How to Marginalize in Causal Structure Learning?

William Zhao, Guy Van den Broeck, Benjie Wang

University of California, Los Angeles wizhao@ucla.edu, guyvdb@cs.ucla.edu, benjiewang@cs.ucla.edu

Abstract

Bayesian networks (BNs) are a widely used class of probabilistic graphical models employed in numerous application domains. However, inferring the network's graphical structure from data remains challenging. Bayesian structure learners approach this problem by inferring a posterior distribution over the possible directed acyclic graphs underlying the BN. The inference process often requires marginalizing over probability distributions, which is typically done using dynamic programming methods that restrict the set of possible parents for each node. Instead, we present a novel method that utilizes tractable probabilistic circuits to circumvent this restriction. This method utilizes a new learning routine that trains these circuits on both the original distribution and marginal queries. The architecture of probabilistic circuits then inherently allows for fast and exact marginalization on the learned distribution. We then show empirically that utilizing our method to answer marginals allows Bayesian structure learners to improve their performance compared to current methods.

Introduction

Bayesian networks (BNs) are a popular choice for representing probabilistic relationships between variables. Given that they have widespread benefits in interpretability and transparency compared to other more black box approaches, they have been employed in a wide variety of applications, ranging from healthcare modeling to industrial fault diagnosis. (Kyrimia et al. 2021; Cai, Huang, and Xie 2017). In a BN, variables are represented as nodes in a graph, with directed edges representing conditional dependencies between two variables. Collectively, these edges form a directed acyclic graph (DAG) across all variables.

Structure learning is the task of discovering the DAG structure of a BN given data. However, structure learning poses a difficult computational challenge, since the number of DAGs grows super-exponentially with respect to the number of variables n (Kitson et al. 2023). To account for uncertainty among the possible DAG structures, Bayesian structure learning methods aim to infer the posterior distribution of possible graphs G. These structure learning methods are based on Bayesian scoring functions, which output (possibly unnormalized) posterior probabilities of graphs given data.

Copyright © 2026, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.

Within Bayesian structure learning, marginalizing these scores over all possible parent sets of a node serves as a fundamental subtask. Prior methods have relied on exact calculation with a dynamic programming table. However, since this dynamic programming computation requires exponential time in the number of candidate parents, these methods artificially limit the number of candidate parents to a set of the most likely parents. This method thus lacks support over all possible parent sets, which limits the performance of the structure learner.

Probabilistic circuits are a fitting architecture for replacing dynamic programming for this subtask. Probabilistic circuits are a type of tractable probabilistic model that, when satisfying certain structural properties, allow for efficient computation of any possible marginal and conditional query (Choi, Vergari, and den Broeck 2020). Thus, we learn circuits that approximate the distribution represented by the Bayesian scores and then use them as a surrogate to answer the queries required by the structure learner.

We present an approach that trains a probabilistic circuit per node to answer the marginal and sampling queries necessary for Bayesian approaches to structure learning. This method utilizes a new learning algorithm that employs as ground truth both unmarginalized probability masses and marginalized probability masses calculated via a more limited exact brute force approach. This method improves upon prior approaches that require limits on the number of potential parents for each node. On a specific Bayesian structure learning method, TRUST (Wang, Wicker, and Kwiatkowska 2022), we demonstrate empirical improvements to results utilizing our method.

Related Work

Given the superexponential search space over all possible structures, one common strategy for structure learners is to simplify the search space into one of topological orders. This approach has been used in a wide variety of structure learning approaches, including ones that utilize exact search (Teyssier and Koller 2005), MCMC approximation (Friedman and Koller 2003; Kuipers and Moffa 2017; Viinikka et al. 2020), and gradient-based approaches (Wang, Wicker, and Kwiatkowska 2022; Cundy, Grover, and Ermon 2021; Annadani et al. 2023; Toth et al. 2025).

An especially attractive property of a topological order-

ing is that by fixing an ordering, we fix the set of possible parents for each node. However, even this limitation is not enough for many methods, which instead place further restrictions on a node's parent sets for computational reasons. Kuipers and Moffa (2017) and Toth et al. (2025), for example, forcibly restrict the size of any possible parent sets. Meanwhile, Viinikka et al. (2020) and Wang, Wicker, and Kwiatkowska (2022) instead produce a limited set of possible candidate candidates for each node: for any node, the set of parents must be a subset of that candidate set. Unfortunately, these restrictions limit the search space of the method and thus the structures that may actually be produced by the structure learner.

