ≤ k.

A special class of graphs called chordal graphs are intimately related to acyclic hypergraphs:

Definition 29. A graph is chordal if every cycle of length at least 4 has a chord, i.e., an edge that is not
part of the cycle but connects two vertices of the cycle.
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The key step in this section is to show the line graph of a Berge-acyclic hypergraph is a block graph,
which is a special class of chordal graphs. There are many different characterizations of block graphs [18],
and we present a recent one:

Definition 30 (Block Graph [10]). A graph G = (R,E) with the vertex set R and the edge set E is a block
graph if it is chordal and diamond-free.

Removing an edge from a 4-clique K4 results in a diamond. Diamond-free requires that no induced
subgraph G|R′ is a diamond, where R′ ⊆ R is any subset of vertices. We now present the main result
relating block graphs to Berge-acyclic hypergraphs:

Lemma 31. The line graph L of a Berge-acyclic hypergraph H is a block graph.

Together with the fact that every block graph is geodetic (it has a unique shortest path between any two
vertices) [31], Lemma 31 implies the following corollary.

Corollary 32. Let L be the line graph of a Berge-acyclic hypergraph H. There is a unique shortest path
between any two vertices in L.

We are now ready to prove the existence and uniqueness of the canonical join tree.

Theorem 33. Let L be the line graph of a Berge-acyclic hypergraph H, and P(r, r′) be the shortest path in
L between r, r′ ∈ R(L), Tr =

⋃
r′∈R(L) P(r, r

′) is the unique canonical join tree for H rooted at r.

Proof. A spanning tree of L is its join tree by Corollary 27. To show Tr is a join tree, it is sufficient to show
Tr is spanning, connected and acyclic.

Tr is spanning and connected because it contains a path from r to each r′ ∈ R(L).
We prove Tr is acyclic by induction on the distance dist(r, r′) between r and r′. Let Rd = {r′ ∈ R(L) | dist(r, r′) ≤ d}.

R0 = {r} contains only the root. The subgraph Tr|R0
is trivially acyclic. Assuming that Tr|Rd>0

is acyclic,
we consider a vertex r′ ∈ Rd+1 \ Rd. Corollary 32 guarantees a unique shortest path between each pair of
vertices r, r′ ∈ R(L). Each r′ is connected to a unique neighbor r′′ ∈ Rd \Rd−1 that is at distance d from r.
Otherwise, there are at least two distinct shortest paths from r to r′. Therefore Tr|Rd+1

is acyclic, and Tr is
a join tree.

The join tree Tr is canonical, because the path from r to each r′ ∈ R(L) is the shortest and therefore
minimizing the depth d(Tr, r

′). The canonical tree is unique by Corollary 32.

5.2 Construction of the Canonical Join Tree
Given a Berge-acyclic hypergraph H and r ∈ R(H) as the root, we can construct the canonical tree Tr(H)
by running Algorithm 1. We first present a useful lemma on the structure of the canonical join tree:

Lemma 34. Let Tr be the canonical join tree rooted at r of a Berge-acyclic hypergraph. Along its root-to-leaf
path r, r1, . . . , rk, each pair of adjacent vertices shares a distinct variable.

We now show that the MCS algorithm constructs the canonical join tree.

Theorem 35. Given a Berge-acyclic hypergraph H, Algorithm 1 from r ∈ R(H) constructs the canonical
tree Tr(H).

Proof. Algorithm 1 labels each hyperedge in R(H) in ascending order from the root r1 = r to rn=|R(H)|.
When Algorithm 1 has labeled i ∈ [n] hyperedges, we consider a graph Gi whose vertices are the labeled
hyperedges {r1, . . . , ri} and edges are the parent-child relationships {(r2, p(r2)), . . . , (ri, p(ri))}.

To prove the claim by induction, we show a loop invariant that Gi is a subtree of Tr for all i ∈ [n]. An
empty graph is trivially a subtree of any graph. When the root r is labeled as r1, this graph of a single
vertex is also trivially a subtree of Tr. Assuming Gk is a subtree of Tr, Algorithm 1 proceeds to label rk+1

and assigns its parent p(rk+1) = rp≤k. Suppose for the sake of contradiction that rk+1 has a different parent
rq in Tr. Let us consider the possible relationships between rp and rq. First, rq cannot be a descendant
of rp, otherwise there would be a shorter path from rk+1 to the root r going through rp instead of rq,
violating Theorem 33. Suppose rq is an ancestor of rp. By the running intersection property, rq ∩ rk+1 must
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contain rp ∩ rk+1, but that would imply every vertex in rp ∩ rk+1 is already marked by rq and the algorithm
would not have assigned rp as the parent of rk+1. Therefore, rp and rq are not descendants of each other.
Denote their lowest common ancestor in Tr as ra = LCA(rp, rq). Let λ(rp, rq) = {el, er} as shown by the
solid lines in Figure 5 of Section F, Pp be the path from ra to rp excluding el and Pq be the path from ra to
rq excluding er as shown by the dashed lines in Figure 5. By Lemma 34, the variables on Pp and Pq are all
distinct. Consider the following possible cases:

Case 1: If rk+1 ∩ rp = rk+1 ∩ rq and χ(el) = χ(er), then Pp,Pq form a Berge-cycle.

