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Abstract

Bayesian networks (BNs) are a widely used class of proba-
bilistic graphical models employed in numerous application
domains. However, inferring the network’s graphical struc-
ture from data remains challenging. Bayesian structure learn-
ers approach this problem by inferring a posterior distribution
over the possible directed acyclic graphs underlying the BN.
The inference process often requires marginalizing over prob-
ability distributions, which is typically done using dynamic
programming methods that restrict the set of possible parents
for each node. Instead, we present a novel method that utilizes
tractable probabilistic circuits to circumvent this restriction.
This method utilizes a new learning routine that trains these
circuits on both the original distribution and marginal queries.
The architecture of probabilistic circuits then inherently al-
lows for fast and exact marginalization on the learned dis-
tribution. We then show empirically that utilizing our method
to answer marginals allows Bayesian structure learners to im-
prove their performance compared to current methods.

Introduction

Bayesian networks (BNs) are a popular choice for represent-
ing probabilistic relationships between variables. Given that
they have widespread benefits in interpretability and trans-
parency compared to other more black box approaches, they
have been employed in a wide variety of applications, rang-
ing from healthcare modeling to industrial fault diagnosis.
(Kyrimia et al. 2021; Cai, Huang, and Xie 2017). In a BN,
variables are represented as nodes in a graph, with directed
edges representing conditional dependencies between two
variables. Collectively, these edges form a directed acyclic
graph (DAG) across all variables.

Structure learning is the task of discovering the DAG
structure of a BN given data. However, structure learning
poses a difficult computational challenge, since the number
of DAGs grows super-exponentially with respect to the num-
ber of variables n (Kitson et al. 2023). To account for uncer-
tainty among the possible DAG structures, Bayesian struc-
ture learning methods aim to infer the posterior distribution
of possible graphs G. These structure learning methods are
based on Bayesian scoring functions, which output (possibly
unnormalized) posterior probabilities of graphs given data.
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Within Bayesian structure learning, marginalizing these
scores over all possible parent sets of a node serves as a fun-
damental subtask. Prior methods have relied on exact calcu-
lation with a dynamic programming table. However, since
this dynamic programming computation requires exponen-
tial time in the number of candidate parents, these methods
artificially limit the number of candidate parents to a set of
the most likely parents. This method thus lacks support over
all possible parent sets, which limits the performance of the
structure learner.

Probabilistic circuits are a fitting architecture for replac-
ing dynamic programming for this subtask. Probabilistic cir-
cuits are a type of tractable probabilistic model that, when
satisfying certain structural properties, allow for efficient
computation of any possible marginal and conditional query
(Choi, Vergari, and den Broeck 2020). Thus, we learn cir-
cuits that approximate the distribution represented by the
Bayesian scores and then use them as a surrogate to answer
the queries required by the structure learner.

We present an approach that trains a probabilistic circuit
per node to answer the marginal and sampling queries nec-
essary for Bayesian approaches to structure learning. This
method utilizes a new learning algorithm that employs as
ground truth both unmarginalized probability masses and
marginalized probability masses calculated via a more lim-
ited exact brute force approach. This method improves upon
prior approaches that require limits on the number of poten-
tial parents for each node. On a specific Bayesian structure
learning method, TRUST (Wang, Wicker, and Kwiatkowska
2022), we demonstrate empirical improvements to results
utilizing our method.

Related Work

Given the superexponential search space over all possible
structures, one common strategy for structure learners is to
simplify the search space into one of topological orders.
This approach has been used in a wide variety of structure
learning approaches, including ones that utilize exact search
(Teyssier and Koller 2005), MCMC approximation (Fried-
man and Koller 2003; Kuipers and Moffa 2017; Viinikka
et al. 2020), and gradient-based approaches (Wang, Wicker,
and Kwiatkowska 2022; Cundy, Grover, and Ermon 2021;
Annadani et al. 2023; Toth et al. 2025).