There are many different approaches to structure learning of Bayesian networks. Of particular interest are Bayesian approaches to structure learning, which infer a posterior distribution for the structure of a Bayesian network given data. Learning this distribution allows for a variety of useful queries, including Bayesian model averaging of causal effects (Viinikka et al. 2020). Exact methods have not scaled above roughly d = 20 (Koivisto 2006), which has driven work towards approximate methods. Such works notably include Friedman and Koller (2003), which utilized MCMC sampling over the distribution of orders. TRUST, an approximate Bayesian structure learning method introduced in Wang, Wicker, and Kwiatkowska (2022), is utilized as a test case for our method. We chose TRUST because it already employs probabilistic circuits for representing the posterior distribution over orderings. Thus, by incorporating the method we present as well, we have developed a structure learner entirely reliant on probabilistic circuits.

Probabilistic circuits were introduced in Choi, Vergari, and den Broeck (2020) as a class of probabilistic models that use computational graphs to encode probability distributions. Compared to other models, probabilistic circuits allow for efficient inference, including exact marginalization, on the distributions they learn. The tractability of probabilistic circuits has been exploited for tasks such as constrained language generation (Zhang et al. 2024; Yidou-Weng, Wang, and Van den Broeck 2025; Ahmed et al. 2025), neuro-symbolic AI (Ahmed et al. 2022; Loconte et al. 2023; Wang et al. 2024; Karanam et al. 2025), and causal reasoning (Wang, Lyle, and Kwiatkowska 2021; Wang and Kwiatkowska 2023; Busch et al. 2024). Probabilistic circuits are frequently learned from distributions, and making this learning more efficient and more scalable has been the subject of much work (Peharz et al. 2020a; Loconte et al. 2024; Wang and Van den Broeck 2025; Zhang et al. 2025). Other architectures that focus on answering marginalization queries include NADEs (Uria, Murray, and Larochelle 2014), AO-ARMs (Shih, Sadigh, and Ermon 2022) and MAMs (Liu, Ramadge, and Adams 2024). However, these methods only approximate these queries on their learned distributions and do not provide exact inference, unlike probabilistic circuits.

Background

Marginalization

Let $p(\mathbf{X})$ be an unnormalized probability distribution, where \mathbf{X} is a vector of n binary variables $\{x_0, x_1, \ldots, x_n\}$. Given that most Bayesian scores represent unnormalized posteriors, we do not assume that $\sum p(\mathbf{X}) = 1$.

Let X_V and X_{V_C} be subvectors of X corresponding to indices $V \subseteq \{1, 2, 3, ..., n\}$ and the complement $V_C = \{1, 2, 3, ..., n\} \setminus V$. A marginal distribution over X_V can be defined by summing over all possible values of X_{V_C} :

$$p(\mathbf{X}_V) = \sum_{\mathbf{X}_{V_C}} p(\mathbf{X}_V, \mathbf{X}_{V_C})$$

Probabilistic Circuits

Probabilistic circuits (PCs) are a class of tractable probabilistic models defined by a computational graph with a rooted DAG structure, where each node represents a computational unit (Choi, Vergari, and den Broeck 2020). Given a circuit over a set of variables $\mathbf{X} = \{x_1, x_2, \cdots, x_n\}$, each node represents a distribution over a subset of \mathbf{X} . This subset of variables is considered to be the scope of the node sc(v). Within a circuit, there are several different types of nodes:

- Leaf nodes represent input probability distributions over a single variable; in our case of binary variables, these are Bernoulli distributions with some flip probability *p*.
- Product nodes take the product of the values of their child nodes. Thus, the value of a product node $v_i = \prod_{j \in Ch(i)} v_j$, where Ch(i) are all children of node i.
- Sum nodes take the weighted sum of the values of their child nodes. Thus, the value of a sum node is $v_i = \sum_{j \in Ch(i)} w_j v_j$, where Ch(i) are all children of node i and w_j correspond to the weight of node j in the sum. In many circumstances, PCs enforce normalization, i.e., $\sum w_j = 1$. However, we do not enforce this constraint in this paper.

The probability distribution of the PC is then defined by the distribution represented by the root node. In particular, evaluating $p(\mathbf{X})$ simply requires evaluating the leaf probabilities for that assignment and then computing the sums and products in a forward pass.

Circuits with certain structural properties prove to be significantly more tractable. *Smoothness* and *decomposability* in particular are highlighted here (Poon and Domingos 2011):

- A PC holds the property of *smoothness* if for all sum nodes S and for all children C_1, C_2 of S, $sc(C_1) = sc(C_2)$. In a smooth PC, children of the same sum node have the same scope.
- A PC holds the property of decomposability if for all product nodes P and for all children C_1, C_2 of P, $sc(C_1) \cap sc(C_2) = \emptyset$. In a decomposable PC, children of the same product node have pairwise disjoint scopes.

If a PC is both decomposable and smooth, PCs can exactly marginalize over their represented distribution in time proportional to the size of the PC. Thus, PCs with these prop-

erties are particularly computationally efficient and tractable compared to alternative architectures.