Case 2: If rk+1 ∩ rp = rk+1 ∩ rq and χ(el) ̸= χ(er), then Pp, ra,Pq form a Berge-cycle.

Case 3: If rk+1 ∩ rp ̸= rk+1 ∩ rq and χ(el) = χ(er), then Pp,Pq, rk+1 form a Berge-cycle.

Case 4: If rk+1 ∩ rp ̸= rk+1 ∩ rq and χ(el) ̸= χ(er), then Pp, ra,Pq, rk+1 form a Berge-cycle.

All possible cases above contradict Berge-acyclicity, therefore, Algorithm 1 must correctly assign rp as the
parent of rk+1.

6 Converting a Binary Join Plan to a Join Tree
A recent approach [20, 2] that converts a binary join plan into a join tree has gained popularity as it allows
system builders to leverage existing query optimizers designed for binary join plans. In this section, we focus
on an algorithm by Hu et al. [20] that converts left-deep linear join plans into join trees. The algorithm can
convert all acyclic queries in standard benchmarks, including those in Table 1 of Section F. We prove that
the algorithm converts any connected left-deep linear join plan into a join tree if and only if the query is
γ-acyclic. Our result yields a new characterization of γ-acyclic queries. We formally define binary join plans
and describe the algorithm by Hu et al. [20] with Algorithm 6 in Section F.

Definition 36. A left-deep linear plan is a sequence of relations r1, r2, . . . , rn. It is connected if for each
ri≥2, ∃rj<i : ri ∩ rj ̸= ∅.

Query optimizers strive to produce connected plans, to avoid expensive Cartesian products. Many op-
timizers produce exclusively left-deep linear plans. Plans that are not left-deep are called bushy, and such
plans may still be decomposed into left-deep fragments [43].

Given a left-deep linear plan, Hu et al. [20] generate a join tree with Algorithm 6 in Section F. The
algorithm chooses the first relation r1 as the root and iterates through the rest of the plan. For each relation
ri∈[2,n], it finds the first relation rj that contains all attributes shared by ri with all previous relations
ri ∩

⋃
rk<i, and assigns rj as the parent of ri. The algorithm constructs a join tree if it finds a parent for

each ri.
Hu et al. [20] proved that the algorithm succeeds whenever the input plan is the reverse of a GYO-

reduction order. They also observed that every left-deep linear plan produced for queries in standard
benchmarks is indeed the reverse of a GYO-reduction order. This is not a coincidence, as we show that
every connected left-deep linear join plan must be the reverse of a GYO-reduction order if and only if the
query is γ-acyclic.

Theorem 37. A query is γ-acyclic if and only if every connected left-deep linear join plan for the query is
the reverse of a GYO-reduction order.

The “only if” direction is more difficult. We prove its contrapositive by constructing a γ-cycle from a
query plan that is not the reverse of a GYO-reduction order. We start with a simple observation that directly
follows from the definition of GYO-reduction order.

Proposition 38. If a left-deep linear plan is not the reverse of a GYO-reduction order, then there exists a
relation ri that has no parent among {rj<i}, formally ¬∃rj<i : (ri ∩

⋃
rk<i) ⊆ rj. We call ri an orphan, and

denote it as r̊i.

We introduce an ordering on relations to compare them in a plan.
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Definition 39. Given a relation r, we write r1 ≥r r2 if r1 ∩ r ⊇ r2 ∩ r.

We first observe that ≥r is a preorder (reflexive and transitive), but not a partial order (antisymmetry
may fail). Moreover, if there is a greatest element rp with respect to ≥r, i.e., ∀r′ : rp ≥r r′, then rp is a
parent of r. Those observations lead to the following.

Lemma 40. Let r̂ be a maximal relation with respect to ≥r̊ for an orphan r̊, meaning ¬∃r : r >r̊ r̂, then
there is a relation r̄ incomparable with r̂, i.e., r̂ ̸≥r̊ r̄ and r̄ ̸≥r̊ r̂.

Proof. If every relation is comparable with r̂, the maximal relation r̂ is the greatest element with respect to
≥r̊, thus a parent of r̊. It contradicts the fact that r̊ is an orphan.