An especially attractive property of a topological order-
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ing is that by fixing an ordering, we fix the set of possible
parents for each node. However, even this limitation is not
enough for many methods, which instead place further re-
strictions on a node’s parent sets for computational reasons.
Kuipers and Moffa (2017) and Toth et al. (2025), for ex-
ample, forcibly restrict the size of any possible parent sets.
Meanwhile, Viinikka et al. (2020) and Wang, Wicker, and
Kwiatkowska (2022) instead produce a limited set of pos-
sible candidate candidates for each node: for any node, the
set of parents must be a subset of that candidate set. Unfortu-
nately, these restrictions limit the search space of the method
and thus the structures that may actually be produced by the
structure learner.

There are many different approaches to structure learning
of Bayesian networks. Of particular interest are Bayesian
approaches to structure learning, which infer a posterior
distribution for the structure of a Bayesian network given
data. Learning this distribution allows for a variety of useful
queries, including Bayesian model averaging of causal ef-
fects (Viinikka et al. 2020). Exact methods have not scaled
above roughly d = 20 (Koivisto 2006), which has driven
work towards approximate methods. Such works notably in-
clude Friedman and Koller (2003), which utilized MCMC
sampling over the distribution of orders. TRUST, an ap-
proximate Bayesian structure learning method introduced
in Wang, Wicker, and Kwiatkowska (2022), is utilized as
a test case for our method. We chose TRUST because it al-
ready employs probabilistic circuits for representing the pos-
terior distribution over orderings. Thus, by incorporating the
method we present as well, we have developed a structure
learner entirely reliant on probabilistic circuits.

Probabilistic circuits were introduced in Choi, Vergari,
and den Broeck (2020) as a class of probabilistic models
that use computational graphs to encode probability distri-
butions. Compared to other models, probabilistic circuits al-
low for efficient inference, including exact marginalization,
on the distributions they learn. The tractability of proba-
bilistic circuits has been exploited for tasks such as con-
strained language generation (Zhang et al. 2024; Yidou-
Weng, Wang, and Van den Broeck 2025; Ahmed et al. 2025),
neuro-symbolic Al (Ahmed et al. 2022; Loconte et al. 2023;
Wang et al. 2024; Karanam et al. 2025), and causal rea-
soning (Wang, Lyle, and Kwiatkowska 2021; Wang and
Kwiatkowska 2023; Busch et al. 2024). Probabilistic cir-
cuits are frequently learned from distributions, and making
this learning more efficient and more scalable has been the
subject of much work (Peharz et al. 2020a; Loconte et al.
2024; Wang and Van den Broeck 2025; Zhang et al. 2025).
Other architectures that focus on answering marginaliza-
tion queries include NADEs (Uria, Murray, and Larochelle
2014), AO-ARMs (Shih, Sadigh, and Ermon 2022) and
MAMs (Liu, Ramadge, and Adams 2024). However, these
methods only approximate these queries on their learned dis-
tributions and do not provide exact inference, unlike proba-
bilistic circuits.

Background

Marginalization
Let p(X) be an unnormalized probability distribution, where
X is a vector of n binary variables {xg, z1, ..., 2, }. Given

that most Bayesian scores represent unnormalized posteri-
ors, we do not assume that > p(X) = 1.

Let Xy and Xy, be subvectors of X corresponding to
indices V' C {1,2,3,...,n} and the complement Vo =
{1,2,3,...,n} \ V. A marginal distribution over Xy can
be defined by summing over all possible values of Xy, :

p(Xy) = Z p(Xv, Xve)

XVC

Probabilistic Circuits

Probabilistic circuits (PCs) are a class of tractable prob-
abilistic models defined by a computational graph with a
rooted DAG structure, where each node represents a com-
putational unit (Choi, Vergari, and den Broeck 2020). Given
a circuit over a set of variables X = {x1,z2, -+ ,2,}, each
node represents a distribution over a subset of X. This subset
of variables is considered to be the scope of the node sc(v).
Within a circuit, there are several different types of nodes:

* Leaf nodes represent input probability distributions over
a single variable; in our case of binary variables, these
are Bernoulli distributions with some flip probability p.

* Product nodes take the product of the values of their
child nodes. Thus, the value of a product node v; =
1;ccn(iy vs» where Ch(i) are all children of node i.