Moreover, PCs can be viewed as a neural network with sum nodes providing linear transformations on their input values and leaf and product nodes contributing nonlinearity (Choi, Vergari, and den Broeck 2020). Thus, it is possible to follow the conventional architecture of a neural network of linear layers followed by nonlinear activations by alternating sum layers with product layers. Accordingly, PCs can be trained to learn a distribution using standard gradient descent techniques utilizing backpropagation.

Bayesian Structure Learning

A Bayesian network \mathcal{N} over a set of variables $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ can be defined as a tuple (G, Θ) . G is a directed acyclic graph, where edges represent conditional independence between variables in the network. Θ represents a set of parameters that define the conditional probability distributions between variables. Let the parents of a variable X_i in the graph G be denoted $pa_G(X_i)$. Since the conditional probability distribution for a variable X_i is then $p(X_i|pa_G(X_i),\Theta_i)$, we obtain the joint probability distribution for the BN \mathcal{N} :

$$p(\mathbf{X}|G,\Theta) = \prod_{i=1}^{n} p(X_i|pa_G(X_i),\Theta_i)$$

Structure learning is the process of learning the DAG G of a BN that generates specific data D. When approaching structure learning with Bayesian methods, we define a structural prior $p_{pr}(G)$ and a likelihood $p_L(D|G)$. Modularity, or that priors and likelihoods can be written as products over nodes, is a common assumption (Eggeling et al. 2019). The posterior can thus be written as:

$$p(G|D) \propto \prod_{i=1}^{n} \mathbb{1}_{DAG(G)} p_{pr}(pa_G(X_i)) p_L(D|pa_G(X_i))$$

where $\mathbb{1}_{DAG(G)}$ is an indicator variable that represents whether G is acyclic. This assumption simplifies the problem significantly, as it allows every node's set of parents independently to be considered independently from each other given the acylicity constraint (for instance, once an ordering is imposed).

Bayesian scores \mathcal{B} are a class of scores whose values are proportional to the posterior probabilities of structures (Kitson et al. 2023). Each specific Bayesian score assumes a prior distribution over network parameters. Different Bayesian scores are specialized for different types of Bayesian networks because they require different parameter priors. For example, BGe scores are used for BNs with linear Gaussian mechanisms, and BDeu scores are used for BNs with discrete mechanisms. These scores are generally unnormalized, and for numerical stability reasons, these scores are given in the log domain. Thus, given a directed acyclic graph, they compute:

$$\mathcal{B}(G) = \sum_{i=1}^{n} \log p_{pr}(pa_G(X_i)) + \log p_L(D|pa_G(X_i))$$

Note that including the structural prior p_{pr} in $\mathcal{B}(G)$ is optional and that in some literature the specific Bayesian score refers to the likelihood p_L only (Eggeling et al. 2019). We include this term as in the work of Kitson et al. (2023) to simplify our notation.

Since we assumed structural modularity, we can then decompose the score of a graph $\mathcal{B}(G)$ as a sum of scores $\mathcal{B}_{X_i}(pa_G(X_i))$ associated with a node and its parent set, where:

$$\mathcal{B}_{X_i}(pa_G(X_i)) = \log p_{pr}(pa_G(X_i)) + \log p_L(D|pa_G(X_i))$$

For simplicity, we can also represent the input $pa_G(X_i)$ as a vector of indicator variables S, where S_j indicates whether node j is a parent in the structure of node i.

Structure learners then calculate \mathcal{B} frequently during execution time to score graphs. Alternatively, they are also used to score topological orderings, as many structure learning methods, such as TRUST (Wang, Wicker, and Kwiatkowska 2022) and ArCO-GP (Toth et al. 2025), consider the smaller space of topological orderings. Given an ordering $\sigma = (\sigma_1, \sigma_2, \ldots, \sigma_n)$ of the nodes X_1, X_2, \ldots, X_n , the unnormalized posterior probability of the ordering is given by summing the scores of all graphs consistent with that ordering:

$$\sum_{i=1}^{n} \sum_{\mathbf{S}: S_{\sigma_i} = 0 \ \forall j \ge i} \mathcal{B}_{\sigma_i}(\mathbf{S})$$

This summation enforces the restriction of topological ordering: σ_i cannot be a parent of σ_i if $j \ge i$.

This equation highlights why marginalization is a critical task in structure learning, since we calculate the inner summation with a marginal query on the function \mathcal{B}_{σ_i} . We query for the probability mass where the variables S_{σ_j} for j < i are marginalized and for $j \geq i$, $S_{\sigma_j} = 0$. As learners may score many orderings during their execution, we require efficient marginalization over *any* set of variables. We define these types of queries as *marginal/zero* queries, as all possible S_j are either set to 0 or are marginalized variables. These types of queries thus play an especially important role in our proposed learning procedure.