Given a pair of incomparable relations r̂ and r̄ with respect to r̊, we can find at least one variable in
each relation that does not appear in the other relation but appears in r̊, namely ∃x̄ ∈ r̄ ∩ r̊ : x̄ /∈ r̂ and
∃x̂ ∈ r̂ ∩ r̊ : x̂ /∈ r̄. We say that x̂ is a dangling variable of r̂ and x̄ is a dangling variable of r̄. We are
now ready to prove Theorem 37. Our strategy is to derive a γ-cycle from any orphan relation, leading to a
contradiction.

Proof of Theorem 37. To prove the “only if” direction by contradiction, we assume that a connected left-deep
linear plan for a γ-acyclic query is not the reverse of a GYO-reduction order. By Proposition 38, there is
an orphan r̊ in the plan. Assuming that r̊ is the t-th relation in the plan, we now consider the prefix of
the plan up to r̊, namely pre(t) = r1, . . . , rt−1, r̊. Let r̂ ∈ pre(t− 1) be a maximal relation with respect to
≥r̊, Lemma 40 guarantees an r̄ ∈ pre(t− 1) incomparable with r̂. There are at least two dangling variables
x̄ ∈ r̄ ∩ r̊ \ r̂ and x̂ ∈ r̂ ∩ r̊ \ r̄.

Because the shorter prefix pre(t− 1) = r1, . . . , rt−1 is connected, there is a path in pre(t− 1) between r̂
and r̄. The incomparability guarantees that r̄ ∩ r̊ ̸⊆ r̂ ∩ r̊. We can choose a shortest path in pre(t− 1) that
connects a variable in r̂ ∩ r̊ to a variable in r̊ \ r̂. We now consider two exhaustive cases where each yields a
γ-cycle:

Case 1: If the shortest path consists of a single relation r̃, r̃ ̸>r̊ r̂ (because r̂ is maximal) and r̃ ̸≤r̊ r̂
(because r̃ contains some variable in r̊ \ r̂). Therefore, r̃ is incomparable with r̂. Since r̃ ∩ r̂ ̸= ∅,
r̂, x̂, r̊, x̃, r̃, x̆ form a γ-cycle where x̂ ∈ r̂ ∩ r̊, x̃ ∈ r̃ ∩ r̊, and x̆ ∈ r̃ ∩ r̂.

Case 2: If the shortest path consists of at least two relations, let r0 = r̊, and the path be r1, . . . , rk−1.
We now show that r0, r1, . . . , rk−1 form a pure cycle where each ri is only adjacent to r(i−1) mod k and
r(i+1) mod k. First, if a ri∈[2,k−2] on the path is adjacent to a rj∈[1,k−1] other than its neighbors ri−1 or
ri+1, the path can be shortened, contradicting the shortest path assumption. Second, if the relation
ri∈[2,k−2] is adjacent to r0, then ri must contain variables in either r0 ∩ r̂ or r0 \ r̂. We can shrink
the path to r1, . . . , ri or ri, rk−1, which also contradicts the shortest path assumption. Therefore, each
ri∈[0,k−1] on the cycle is only adjacent to r(i−1) mod k and r(i+1) mod k. The cycle r0, r1, . . . , rk−1 is a
pure cycle of length k ≥ 3. A pure cycle is always a γ-cycle.

This concludes the proof for the “only if” direction.
Now we prove the “if” direction by contrapositive, namely that if a query contains a γ-cycle, then there

exists a connected left-deep linear plan that is not the reverse of a GYO-reduction order. Let the γ-cycle of
length k ≥ 3 be r0, . . . , ri, . . . , rk−1 where ri∈[1,k−2]. By definition, there is an xi−1 appearing exclusively in
ri−1 and ri and an xi appearing exclusively in ri and ri+1. We modify the original plan by moving ri after
rk−1 such that r0, . . . , ri−1, ri+1, . . . , rk−1, ri becomes part of the new query plan.

The prefix pre(k − 1) = r0, . . . , ri−1, ri+1, . . . , rk−1 is connected. Therefore, the new query plan is con-
nected. However, ri has no parent, because no relation in pre(k − 1) contains both xi−1 and xi. This implies
the plan is not the reverse of a GYO-reduction order.

7 Conclusion and Future Work
We proposed three approaches for constructing join trees. Our enumeration algorithm in Section 4 generates
join trees by edits with amortized constant delay, forming a basis for cost-based optimization of acyclic joins.
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In Section 5, we showed that the Maximum Cardinality Search algorithm constructs the unique shallowest
join tree for any Berge-acyclic query, supporting very large queries and enabling parallel execution. Finally,
in Section 6, we gave theoretical justification for converting binary join plans to join trees, allowing reuse of
existing optimization infrastructure.

Future work includes compact representations of join trees for dynamic programming, as in binary plan op-
timizers, and the challenging cost estimation for Yannakakis-style algorithms: the random-walk approach [26]
models joint probabilities for binary joins, whereas an efficient and accurate solution for semijoins remains
to be found.