* Sum nodes take the weighted sum of the values of their
child nodes. Thus, the value of a sum node is v; =
>_jech(iy Wjvs» where Ch(i) are all children of node i
and w; correspond to the weight of node j in the sum.
In many circumstances, PCs enforce normalization, i.e.,
> w; = 1. However, we do not enforce this constraint in
this paper.

The probability distribution of the PC is then defined by
the distribution represented by the root node. In particular,
evaluating p(X) simply requires evaluating the leaf prob-
abilities for that assignment and then computing the sums
and products in a forward pass.

Circuits with certain structural properties prove to be sig-
nificantly more tractable. Smoothness and decomposabil-
ity in particular are highlighted here (Poon and Domingos
2011):

* A PC holds the property of smoothness if for all sum
nodes S and for all children Cy,Cy of S, sc(C1) =
s¢(Cs). In a smooth PC, children of the same sum node
have the same scope.

* A PC holds the property of decomposability if for all
product nodes P and for all children Cy,C5 of P,
s¢(C1)Nse(Cq) = 0. In a decomposable PC, children of
the same product node have pairwise disjoint scopes.

If a PC is both decomposable and smooth, PCs can exactly
marginalize over their represented distribution in time pro-
portional to the size of the PC. Thus, PCs with these prop-



erties are particularly computationally efficient and tractable
compared to alternative architectures.

Moreover, PCs can be viewed as a neural network with
sum nodes providing linear transformations on their input
values and leaf and product nodes contributing nonlinearity
(Choi, Vergari, and den Broeck 2020). Thus, it is possible to
follow the conventional architecture of a neural network of
linear layers followed by nonlinear activations by alternat-
ing sum layers with product layers. Accordingly, PCs can
be trained to learn a distribution using standard gradient de-
scent techniques utilizing backpropagation.

Bayesian Structure Learning

A Bayesian network A over a set of variables X =
{X1,Xs,...,X,} can be defined as a tuple (G,0). G is
a directed acyclic graph, where edges represent conditional
independence between variables in the network. © repre-
sents a set of parameters that define the conditional prob-
ability distributions between variables. Let the parents of a
variable X; in the graph G be denoted pag(X;). Since the
conditional probability distribution for a variable X; is then
p(Xi|pac(X;), ©;), we obtain the joint probability distribu-
tion for the BN \V:

p(X|G,0) = [[ r(Xilpac(Xi), ©:)
i=1

Structure learning is the process of learning the DAG G
of a BN that generates specific data D. When approaching
structure learning with Bayesian methods, we define a struc-
tural prior p,,-(G) and a likelihood py, (D|G). Modularity, or
that priors and likelihoods can be written as products over
nodes, is a common assumption (Eggeling et al. 2019). The
posterior can thus be written as:

p(G|D) o [ [ 1pac(e) por(Pac(X:)) pr(Dlpac(X:))
i=1

where 1psg(q) is an indicator variable that represents
whether G is acyclic. This assumption simplifies the prob-
lem significantly, as it allows every node’s set of parents in-
dependently to be considered independently from each other
given the acylicity constraint (for instance, once an ordering
is imposed).

Bayesian scores B are a class of scores whose val-
ues are proportional to the posterior probabilities of struc-
tures (Kitson et al. 2023). Each specific Bayesian score as-
sumes a prior distribution over network parameters. Differ-
ent Bayesian scores are specialized for different types of
Bayesian networks because they require different parameter
priors. For example, BGe scores are used for BNs with linear
Gaussian mechanisms, and BDeu scores are used for BNs
with discrete mechanisms. These scores are generally un-
normalized, and for numerical stability reasons, these scores
are given in the log domain. Thus, given a directed acyclic
graph, they compute:

B(G) = _log ppr(pac(X:)) + log pr(Dlpac(X;))
=1

Note that including the structural prior p,, in B(G) is op-
tional and that in some literature the specific Bayesian score
refers to the likelihood py, only (Eggeling et al. 2019). We
include this term as in the work of Kitson et al. (2023) to
simplify our notation.

Since we assumed structural modularity, we can then de-
compose the score of a graph B(G) as a sum of scores
Bx,(pac(X;)) associated with a node and its parent set,
where:

Bx, (pac(X;)) = log ppr(pac(X;)) +log pr(Dlpac (X))

For simplicity, we can also represent the input pac(X;) as a
vector of indicator variables S, where S; indicates whether
node j is a parent in the structure of node 7.