Methods

Throughout this section, we describe and examine the application of our marginalization method on a single variable X_i . Thus, in the rest of this section, we omit the subscript X_i from \mathcal{B}_{X_i} because we assume that we are marginalizing the score for X_i . In practice, however, we repeat our method for every variable in the data.

Exact Computation

Viinikka et al. (2020) propose an algorithm that computes using dynamic programming all possible marginal probabilities in $O(3^N)$ time. This algorithm precomputes all possible marginal masses, stores the results in a lookup table, and then retrieves these results in O(1) time to answer queries. We discuss the methodology of these methods, as they are used to compute parts of the ground-truth data for our learning dataset.

For disjoint subsets $A_i, A_i' \subseteq \{1, 2, \dots, n\}$ and $A_i \cap A_i' = \emptyset$, we define

$$g(A_i, A_i') = \sum_{\mathbf{S}: \forall i \in A_i, S_i = 1, \forall i \in A_i', S_i' = 0} \mathcal{B}(\mathbf{S})$$

In other words, this corresponds to the probability mass where all variables whose indices in A_i must be 1, all variables whose indices in A_i' must be 0, and all other variables are marginalized over. This definition lends itself to the handy recurrence relation

$$g(A_i, A_i') = g(A_i \cup b, A_i') + g(A_i, A_i' \cup b)$$

for any $b \in \{1, 2, \dots, n\} \setminus (A_i \cup A_i')$. This relation holds true because when we marginalize over a variable, there are still two disjoint cases: that variable has value 1 and that variable has value 0.

As for base cases, if $A_i \cup A_i' = \{1, 2, \dots, n\}$, then let the vector \mathbf{K} be the vector where all indices in A_i are 1 and where all indices in A_i' are 0. There are no marginalized variables in this case, so g is fully specified. Since we have no variables to marginalize over, we can simply set $g(A_i, A_i') = \mathcal{B}(\mathbf{K})$.

We can thus combine the above base cases with the recurrence relation to compute all marginal probability masses. There are 3^N states, since each variable may either be set to 0, set to 1, or marginalized over, so this algorithm runs in $O(3^N)$ time and requires $O(3^N)$ memory to store the table. Thus, when N is greater than around 16, these methods become computationally infeasible, so existing methods limit to considering only a subset of candidate parents $\mathbf{S_C} \subseteq \mathbf{S}$. These candidate parents are chosen to gain maximum coverage over the parent set distribution; a variety of potential heuristics to do so are evaluated in Viinikka et al. (2020). Inevitably, some possible parent sets are ruled out by this approach.

Probabilistic Circuit

In order to gain support over all possible parent sets, we would like to learn some sort of probabilistic model or neural network that could approximate \mathcal{B} . However, for most architectures, we would then no longer be able to marginalize in sub-exponential time. Thus, we instead propose to use a decomposable and smooth PC as our architecture. We can then answer marginal queries in a time linear to the size of the circuit, while also avoiding incurring the exponential $O(3^N)$ precomputation cost.

Our circuit is designed to output unnormalized probabilities, since the scores that we want to learn for structure learning are unnormalized. PCs are often designed to enforce normalization by ensuring $\sum w_i = 1$ for each sum node (e.g. by pushing the parameterization through a softmax). We simply remove this restriction within our sum nodes. However, computing the distribution of an unnormalized PC is still easy: we can tractably marginalize over all variables to find our normalizing constant.

Algorithm 1 PC learning

Input: Bayesian scorer \mathcal{B} , candidate parent set C, marginal training limit L

- 1: initialize a probabilistic circuit p
- 2: $S_{b,\text{train}}, S_{b,\text{val}} \leftarrow \text{randomly sampled parent sets from } \mathbf{S}$
- 3: score $S_{b,\text{train}}, S_{b,\text{val}}$ with \mathcal{B}
- 4: for number of baseline epochs do
- 5: train p with gradient descent on $S_{b,\text{train}}$ using MSE loss
- 6: end for
- 7: train an exact DP marginalizer M on the limited parent set C
- 8: **for** i = 1 to L **do**
- 9: $S_{m,\text{train}}, S_{m,\text{val}} \leftarrow \text{randomly sampled } (i,0) \text{ and } (i,1)$ marginals from \mathbf{S}
- 10: use M to generate labels for $S_{m,\text{train}}, S_{m,\text{val}}$
- 11: $S_{n, \text{train}}, S_{n, \text{val}} \leftarrow \text{randomly sampled parent sets from } \mathbf{S}$
- 12: score $S_{n,\text{train}}, S_{n,\text{val}}$ with \mathcal{B}
- 13: merge $S_{m,\text{train}}$ with $S_{n,\text{train}}$ and $S_{m,\text{val}}$ with $S_{n,\text{val}}$
- 14: **for** number of finetune epochs **do**
- 15: train p with gradient descent on combined data set using MSE loss
- 16: **end for**
- 17: **end for**