Our results also raise theoretical questions. Can join tree enumeration achieve worst-case constant delay?
We proved Berge-acyclicity sufficient for the existence and uniqueness of the canonical join tree, but it
is not necessary, and γ-acyclicity is insufficient as shown in Figure 6 of Section F. What is the precise
characterization of hypergraphs that admit a unique canonical join tree for any root, or for some root?
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A Extended Preliminaries
Definition 41 (Hypergraph Acyclicity). A hypergraph H is:

• α-acyclic if it admits a join tree;

• β-acyclic if every subgraph of H is α-acyclic;

• γ-acyclic if it does not contain any γ cycle. A γ cycle is a sequence of length k ≥ 3 of distinct hyperedges
and distinct vertices (r0, x0, . . . , rk−1, xk−1) such that every xi∈[0,k−2] belongs to ri ∩ ri+1 and no other
rj while xk−1 belongs to rk−1 ∩ r0 and possibly other hyperedges;

• Berge-acyclic if it does not contain any Berge cycle. A Berge cycle is a sequence of length k ≥ 2 of
distinct vertices and distinct hyperedges (r0, x0, . . . , rk−1, xk−1) such that ∀ i ∈ [k] : xi ∈ ri∩r(i+1) mod k.

The four notions of acyclicity form a strict hierarchy that Berge-acyclic ⇒ γ-acyclic ⇒ β-acyclic ⇒
α-acyclic [13].

Given a hypergraph H with n hyperedges, Algorithm 1 labels each hyperedge with an integer i ∈ [1, n]
in ascending order and assigns a parent p(ri) to each hyperedge ri. Upon labeling an edge the algorithm
marks all previously unmarked vertices contained in that edge. Initially, all hyperedges are unlabeled and
all vertices are unmarked. The algorithm begins by assigning null as the parent of the root r and initializing
label i to 0. In each following while loop iteration, the algorithm increments i by one and labels the current
hyperedge as ri. For each unmarked vertex x in ri (a vertex is considered marked when it is removed from
X), it assigns ri tentatively as the parent of each unlabeled hyperedge r′ containing x. The algorithm marks
all unmarked vertices in ri and removes ri from future consideration. Finally, it selects a hyperedge with the
most marked vertices to label next, breaking ties arbitrarily. The algorithm terminates when all hyperedges
are labeled. Tarjan and Yannakakis [40] describes an efficient implementation of Algorithm 1 running in
O(|H|).
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Example 42. Considering the hypergraph H6 shown in Figure 1a, we run Algorithm 1 from the hyperedge
P . It is labeled as r1 and all its vertices are marked. P is also tentatively assigned as the parent of five
hyperedges such that p(S) = p(T ) = p(U) = p(W ) = p(Y ) = r1. We proceed to label the next hyperedge with
the most marked vertices. At this point, each unlabeled hyperedge has one marked vertex, so we can choose
any of them, say S, and label it as r2.

Because the labeling of S marks no additional vertices in T,U,W, Y , their parents remain unchanged.
These remaining hyperedges are again tied with the same number of marked vertices, so we can choose any
of them, say T , and label it as r3. Since the labeling of T marks a vertex c in U,W , their parents are updated
to p(U) = p(W ) = r3.

We continue the process until all hyperedges are labeled and all vertices are marked. By connecting each
labeled hyperedge with its parent, we construct the join tree TM shown in Figure 1d.

Notice that Algorithm 1 can generate different join trees for the same hypergraph by breaking ties
differently. However, it does not guarantee to generate all possible trees. For example, it never generates
the Join Tree TG shown in Figure 1c.

B Data Structures for Constant Time Operations on Graphs
Given line graph L and MCS tree T , Algorithm 3 iterates over non-tree edges of L. Moreover, the algorithm
uses data structures d(·), LA(·) and LCA(·), in determining the endpoints of a non-tree edge’s LCA edges.
In this section we describe briefly how iterating over non-tree edges can be achieved in time linear in the
number of vertices and edges of L and how determining the endpoints of a non-tree edge’s LCA edges can
be achieved in constant time.

Given a graph G = (V,E), we assume the vertices are represented by integers from 1 to |V |. Given a tree
T of G rooted at node r, recall that data structure dT (·), stores for each node ri the length of the shortest
path between r and ri in T . Data structure LCAT (·), stores for each pair of nodes ri, rj the lowest common
ancestor of ri, rj in T . Finally, data structure LAT (·) stores for each node-integer pair ri, j, the ancestor of
node ri at depth j. Each of these data structures can be established from a tree T in time linear in the size
of the tree and support constant time look-ups.

Observation 43. Given rooted tree T , data structures d(·), LCA(·) and LA(·) can be established in time
O(|T |) and support O(1) time look-ups [9, 33, 3, 4].