Structure learners then calculate 5 frequently during exe-
cution time to score graphs. Alternatively, they are also used
to score topological orderings, as many structure learning
methods, such as TRUST (Wang, Wicker, and Kwiatkowska
2022) and ArCO-GP (Toth et al. 2025), consider the smaller
space of topological orderings. Given an ordering ¢ =
(01,09,...,0y,) of the nodes X1, Xs,...,X,, the unnor-
malized posterior probability of the ordering is given by
summing the scores of all graphs consistent with that order-

ing:
Y Y 8.

i=18:8,,=0Vj>i

This summation enforces the restriction of topological or-
dering: o; cannot be a parent of o; if j > i.

This equation highlights why marginalization is a critical
task in structure learning, since we calculate the inner sum-
mation with a marginal query on the function 5,,. We query
for the probability mass where the variables S, for j < i
are marginalized and for j > 1, SU] = 0. As learners may
score many orderings during their execution, we require ef-
ficient marginalization over any set of variables. We define
these types of queries as marginal/zero queries, as all possi-
ble S; are either set to 0 or are marginalized variables. These
types of queries thus play an especially important role in our
proposed learning procedure.

Methods

Throughout this section, we describe and examine the ap-
plication of our marginalization method on a single variable
X;. Thus, in the rest of this section, we omit the subscript
X; from Bx, because we assume that we are marginalizing
the score for X;. In practice, however, we repeat our method
for every variable in the data.

Exact Computation

Viinikka et al. (2020) propose an algorithm that computes
using dynamic programming all possible marginal probabil-
ities in O(3") time. This algorithm precomputes all possi-
ble marginal masses, stores the results in a lookup table, and
then retrieves these results in O(1) time to answer queries.
We discuss the methodology of these methods, as they are
used to compute parts of the ground-truth data for our learn-
ing dataset.



For disjoint subsets A;, A} C {1,2,...,n}and A;NA, =
(), we define

9(Ai, A)) = Z B(S)

S:Vi€A;,Si=1Yi€ A},5/=0

In other words, this corresponds to the probability mass
where all variables whose indices in A; must be 1, all vari-
ables whose indices in A; must be 0, and all other vari-
ables are marginalized over. This definition lends itself to
the handy recurrence relation

9(Ai, A7) = g(A; Ub, A7) + g(Ai, A;UD)

forany b € {1,2,...,n}\(A;UA]). This relation holds true
because when we marginalize over a variable, there are still
two disjoint cases: that variable has value 1 and that variable
has value 0.

As for base cases, if A; U A, = {1,2,...,n}, then let
the vector K be the vector where all indices in A; are 1
and where all indices in A} are 0. There are no marginal-
ized variables in this case, so g is fully specified. Since we
have no variables to marginalize over, we can simply set
9(A;, A}) = B(K).

We can thus combine the above base cases with the recur-
rence relation to compute all marginal probability masses.
There are 3%V states, since each variable may either be set to
0, set to 1, or marginalized over, so this algorithm runs in
O(3") time and requires O(3") memory to store the table.
Thus, when NV is greater than around 16, these methods be-
come computationally infeasible, so existing methods limit
to considering only a subset of candidate parents Sc C S.
These candidate parents are chosen to gain maximum cov-
erage over the parent set distribution; a variety of potential
heuristics to do so are evaluated in Viinikka et al. (2020).
Inevitably, some possible parent sets are ruled out by this
approach.

Probabilistic Circuit

In order to gain support over all possible parent sets, we
would like to learn some sort of probabilistic model or neural
network that could approximate 5. However, for most archi-
tectures, we would then no longer be able to marginalize in
sub-exponential time. Thus, we instead propose to use a de-
composable and smooth PC as our architecture. We can then
answer marginal queries in a time linear to the size of the
circuit, while also avoiding incurring the exponential O(3%)
precomputation cost.

Our circuit is designed to output unnormalized probabili-
ties, since the scores that we want to learn for structure learn-
ing are unnormalized. PCs are often designed to enforce nor-
malization by ensuring » . w; = 1 for each sum node (e.g. by
pushing the parameterization through a softmax). We sim-
ply remove this restriction within our sum nodes.! However,
computing the distribution of an unnormalized PC is still
easy: we can tractably marginalize over all variables to find
our normalizing constant.