PC Structure The structure of our PC is similar to that of RAT-SPN, proposed in Peharz et al. (2020b). We parameterize our PC by a latent size N along with a number of variables M (in our method, M will always be one less than the total number of variables in the BN $\mathcal N$ since we do not consider the node we are currently scoring). We begin with a leaf layer of nodes at the bottom, and then alternate between product and sum layers. For our PC, each layer is organized as a matrix of nodes, with this matrix always having N columns of nodes. When computing across our entire PC, we maintain the invariant that all rows of nodes have the same scope while columns of nodes have pairwise disjoint scopes. The structure of the PC is then as following:

- 1. The leaf layer forms a matrix of leaf nodes of shape (M, N). Each leaf node's value corresponds to the presence or absence of a certain parent within the parent set. The leaf nodes of our PC take parameterized, unnormalized Bernoulli random variables as input distributions. Within our leaf layer, we create N repeated leaf nodes for each of our M variables. The order of the M variables is determined by a random permutation, which is fixed across all N repetitions. This design ensures that the variable scopes are combined in a consistent yet randomized manner within product nodes, while keeping the scope of sum nodes consistent.
- 2. The input to a product layer is the output of either a leaf layer or a sum layer. The product layer doubles the amount of variables in the scope of each node and thus cuts the number of rows of our matrix in half. Given that the previous layer was a grid of S=(A,N) nodes, our product layer has dimensionality (A/2,N). Within

¹We do store our parameters in log-domain, as is the norm in PC learning for reasons of numerical stability and ensuring nonnegativity.

- each product node, $P_{i,j} = S_{2i,j} * S_{2i+1,j}$. This enforces the constraint of decomposability given that columns of nodes have pairwise disjoint scopes.
- 3. The sum layer creates a weighted sum of input nodes from the same row without affecting the scope of nodes. Given that the previous layer was a grid of P=(A,N) nodes, our sum layer has dimensionality (A,N). Within each sum node, $S_{i,j} = \sum_{k=1}^N w_{i,j,k} * P_{i,k}$. This construction enforces the constraint of smoothness, given that rows of nodes have the same scope. The tensor w of dimension (A,N,N) contains parameters that we learn during training.

PC Learning

Remember that we define a marginal/zero query as one where we marginalize over some variables and require that the rest be 0. We further define a (k,0) query as a marginal/zero query that marginalizes over exactly k variables and sets the rest to 0 and a (k,1) query as a query that marginalizes over k variables, sets one variable to 1, and sets the rest to 0.

Given these definitions, we present a two-phase learning routine in algorithm 1. We first begin with a baseline learning phase that trains on complete parent sets whose scores have been calculated by the Bayesian scorer \mathcal{B} .

Then, during the second phase, we finetune the model on a combination of (k,0) and (k,1) marginals along with complete unmarginalized parent sets. During this phase, we increase k iteratively. We primarily train on marginal/zero queries as they are one of the principal types of queries that structure learning methods require us to answer. We also train in increasing number of marginalized variables, as successfully training each previous iteration helps training with the next iteration. According to the recurrence relation written in the exact computation section, each (k+1,0) query can be written as a sum of a (k,0) query and a (k,1) query, as the additional marginalized variable must either be set to 0 and 1 when summing. Accordingly, training successfully at a certain k can intuitively help to successfully build our marginal queries at k+1.

During both learning phases, we used the mean squared error (in log-domain) as our loss function. That is:

$$(\log p(\mathbf{S}) - \mathcal{B}(\mathbf{S}))^2$$

MSE has also been used in similar models focused on learning marginals (Liu, Ramadge, and Adams 2024) and was the best choice empirically compared to other loss choices like KL divergence.

Additional Implementation Details

We also make the following empirical choices for our method.

For the first phase, we do not sample parent set vectors uniformly. Instead, we sample parent set vectors from S where each vector is weighted by how many zero/marginal probability masses they contribute to. A parent vector with T indicators equal to 1 will contribute

- to 2^{M-T} marginal probability masses (since all other indicators must either be marginalized over or set equal to 0). Thus, its weight in the sampling is $\propto 2^{M-T}$.
- 2. We combine both marginals and complete parent sets in the second learning phase because only learning marginals may cause our regression circuit to deviate from already learned complete parent set values. Moreover, since we resample our complete parent sets in this step, the regression circuit can train on additional previously unseen training data.
- 3. Learning rate is set relatively high at 10⁻¹ for the first phase. This helps alleviate a problem with vanishing gradients that is exacerbated by the fact that our weights are unnormalized and so can take on increasingly negative values in the log domain. We reduce this learning rate upon training loss plateau to avoid unstable convergence.
- 4. We also have a limitation of L for our second phase iteration for the purposes of computation efficiency. Moreover, having too many iterations causes the regression circuit to forget the marginals it has learned in previous iterations, leading to decreased effectiveness.
- 5. Correct initialization of the parameters of the regression circuit is important for gradient-based optimization. With a multiplier hyperparameter m < 0, we initialize our parameters (in log-domain) according to the distribution $m \log(U(0,1))$. In particular we set m to be around -10, as this setting encourages the breaking of gradient symmetry during training.