Given the line graph L of an α-acyclic hypergraph H and an MCS tree T of H, recall that the LCA
edges λ(e) of a non-tree edge e = (ri, rj) of T is defined as the set of edges incident to LCA(ri, rj) that lie
on the unique path between ri and rj in T . The following observation shows that an edges LCA edges can
be found in constant time given data structures d(·), LCA(·) and LA(·).

Observation 44. Given the line graph L of an α-acyclic hypergraph H, an MCS tree T and data structures
d(·), LCA(·) and LA(·), the LCA edges of any non-tree edge can be found in constant time.

Proof. Given a non-tree edge e = (ri, rj) we find LCA(ri, rj) = l in constant time by Observation 43. The
depth d = d(l) + 1 is likewise found in constant time. The edge e1 = (l, r1), where node r1 = LA(ri, d) is
found by a constant time look-up, is adjacent to l and lies on the unique path between ri and rj . The same
holds for edge e2 = (l, r2) where node r1 = LA(rj , d).

In what remains of this section we describe how Algorithm 3 iterates over and performs sliding transfor-
mations on non-tree edges.

We use an array L to represent the adjacency list of a line graph where entry L[i] consists of a linked
list of tuples (j, ω) where j is a neighbor of i and ω is the weight of the edge (i, j). A rooted tree Tr is
likewise implemented as an array, where the index i represents the vertex i, and the i-th entry Tr[i] stores
(p, ω) where p is the parent of i and ω is the weight of the edge (i, p). The depth table of the tree is also
implemented as an array to enable constant time lookup for the depth of a vertex d(Tr, i).

Section C shows how to construct the weighted line graph and the hypergraph given the original query.
Then, using the hypergraph we can construct Tr and d during the MCS algorithm in linear time [40].
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As we iterate over each edge (j, ω) of L[i], we check if the current edge (i, j) is a tree edge by performing
constant-time query of Tr[i] and Tr[j] to see if one of them is the parent of the other. From Observation 44
we know that we can find the LCA edges λ(i, j) = {e1, e2} in constant time. There’s no general solution to
lookup an entry in a linked list in constant time. Instead of iterating over the linked-list representation of
L to find the edge weights of e1 and e2, we can lookup their weights from the array representation of Tr in
constant time. Let e1 = (r1, p(r1)) and e2 = (r2, p(r2)) with weights ω1 and ω2. Because both e1 and e2 are
tree edges, we can find their weights by querying Tr[r1] = (p(r1), ω1) and Tr[r2] = (p(r2), ω2). Each of these
operations takes constant time. When we need to delete an edge e∗ = (i, j) from L, we first check if e∗ is a
tree edge by checking Tr[i] and Tr[j]. Deleting e∗ from the linked list takes constant time. Sliding an edge
involves updating the endpoints of the edge which takes constant time.

C From Queries to (Hyper-)Graphs
Algorithm 3 assumes the weighted line graph and an initial MCS tree are given as input. In practice, we
need to construct these graphs from the original SQL query.

We model a query involving m relations as a set of join predicates each in the form of Ra.xi = Rb.xj such
that a ̸= b ∧ a, b ∈ [m], namely no self-joins or duplicates, and assume each relation is uniquely identified
by an integer in [m]. For each relation Ra with arity ka, each attribute xi∈[ka] is uniquely identified by
an integer in [ka]. Therefore each predicate is uniquely identified by a tuple (a, i, b, j). Each query Q is
represented by a set of such tuples. We will assume that query Q is transatively closed over join predicates,
i.e. if Ra.xi = Rb.xj and Rb.xj = Rc.xk are in Q, then Ra.xi = Rc.xk is also in Q. The tuple (a, i, b, j) is
present in Q if and only if Ra.xi = Rb.xj is a join predicate over relations Ra, Rb. We define the size of a
query |Q| as the number of join predicates in Q, equivalent to the number of (a, i, b, j) tuples. Our goal is
to construct the query hypergraph and the weighted line graph from this set of tuples.

C.1 Construction of Hypergraph
We construct the hypergraph H by finding connected components of the predicate graph, which is a graph
where there is a vertex for each attribute Ra.xi, and there is an edge between Ra.xi and Rb.xj for every
predicate Ra.xi = Rb.xj . Each connected component of the predicate graph corresponds to an “equivalence
class” of attributes. We then assign a unique variable to each connected component, and map each attribute
to the variable of its component. This can be done in linear time using standard algorithms for computing
connected components [9, 39].