"'We do store our parameters in log-domain, as is the norm in
PC learning for reasons of numerical stability and ensuring non-
negativity.

Algorithm 1 PC learning

Input: Bayesian scorer B, candidate parent set C,
marginal training limit L
initialize a probabilistic circuit p
Sb,train, Sb,val <— randomly sampled parent sets from S
score Sp.train; Op,val With B
for number of baseline epochs do
train p with gradient descent on Sy irin using MSE
loss
end for
7: train an exact DP marginalizer M on the limited parent
set C'
8: fori=1to L do
9: Sy, train, Sm vl < randomly sampled (¢,0) and (7, 1)
marginals from S
10:  use M to generate labels for S, trainy S, val
11: Sy, tains Snval < randomly sampled parent sets from

A e

)

12:  score Sy, ains Sn,val With B
13: merge Sm,train with Sﬂ,,train and Sm,val with Sn,val
14:  for number of finetune epochs do

15: train p with gradient descent on combined data set
using MSE loss

16:  end for

17: end for

PC Structure The structure of our PC is similar to that
of RAT-SPN, proposed in Peharz et al. (2020b). We param-
eterize our PC by a latent size /N along with a number of
variables M (in our method, M will always be one less than
the total number of variables in the BN A since we do not
consider the node we are currently scoring). We begin with
a leaf layer of nodes at the bottom, and then alternate be-
tween product and sum layers. For our PC, each layer is or-
ganized as a matrix of nodes, with this matrix always hav-
ing N columns of nodes. When computing across our entire
PC, we maintain the invariant that all rows of nodes have the
same scope while columns of nodes have pairwise disjoint
scopes. The structure of the PC is then as following:

1. The leaf layer forms a matrix of leaf nodes of shape
(M, N). Each leaf node’s value corresponds to the pres-
ence or absence of a certain parent within the parent set.
The leaf nodes of our PC take parameterized, unnormal-
ized Bernoulli random variables as input distributions.
Within our leaf layer, we create IV repeated leaf nodes
for each of our M variables. The order of the M vari-
ables is determined by a random permutation, which is
fixed across all IV repetitions. This design ensures that
the variable scopes are combined in a consistent yet ran-
domized manner within product nodes, while keeping the
scope of sum nodes consistent.

2. The input to a product layer is the output of either a
leaf layer or a sum layer. The product layer doubles the
amount of variables in the scope of each node and thus
cuts the number of rows of our matrix in half. Given that
the previous layer was a grid of S = (A, N) nodes,
our product layer has dimensionality (A/2, N'). Within



each product node, P; ; = Sa; ; * S2;11,;. This enforces
the constraint of decomposability given that columns of
nodes have pairwise disjoint scopes.

3. The sum layer creates a weighted sum of input nodes
from the same row without affecting the scope of nodes.
Given that the previous layer was a grid of P = (A, N)
nodes, our sum layer has dimensionality (A, N). Within
each sum node, S; ; = Zszl w; jk * P . This con-
struction enforces the constraint of smoothness, given
that rows of nodes have the same scope. The tensor w of
dimension (A, N, N) contains parameters that we learn
during training.

PC Learning

Remember that we define a marginal/zero query as one
where we marginalize over some variables and require
that the rest be 0. We further define a (k,0) query as a
marginal/zero query that marginalizes over exactly k vari-
ables and sets the rest to 0 and a (k, 1) query as a query that
marginalizes over k variables, sets one variable to 1, and sets
the rest to 0.

Given these definitions, we present a two-phase learning
routine in algorithm 1. We first begin with a baseline learn-
ing phase that trains on complete parent sets whose scores
have been calculated by the Bayesian scorer 5.