Experiments

We perform an empirical evaluation of our method within the context of the TRUST framework (Wang, Wicker, and Kwiatkowska 2022). TRUST is a Bayesian structure learning method that relies on probabilistic circuits. The original TRUST still employs dynamic programming marginalization within its leaf nodes. Thus, we replace these DP calculations with our method. We chose to work with TRUST as it also utilizes probabilistic circuits as a framework for structure learning, which allows us to create a method that utilizes entirely probabilistic circuits.

We maintain similar experimental settings as Wang, Wicker, and Kwiatkowska (2022). Namely, we utilize synthetically generated data, where the ground truth structures are Erdős–Rényi graphs of size $d \in \{16,20\}$ with an average of 2 edges per node. The constructed Bayesian networks use linear Gaussian mechanisms. Accordingly, we utilize the BGe score as our Bayesian score. We generate 100 samples for our training data $D_{\rm train}$.

Evaluation

We evaluated our structure learning experiments with the following metrics, which are the same as presented in Wang, Wicker, and Kwiatkowska (2022). Let the ground truth graph be G with our posterior distribution represented by q. We hold 1000 samples for our test data $D_{\rm test}$.

The expected structural Hamming distance (E-SHD) measures the expected number of different edges between the completed partially directed acyclic graphs (CPDAGs)

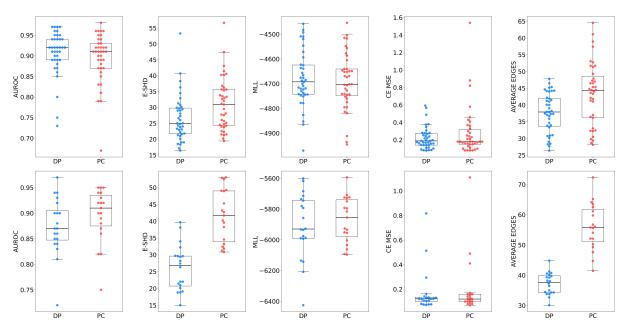


Figure 1: Evaluation running TRUST between the exact DP marginalization and regression circuits **Top:** Comparison on d=16. The DP marginalization here considers all 15 other nodes, so marginals are calculated exactly. Our approximate regression circuit performs comparably to the DP, except for E-SHD. **Bottom:** Comparison on d=20. We now restrict the DP to considering only 8 nodes, as is normal practice. As expected, our PC performs considerably better now on all metrics except E-SHD.

of the ground truth G and of graphs G' sampled from our posterior q. CPDAGs are the structure that describe the Markov equivalence class of a DAG. Thus, we should compare the CPDAGs of G and G' against each other, not just the original DAGs.

The area under the receiver operating curve (AUROC) for structure learning is evaluated by first computing the marginal probabilities within our posterior distribution of every potential edge in the graph. Then, we vary a confidence threshold to construct a ROC curve (Friedman and Koller 2003).

The marginal log likelihood (MLL) metric utilizes the BGE score to measure how likely our held out test data D_{test} is under our constructed posterior distribution q.

The mean squared error of causal effects (MSE-CE) is computed as the average mean squared error between the true and predicted causal effects across all pairs of nodes.

In Figure 1, we compare on d=16 the results of TRUST with our PC method against a DP method with no candidate set restrictions. We ran these experiments between DP and PC methods with the same DAGs and data, allowing for direct comparison. Our baseline circuit had latent size N=256 and initialization multiplier m=12. For both the first and second steps of training, we utilized a batch size of 500. In the first learning phase of training, we used 10000 samples for training and 1000 samples for validation, under a learning rate of 10^{-1} . Within the second step of training, we used a training dataset of 20000 samples, evenly divided between marginals and complete scores, with a validation dataset of 2000, also split evenly. For this phase, we set the

learning rate to $5*10^{-3}$, used L=7 iterations, and trained with 20 epochs per iteration.