Algorithm 4 generates hypergraph H from query Q. H is represented as an array of size m where each
entry is a list of integers. The algorithm starts by initializing H to an array of size m and P to an array
of size p, where p is the number of distinct relation-attribute pairs Ra.xi in Q as shown by Lines 1-4. If
numbers m and p are not known a priori they can be found in a constant number of passes over elements in
Q. Array H will serve as a hyperedge list of the query hypergraph and array P will serve as an adjacency list
representation of the query predicate graph. The subsequent for-loop fills out adjacency list P at Lines 5-7.
We assume here that each (a, i) pair is mapped to a unique integer in [p] by a perfect hash function f at Line
6, otherwise such a mapping can be established in a constant number of passes over Q. Next, a standard
algorithm [9, 39] for the enumeration of connected components of a graph is called in Line 8. This produces
array C where each entry is a list of vertices that forms a connected component in P . The subsequent nested
for-loop iterates over each relation in each component to fill out hyperedge list H at Lines 9-11.

Observation 45. Algorithm 4 generates the hypergraph of Q in time O(|Q|).

Proof. Arrays H and P can be initialized in time O(|Q|) since m ≤ |Q| and p ≤ |Q|. The subsequent
for-loop iterates over all elements in |Q| making a single insertion to P thus performing at most O(|Q|)
steps. Predicate graph P therefore has size at most O(|Q|). Generating a list of connected components of
predicate graph P is done in time linear in |P | = O(|Q|) by standard algorithms [9, 39]. The subsequent
nested for-loop iterates over each relation in each component performing a single insertion on each iteration.
The sum of the sizes of each component is exactly number of vertices of P and therefore O(|Q|) elementary
operations are performed.
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Algorithm 4: Generating query hypergraph H from query Q.
Input: Query Q
Output: Query hypergraph H

1 for i ∈ [1 . . .m] do
2 H[i]← linkedList()

3 for i ∈ [1 . . . p] do
4 P [i]← linkedList()

5 for (a, i, b, j) ∈ Q do
6 p = f(a, i)
7 P [p].append(b, j)

8 C ← connectedComponent(P )
9 for i ∈ [|C|] do

10 for Ra ∈ C[i] do
11 H[a].append(i)

12 return H

C.2 Construction of Weighted Line Graph
To construct the weighted line graph, we will ignore the attribute indices (i, j) and focus on the relation
indices (a, b) for each join predicate in Q. The set of predicates can then be seen as representing the edge
list of a multigraph. Algorithm 5 generates the weighted line graph of Q by converting this multigraph into
a weighted graph L where the weight of each edge (u, v) is the number of parallel edges between u and v in
the multigraph.

The algorithm first initializes arrays L and M both of size m, where M will be an adjacency list represen-
tation of a multigraph and L will be adjacency list representation of the final weighted line graph in Line 2-3.
Auxiliary array weight is initialized in Line 4. Entries of weight are initialized to be an empty linked list. In
the subsequent for-loop, "edges" in Q are inserted into multigraph M in Line 6. Array weight[j] stores the
weight of the edge (i, j) for the current i. Entries of weight[j] are initialized to 0. The subsequent for-loop
iterates over adjacency list M in Line 7. The first nested for-loop at Line 8 iterates over each neighbor j of
i stored in M [i]. For each neighbor j, array weight[j] is incremented by 1. Array weight[j] now contains
the weights of all edges adjacent to i at its non-zero entries. The second nested for-loop from Line 10 to
Line 13 iterates over each neighbor j one more time and inserts neighbor and weight pairs into array L if
weight[j] is not 0, otherwise skipping to the next neighbor. After an insertion is made, weight[j] is set to
0. A weight of 0 at weight[j] indicates the edge at (i, j) and its weight has already been outputted. This
prevents the insertion of duplicate edges and resets array weight[j] to be reused for the next relation in
M . Since each array operation takes constant time and we visit each edge a constant number of times, the
overall complexity of this procedure is linear in the size of the input.

Observation 46. Algorithm 5 generates the weighted line graph of Q in time O(|Q|).

Proof. Array initializations for L and M take O(m) time where m ≤ |Q|. The first for–loop scans all
predicates in Q and inserts the corresponding edges in the multigraph M , performing O(|Q|) insertions, so
|M | = O(|Q|). The auxiliary array weight has size m and is initialized in O(m) time.

In the subsequent traversal of M , each adjacency list is visited once. For every neighbor j of a vertex i,
the first inner loop performs a constant–time update of weight[j]; the second inner loop performs at most
one constant–time insertion of (j, weight[j]) into L and resets weight[j]. Thus each stored neighbor (i.e.,
each edge occurrence in M) incurs only O(1) work overall. Since the total number of stored neighbors is
Θ(|M |) = O(|Q|), the time for these loops is O(|Q|).