Then, during the second phase, we finetune the model
on a combination of (k,0) and (k, 1) marginals along with
complete unmarginalized parent sets. During this phase, we
increase k iteratively. We primarily train on marginal/zero
queries as they are one of the principal types of queries that
structure learning methods require us to answer. We also
train in increasing number of marginalized variables, as suc-
cessfully training each previous iteration helps training with
the next iteration. According to the recurrence relation writ-
ten in the exact computation section, each (k + 1,0) query
can be written as a sum of a (k, 0) query and a (k, 1) query,
as the additional marginalized variable must either be set to
0 and 1 when summing. Accordingly, training successfully
at a certain k can intuitively help to successfully build our
marginal queries at k& + 1.

During both learning phases, we used the mean squared
error (in log-domain) as our loss function. That is:

(log p(S) — B(S))?

MSE has also been used in similar models focused on learn-
ing marginals (Liu, Ramadge, and Adams 2024) and was the
best choice empirically compared to other loss choices like
KL divergence.

Additional Implementation Details

We also make the following empirical choices for our
method.

1. For the first phase, we do not sample parent set vec-
tors uniformly. Instead, we sample parent set vectors
from S where each vector is weighted by how many
zero/marginal probability masses they contribute to. A
parent vector with 7" indicators equal to 1 will contribute

to 2 =T marginal probability masses (since all other in-
dicators must either be marginalized over or set equal to
0). Thus, its weight in the sampling is oc 27

2. We combine both marginals and complete parent sets
in the second learning phase because only learning
marginals may cause our regression circuit to deviate
from already learned complete parent set values. More-
over, since we resample our complete parent sets in this
step, the regression circuit can train on additional previ-
ously unseen training data.

3. Learning rate is set relatively high at 10~! for the first
phase. This helps alleviate a problem with vanishing gra-
dients that is exacerbated by the fact that our weights are
unnormalized and so can take on increasingly negative
values in the log domain. We reduce this learning rate
upon training loss plateau to avoid unstable convergence.

4. We also have a limitation of L for our second phase iter-
ation for the purposes of computation efficiency. More-
over, having too many iterations causes the regression
circuit to forget the marginals it has learned in previous
iterations, leading to decreased effectiveness.

5. Correct initialization of the parameters of the regression
circuit is important for gradient-based optimization. With
a multiplier hyperparameter m < 0, we initialize our
parameters (in log-domain) according to the distribution
mlog(U(0,1)). In particular we set m to be around —10,
as this setting encourages the breaking of gradient sym-
metry during training.

Experiments

We perform an empirical evaluation of our method within
the context of the TRUST framework (Wang, Wicker, and
Kwiatkowska 2022). TRUST is a Bayesian structure learn-
ing method that relies on probabilistic circuits. The original
TRUST still employs dynamic programming marginaliza-
tion within its leaf nodes. Thus, we replace these DP cal-
culations with our method. We chose to work with TRUST
as it also utilizes probabilistic circuits as a framework for
structure learning, which allows us to create a method that
utilizes entirely probabilistic circuits.

We maintain similar experimental settings as Wang,
Wicker, and Kwiatkowska (2022). Namely, we utilize syn-
thetically generated data, where the ground truth structures
are Erd6s—Rényi graphs of size d € {16,20} with an aver-
age of 2 edges per node. The constructed Bayesian networks
use linear Gaussian mechanisms. Accordingly, we utilize the
BGe score as our Bayesian score. We generate 100 samples
for our training data Dy;y.

Evaluation

We evaluated our structure learning experiments with the
following metrics, which are the same as presented in Wang,
Wicker, and Kwiatkowska (2022). Let the ground truth
graph be G with our posterior distribution represented by
q. We hold 1000 samples for our test data Dyeg.

The expected structural Hamming distance (E-SHD)
measures the expected number of different edges between
the completed partially directed acyclic graphs (CPDAGs)
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Figure 1: Evaluation running TRUST between the exact DP marginalization and regression circuits Top: Comparison on
d = 16. The DP marginalization here considers all 15 other nodes, so marginals are calculated exactly. Our approximate
regression circuit performs comparably to the DP, except for E-SHD. Bottom: Comparison on d = 20. We now restrict the DP
to considering only 8 nodes, as is normal practice. As expected, our PC performs considerably better now on all metrics except

E-SHD.

of the ground truth G and of graphs G’ sampled from our
posterior g. CPDAGs are the structure that describe the
Markov equivalence class of a DAG. Thus, we should com-
pare the CPDAGs of G and G’ against each other, not just
the original DAGs.