Since we did not restrict parent sets for the DP for this experiment, the DP will always calculate exact marginals. In other words, the size of candidate sets $|\mathbf{S_c}|=15$, so this baseline serves as the posterior that we intend to approximate. Although our learning procedure for our circuit only learns the distribution of scores approximately, our method achieves performance comparable to the exact calculation, except for E-SHD. This result shows that we can approximate the exact marginals well enough to have limited effect on downstream TRUST performance.

Once we restrict the candidate set for the DP method, as is standard practice, our method showcases improved performance. On d=20 while restricting the candidate parent set to 8 nodes, our method performs better on all metrics except for E-SHD. In this case, compared to the PC settings on d=16, we reduce the number of latents of our PC from 256 to 64, increase our batch size to 1000 samples, and double the size of all training and validation sets for the PC. We keep the rest of the settings the same.

As for why our method holds a higher E-SHD than the exact computation in both $d=\{16,20\}$, our method tends to sample graphs with more edges, as seen in the rightmost plots in Figure 1. However, the AUROC scores indicate that the PC-based posterior is nonetheless capable of determining which edges are more likely.

Conclusion

We show that probabilistic circuits can be used to perform marginalization tasks in Bayesian structure learning. To do so, we learn a distribution for the circuit that approximates a Bayesian score. Once this distribution has been learned, we can exactly marginalize over it. Compared to the dynamic programming approach which exactly marginalizes over a limited subset of the ground truth distribution, our method allows us to have support over all parent sets. We show that this approach yields performance improvements by creating a more accurate posterior distribution.

As for future avenues of work, one important focus is to scale to higher dimensions for TRUST, as our method removes the restriction on the number of candidate parents that previously prevented such scaling. Additionally, limited testing has shown that this restriction hampers performance more significantly when trying to learn denser structures (such as an Erdős–Rényi graph with an average of 4 edges per node). Experimenting with denser graphs may thus show that utilizing our method yields larger performance improvements than on sparser graphs.

Moreover, our marginalization circuit is limited in its applicability to just TRUST or linear Gaussian BNs. As previously mentioned, ArCO-GP (Toth et al. 2025) and other methods also rely on limits for the number of candidate parents of a node. As such, an important avenue for future work is to adapt our approach to using different BN mechanisms and thus scores in order to be compatible with these other structure learning algorithms.

Overall, we have presented a promising new approach to the computational problem of marginalizing Bayesian scores, that *learns* a tractable approximation to the ground truth score function that then enables efficient answering of marginal queries on-the-fly. We show that this naturally outperforms existing methods, which impose hard, hand-crafted limits for computational feasibility, such as restricting the candidate parent sets.

References

- Ahmed, K.; Belem, C. G.; Smyth, P.; and Singh, S. 2025. Semantic probabilistic control of language models. *arXiv* preprint arXiv:2505.01954.
- Ahmed, K.; Teso, S.; Chang, K.-W.; Van den Broeck, G.; and Vergari, A. 2022. Semantic probabilistic layers for neurosymbolic learning. *Advances in Neural Information Processing Systems*, 35: 29944–29959.
- Annadani, Y.; Pawlowski, N.; Jennings, J.; Bauer, S.; Zhang, C.; and Gong, W. 2023. BayesDAG: Gradient-Based Posterior Inference for Causal Discovery. In *Thirty-seventh Conference on Neural Information Processing Systems*.
- Busch, F. P.; Willig, M.; Seng, J.; Kersting, K.; and Dhami, D. S. 2024. Ψ net: Efficient Causal Modeling at Scale. In *International Conference on Probabilistic Graphical Models*, 452–469. PMLR.
- Cai, B.; Huang, L.; and Xie, M. 2017. Bayesian Networks in Fault Diagnosis. *IEEE Transactions on Industrial Informatics*.