Summing up, all steps are linear in |Q|, hence Algorithm 5 runs in time O(|Q|).
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Algorithm 5: Generating weighted line graph L from query Q.
Input: Query Q
Output: Weighted line graph L

1 for i ∈ [1 . . .m] do
2 L[i]← linkedList()
3 M [i]← linkedList()
4 weight[i]← 0

5 for (a, i, b, j) ∈ Q do
6 M [a].append(b)

7 for Ri ∈M do
8 for Rj ∈M [i] do
9 weight[j]← weight[j] + 1

10 for Rj ∈M [i] do
11 if weight[j] ̸= 0 then
12 L[i].append(Rj .weight[j])
13 weight[j]← 0

14 return L

D Missing Proofs in Section 4
Lemma 15 If H ′ ↠ H then T (H) ⊆ T (H ′).

Proof. Let T be a join tree of H, and x′ be any vertex in H ′. Consider the neighborhood H ′|x′ of x′

in H ′ comprising the set of hyperedges {r′ ∈ H ′ | x′ ∈ r′}. Since H ′ ↠ H, we have that x′ ∈ r′ if and
only if f(x′) ∈ f(r′) = r′. The neighborhood H|f(x′) of f(x′) in H comprises of the set of hyperedges
{r ∈ H | f(x′) ∈ r}. Therefore, r′ ∈ H ′|x′ ⇐⇒ f(r′) = r′ ∈ H|f(x′). Because T is a join tree of H, H|f(x′) is
connected in T , therefore H ′|x′ is also connected in T and T is also a join tree of H ′.

Lemma 16 Let T be an MCS tree. For any edge e ∈ T that has a parent, then e ̸⊆ p(e).

Proof. In Algorithm 1, a child rc is only connected to a parent r if they share some previously unmarked
vertex x. Because every vertex is marked only once, and the parent rp of r was labeled before r, x cannot
be marked by r’s parent rp. Let the e be edge between r and rc, then the edge between r and rp is p(e), and
x ∈ e but x /∈ p(e), therefore e ̸⊆ p(e).

Lemma 17 Let T be an MCS tree. For two edges e, e′ ∈ T that have parents,

(e \ p(e)) ∩ (e′ \ p(e′)) ̸= ∅ =⇒ p(e) = p(e′).

Proof. We prove by contrapositive, assuming p(e) ̸= p(e′).

Case 1: p(e′) = e, then (e \ p(e)) ∩ (e′ \ e) ⊆ (e ∩ e′) \ e = ∅.

Case 2: p(e′) ̸= e. Without loss of generality, we suppose e is no further from the root than e′. Let
p(e′) = e′′, then e′′ is on the path between e and e′ in T . If (e\p(e))∩(e′\e′′) ̸= ∅, then ∃ x ∈ (e′∩e)\e′′,
which violates the running intersection property of join trees.

Lemma 19 Let H ′ be a duplicated hypergraph of H. Then,

1. H ′ ↠ H and H ′ ↞ H

2. T (H ′) = T (H)
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3. L(H ′) = L(H)

Proof. 1. We only need to show that H ′ ↠ H (H ′ ↞ H) holds for H ′ derived from H by a single vertex
duplication. H ′ ↠ H (H ′ ↞ H) will then hold for any duplicate H ′ derived by a series of vertex duplications
since strong homomorphisms are closed under composition.

Suppose H ′ is derived from H by duplicating x ∈ X(H) to x′.
Consider a pair of functions (fX : X(H ′) 7→ X(H), R(H)id) where fX maps x′ to x. Otherwise, it is

an identity map X(H)id. This function pair constitutes a strong hypergraph homomorphism H ′ ↠ H.
Likewise, the pair of functions (X(H)id, R(H)id) constitutes a homomorphism H ↠ H ′.
2. It follows from Lemma 15 and the facts above.
3. By the strong homomorphisms, the hyperedge sets have the same cardinality |R(H)| = |R(H ′)|. So do
the vertex sets of the line graphs, R(L(H)) = R(H) and R(L(H ′)) = R(H ′). By construction, the vertex
duplication adds x′ to each hyperedge containing x, therefore does not create any additional edges in the
line graph, E(L(H ′)) = E(L(H)).

E Missing Proofs in Section 5
Proposition 26 An α-acyclic hypergraph is Berge-acyclic if and only if it is linear.

Proof. Fagin [13] showed that every Berge-acyclic hypergraph is linear. We prove the other direction by
contradiction, by assuming that H is α-acyclic and linear. We also assume that there is a Berge cycle
(r0, x0, . . . , rk−1, xk−1) of length k ≥ 2. Without loss of generality, we suppose r1 is the first hyperedge on
the cycle to be removed by GYO reduction. Then r1’s parent rp must satisfy rp ∩ r1 ⊇ (r1 ∩

⋃
i∈[k]∧i̸=1 ri) =

{x0, x1}, contradicting H’s linearity.

Lemma 31 The line graph L of a Berge-acyclic hypergraph H is a block graph.