The area under the receiver operating curve (AUROC)
for structure learning is evaluated by first computing the
marginal probabilities within our posterior distribution of
every potential edge in the graph. Then, we vary a confi-
dence threshold to construct a ROC curve (Friedman and
Koller 2003).

The marginal log likelihood (MLL) metric utilizes the
BGE score to measure how likely our held out test data Dyeg
is under our constructed posterior distribution g.

The mean squared error of causal effects (MSE-CE) is
computed as the average mean squared error between the
true and predicted causal effects across all pairs of nodes.

In Figure 1, we compare on d = 16 the results of TRUST
with our PC method against a DP method with no candi-
date set restrictions. We ran these experiments between DP
and PC methods with the same DAGs and data, allowing
for direct comparison. Our baseline circuit had latent size
N = 256 and initialization multiplier m = 12. For both the
first and second steps of training, we utilized a batch size of
500. In the first learning phase of training, we used 10000
samples for training and 1000 samples for validation, under
a learning rate of 10~1. Within the second step of training,
we used a training dataset of 20000 samples, evenly divided
between marginals and complete scores, with a validation
dataset of 2000, also split evenly. For this phase, we set the

learning rate to 5 x 1073, used L = 7 iterations, and trained
with 20 epochs per iteration.

Since we did not restrict parent sets for the DP for this
experiment, the DP will always calculate exact marginals.
In other words, the size of candidate sets |S.| = 15, so this
baseline serves as the posterior that we intend to approxi-
mate. Although our learning procedure for our circuit only
learns the distribution of scores approximately, our method
achieves performance comparable to the exact calculation,
except for E-SHD. This result shows that we can approxi-
mate the exact marginals well enough to have limited effect
on downstream TRUST performance.

Once we restrict the candidate set for the DP method, as
is standard practice, our method showcases improved per-
formance. On d = 20 while restricting the candidate parent
set to 8 nodes, our method performs better on all metrics ex-
cept for E-SHD. In this case, compared to the PC settings
on d = 16, we reduce the number of latents of our PC from
256 to 64, increase our batch size to 1000 samples, and dou-
ble the size of all training and validation sets for the PC. We
keep the rest of the settings the same.

As for why our method holds a higher E-SHD than the
exact computation in both d = {16, 20}, our method tends
to sample graphs with more edges, as seen in the rightmost
plots in Figure 1. However, the AUROC scores indicate that
the PC-based posterior is nonetheless capable of determin-
ing which edges are more likely.



Conclusion

We show that probabilistic circuits can be used to perform
marginalization tasks in Bayesian structure learning. To do
s0, we learn a distribution for the circuit that approximates a
Bayesian score. Once this distribution has been learned, we
can exactly marginalize over it. Compared to the dynamic
programming approach which exactly marginalizes over a
limited subset of the ground truth distribution, our method
allows us to have support over all parent sets. We show that
this approach yields performance improvements by creating
a more accurate posterior distribution.

As for future avenues of work, one important focus is to
scale to higher dimensions for TRUST, as our method re-
moves the restriction on the number of candidate parents
that previously prevented such scaling. Additionally, limited
testing has shown that this restriction hampers performance
more significantly when trying to learn denser structures
(such as an Erdés—Rényi graph with an average of 4 edges
per node). Experimenting with denser graphs may thus show
that utilizing our method yields larger performance improve-
ments than on sparser graphs.

Moreover, our marginalization circuit is limited in its ap-
plicability to just TRUST or linear Gaussian BNs. As pre-
viously mentioned, ArCO-GP (Toth et al. 2025) and other
methods also rely on limits for the number of candidate par-
ents of a node. As such, an important avenue for future work
is to adapt our approach to using different BN mechanisms
and thus scores in order to be compatible with these other
structure learning algorithms.

Overall, we have presented a promising new approach
to the computational problem of marginalizing Bayesian
scores, that learns a tractable approximation to the ground
truth score function that then enables efficient answering
of marginal queries on-the-fly. We show that this naturally
outperforms existing methods, which impose hard, hand-
crafted limits for computational feasibility, such as restrict-
ing the candidate parent sets.
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