- Choi, Y.; Vergari, A.; and den Broeck, G. V. 2020. Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models. Technical report, University of California Los Angeles.
- Cundy, C.; Grover, A.; and Ermon, S. 2021. BCD Nets: Scalable Variational Approaches for Bayesian Causal Discovery. In *Thirty-Fifth Conference on Neural Information Processing Systems*.
- Eggeling, R.; Viinikka, J.; Vuoksenmaa, A.; and Koivisto, M. 2019. On Structure Priors for Learning Bayesian Networks. In *Proceedings of the Twenty-Second International Conference on Artificial Intelligence and Statistics*.
- Friedman, N.; and Koller, D. 2003. Being Bayesian About Network Structure. A Bayesian Approach to Structure Discovery in Bayesian Networks. *Machine Learning*.
- Karanam, A.; Mathur, S.; Sidheekh, S.; and Natarajan, S. 2025. A Unified Framework for Human-Allied Learning of Probabilistic Circuits. In *Proceedings of the AAAI Conference on Artificial Intelligence*.
- Kitson, N. K.; Constantinou, A. C.; Guo, Z.; Liu, Y.; and Chobtham, K. 2023. A survey of Bayesian Network structure learning. *Artificial Intelligence Review*.
- Koivisto, M. 2006. Advances in exact Bayesian structure discovery in Bayesian networks. In *Proceedings of the Twenty-Second Conference on Uncertainty in Artificial Intelligence*.
- Kuipers, J.; and Moffa, G. 2017. Partition MCMC for inference on acyclic digraphs. *Journal of the American Statistical Association*.
- Kyrimia, E.; McLachlan, S.; Dube, K.; Neves, M. R.; Fahmi, A.; and Fenton, N. 2021. A comprehensive scoping review of Bayesian networks in healthcare: Past, present and future. *Artificial Intelligence In Medicine*.
- Liu, S.; Ramadge, P. J.; and Adams, R. P. 2024. Generative Marginalization Models. In *Proceedings of the 41st International Conference on Machine Learning*.
- Loconte, L.; Di Mauro, N.; Peharz, R.; and Vergari, A. 2023. How to turn your knowledge graph embeddings into generative models. *Advances in Neural Information Processing Systems*, 36: 77713–77744.
- Loconte, L.; Sladek, A.; Mengel, S.; Trapp, M.; Solin, A.; Gillis, N.; and Vergari, A. 2024. Subtractive Mixture Models via Squaring: Representation and Learning. In *International Conference on Learning Representations (ICLR)*.
- Peharz, R.; Lang, S.; Vergari, A.; Stelzner, K.; Molina, A.; Trapp, M.; Van den Broeck, G.; Kersting, K.; and Ghahramani, Z. 2020a. Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits. In *Proceedings of the 37th International Conference on Machine Learning*.
- Peharz, R.; Vergari, A.; Karl Stelzner, A. M.; Sha, X.; Trapp, M.; Kersting, K.; and Ghahramani, Z. 2020b. Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning. *Proceedings of The 35th Uncertainty in Artificial Intelligence Conference*.
- Poon, H.; and Domingos, P. 2011. Sum-product networks: a new deep architecture. In *Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence*.

- Shih, A.; Sadigh, D.; and Ermon, S. 2022. Training and inference on any-order autoregressive models the right way. *Advances in Neural Information Processing Systems*, 35: 2762–2775.
- Teyssier, M.; and Koller, D. 2005. Ordering-Based Search: A Simple and Effective Algorithm for Learning Bayesian Networks. In *Proceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence*.
- Toth, C.; Knoll, C.; Pernkopf, F.; and Peharz, R. 2025. Effective Bayesian Causal Inference via Structural Marginalisation and Autoregressive Orders. arXiv:2402.14781.
- Uria, B.; Murray, I.; and Larochelle, H. 2014. A Deep and Tractable Density Estimator. In *Proceedings of the 31st International Conference on Machine Learning*.
- Viinikka, J.; Hyttinen, A.; Pensar, J.; and Koivisto, M. 2020. Towards Scalable Bayesian Learning of Causal DAGs. In 34th Conference on Neural Information Processing Systems.
- Wang, B.; and Kwiatkowska, M. 2023. Compositional probabilistic and causal inference using tractable circuit models. In *International Conference on Artificial Intelligence and Statistics*, 9488–9498. PMLR.
- Wang, B.; Lyle, C.; and Kwiatkowska, M. 2021. Provable guarantees on the robustness of decision rules to causal interventions. In *Proceedings of the International Joint Conference on Artificial Intelligence*. International Joint Conferences on Artificial Intelligence Organization.
- Wang, B.; Mauá, D.; Van den Broeck, G.; and Choi, Y. 2024. A compositional atlas for algebraic circuits. *Advances in Neural Information Processing Systems*, 37: 141318–141355.
- Wang, B.; and Van den Broeck, G. 2025. On the relationship between monotone and squared probabilistic circuits. In *Proceedings of the AAAI Conference on Artificial Intelligence*.
- Wang, B.; Wicker, M.; and Kwiatkowska, M. 2022. Tractable Uncertainty for Structure Learning. In *Proceedings of the 39th International Conference on Machine Learning*.
- Yidou-Weng, G.; Wang, B.; and Van den Broeck, G. 2025. TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation. In *Proceedings of the 42nd International Conference on Machine Learning (ICML)*.
- Zhang, H.; Dang, M.; Wang, B.; Ermon, S.; Peng, N.; and Van den Broeck, G. 2025. Scaling Probabilistic Circuits via Monarch Matrices. In *Proceedings of the 42nd International Conference on Machine Learning*.
- Zhang, H.; Kung, P.-N.; Yoshida, M.; Van den Broeck, G.; and Peng, N. 2024. Adaptable logical control for large language models. *Advances in Neural Information Processing Systems*, 37: 115563–115587.