Proof. A Berge-acyclic hypergraph is γ-acyclic [13]. Zhu proves that the line graph of a γ-acyclic hypergraph
is chordal [48]. We now prove that the line graph is diamond-free by showing that every diamond must be
part of a K4. Assuming a diamond (r1, r2, r3, r4) in L without the edge (r1, r3), it can be treated as two
triangles (r1, r2, r4) and (r2, r4, r3) sharing an edge (r2, r4). We now consider the possible edge labelings in
each triangle:

Case 1: If all edges are labeled with distinct variables, each triangle forms a Berge-cycle, contradicting the
Berge-acyclicity.

Case 2: If two edges are labeled with the same variable, all three vertices share that variable. The third
edge must be labeled with the same variable.

Since the two triangles share the edge (r2, r4), all their edges are labeled with the same variable x, namely
x ∈ r1 ∩ r2 ∩ r3 ∩ r4. There has to be an edge (r1, r3) ∈ L, contradicting the assumption that (r1, r2, r3, r4)
is a diamond.

Lemma 34 Let Tr be the canonical join tree rooted at r of a Berge-acyclic hypergraph. Along its root-to-leaf
path r, r1, . . . , rk, each pair of adjacent vertices shares a distinct variable.

Proof. Let r0 = r, Proposition 26 requires that |ri−1 ∩ ri| = 1 for all i ∈ [k]. By Theorem 33, the path
r0, . . . , rk is the shortest path from r0 to rk. The variable shared by two adjacent vertices ri−1, ri is equivalent
to the edge label χ(ri−1, ri). The edge labels along the path are all distinct. Otherwise, two consecutive
edges with the same label allows for shortening the path by removing either, contradicting the shortest path
property. Two non-consecutive edges with the same label violate the running intersection property.

F Additional Figures, Tables and Algorithms
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Name # Queries # α-Acyclic # Composite-Key Joins # Berge-Acyclic
TPC-H[41] 22 21 2 19
JOB[24] 113 113 0 113

STATS-CEB[17] 2603 2603 0 2603
CE[8] 3004 1839 0 1839

Spider-NLP[46] 4712 4709 6 4703

Table 1: Acyclic queries in the benchmarks (all α-acyclic queries are also γ-acyclic.)

Algorithm 6: Converting a binary plan to
a join tree
Input: Left-deep plan r1, r2, . . . , rn
Output: Tree rooted at r1

1 p(r1)← null
2 for i← 2 to n do
3 key ← ri ∩

⋃
rk<i

4 for j ← 1 to i− 1 do
5 if key ⊆ rj then
6 p(ri)← rj
7 break
8 end
9 end

10 end

ra

rp rq

el er

rk+1

Figure 5: Possible cases of how rk+1 is connected to
Gk
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Figure 6: H3 is a non-Berge hypergraph that admits a unique canonical join tree TS(H3) with any relation
chosen as root, such as TS(H3). H5 is a γ hypergraph that does not admit unique canonical join trees at
any relation chosen as root. For example, TW (H5) and T ′

W (H5) are MCS trees generated by Algorithm 1.
Neither of them is a canonical join tree rooted at W .
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Algorithm 7: MCS for the γ-acyclic
Input: Hypergraph H, root r
Output: weighted join tree Tr and

unweighted line graph L
1 R(L)← R(H);E(L)← ∅
2 p(r)← null; i← 0
3 while R ̸= ∅ do
4 i← i+ 1; ri ← r
5 for x ∈ ri ∩X do
6 for distinct r′, r′′ ∈ R : x ∈ r′ ∩ r′′

do
7 E(L)← E(L) ∪ {(r′, r′′)}
8 ω(r′, ri)← |r′ ∩ ri|
9 p(r′)← ri

10 X ← X \ ri;R← R \ {ri}
11 r ← argmaxr∈R |r \X|
12 return L, p(·), ω(·)

Algorithm 8: buildEG for the γ-acyclic
Input: weighted MCS tree Tr(H) weight

function ω and unweighted union join
graph L(H)

1 G≡ ← L(H)
2 for e∗ = (ri, rj) ∈ R(L(H)) \R(Tr(H)) do

// where d(Tr(H), ri) ≤ d(Tr(H), rj)

3 l← LCA(ri, rj); d← d(l) + 1
4 e1 = (l, r1 ← LA(ri, d));w1 = ω(e1)
5 e2 = (l, r2 ← LA(rj , d));w2 = ω(e2)
6 if e1 = e2 then
7 slide rj to r1

8 else if w1 = w2 then
9 slide ri to r1 and rj to r2

10 else if w1 < w2 then
11 slide ri to l and rj to r1

12 else if w2 < w1 then
13 slide ri to l and rj to r2

14 return G≡
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