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Abstract

Probabilistic circuits (PCs) are a tractable representation of
probability distributions allowing for exact and efficient com-
putation of likelihoods and marginals. Recent advancements
have focused on improving the scalability and expressiveness
of PCs by leveraging their sparse properties or tensorized
operations. However, no existing method fully exploits both
aspects simultaneously. In this paper, we propose a novel
structured sparse parameterization for the sum blocks in PCs.
By replacing dense matrices with sparse Monarch matrices,
we significantly reduce memory and computation costs, en-
abling scalable training of PCs. From a theory perspective,
our method arises naturally from circuit multiplication; from
a practical perspective, the structured sparsity of Monarch
matrices facilitates efficient tensorization and parallelization.
Experimental results demonstrate that our approach not only
achieves state-of-the-art performance among tractable mod-
els on challenging tasks, including density estimation on Im-
ageNet32 and language model distillation, but also demon-
strates superior computational efficiency, achieving the same
performance with less computation as measured by the num-
ber of floating-point operations (FLOPs) during training.

1 Introduction
Probabilistic circuits (PCs) are a unifying representation
of tractable probability distributions through computation
graphs (Choi, Vergari, and Van den Broeck 2020; Darwiche
2003). The key property that separates PCs from other deep
generative models such as flow-based models (Papamakar-
ios et al. 2021) and VAEs (Kingma and Welling 2013)
is their tractability. This property enables PCs to com-
pute various queries, including marginal probabilities, ex-
actly and efficiently (Vergari et al. 2021). The tractability
of PCs have been exploited in a number of domains, in-
cluding fair and explainable machine learning (Choi, Dang,
and Van den Broeck 2021; Wang, Khosravi, and Van den
Broeck 2021), causal inference (Zečević et al. 2021; Wang,
Wicker, and Kwiatkowska 2022; Wang and Kwiatkowska
2023), and neuro-symbolic AI (Ahmed et al. 2022; Maene,
Derkinderen, and Martires 2024).

Recent advancements in PC learning (Liu et al. 2023;
Gala et al. 2024) and efficient implementations (Peharz et al.
2020; Dang et al. 2021; Liu, Ahmed, and Van den Broeck
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2024) have significantly enhanced the expressiveness and
scalability of PCs. However, to further boost the perfor-
mance of PCs, simply scaling up the model size is insuf-
ficient; we need to better utilize the available capacity. To
this end, Dang, Liu, and Van den Broeck (2022) leverage
the inherent sparsity property of PCs and iteratively learn
their sparse structures through pruning and growing. How-
ever, the sparse structures learned are arbitrary, making them
difficult to tensorize and parallelize effectively.

In this paper, we focus on leveraging structured sparse pa-
rameterizations for the sum blocks in PCs, which represent
linear maps. To the best of our knowledge, all previous cir-
cuit architectures utilizing tensorized operations have relied
on dense matrices to parameterize these linear maps (Pe-
harz et al. 2020). Inspired by recent advances in low-rank
approximations for transformers (Hu et al. 2022), we pro-
pose a more efficient parameterization for the sum blocks.
We begin by illustrating how our parameterization naturally
arises through circuit multiplication. Previous analysis (Ver-
gari et al. 2021) showed that multiplying two (compatible)
circuits could result in a quadratic increase in size in the
worst case. However, we observe that the linear maps in the
sum blocks generated by multiplication are not dense but
rather the tensor product of the linear maps from the original
blocks, which can be implemented more efficiently. Further,
by explicitly materializing this map as interleaving sums and
permutations, we identify a connection between these prod-
uct circuits and Monarch matrices (Dao et al. 2022), a re-
cently introduced class of structured matrices. Building on
this insight, we propose replacing the dense linear maps in
PCs with Monarch layers.

In the experiments section, we demonstrate that replacing
dense matrices with Monarch sparse matrices achieves state-
of-the-art density estimation results on image datasets, in-
cluding ImageNet32, as well as on a language model distil-
lation task. Furthermore, we show that, compared to circuits
with dense layers, the ones with Monarch layers yield better
scaling curves: they can achieve the same performance with
fewer floating-point operations (FLOPs) in training.

2 Probabilistic Circuits and its Tensorization
Notation We use uppercase to denote variables (e.g. X)
and lowercase to denote values of variables (e.g. x). We use
boldface to denote sets of variables/values (e.g. X,x).
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Figure 1: Probabilistic circuits architecture illustration with Monarch matrices. (a) Two sum blocks in PCs with weight
matrices A,B of arbitrary dimensions. (b) A constructed sum block with weight matrix as the Kronecker product A ⊗ B,
representing the circuit product of two sum blocks. (c) Efficient circuit representation for the linear transformation A⊗B.

Definition 2.1 (Probabilistic Circuit). A PC C=(G,θ) rep-
resents a joint probability distribution over random variables
X through a directed acyclic (computation) graph (DAG)
G parameterized by θ. Specifically, the DAG G consists
of three types of nodes – sum, product, and leaf nodes.
Each leaf node n is associated with a non-negative func-
tion fn(Xn) over some variable Xn, called its scope Xn :=
{Xn}. The scope of any sum or product node n is defined to
be Xn :=

⋃
c∈ch(n) Xc, where ch(n) denotes the children

of n in G. Each node n represents a probability distribution
pn over its scope Xn, defined recursively by:

pn(Xn)=


fn(Xn) if n is a leaf node∏

c∈ch(n) pc(Xc) if n is a product node∑
c∈ch(n) θc|n · pc(Xc) if n is a sum node

where for each leaf node, function fn(Xn) represents a nor-
malized univariate probability mass/density function (e.g.
Categorical, Gaussian); and for every sum node n, θc|n is
a non-negative weight associated with the edge (n, c) in the
DAG,

∑
c∈ch(n) θc|n = 1 then the PC computes a normal-

ized joint probability mass/density function. The function
represented by a PC, denoted pC(X), is the function rep-
resented by its root node; and the size of a PC, denoted |C|,
is the number of edges in its graph.

It is immediate from the definition that one can evaluate
a PC’s function with a single traversal through its compu-
tation graph. The distinguishing feature of PCs compared to
other computation graphs such as neural networks is that one
can also efficiently compute marginals under the following
restrictions on the node scopes:

Definition 2.2 (Smoothness and Decomposability). A sum
node is smooth if all of its children have the same scope. A
product node is decomposable if its children have disjoint
scope. A PC is smooth (resp. decomposable) if all of its sum
(resp. product) nodes are smooth (resp. decomposable).

In practice, probabilistic circuit graphs are typically de-
signed in a tensorized manner, in which sets of nodes of the

same type (sum, product, leaf) and with the same scope are
grouped together as a block; the computation graph is then
specified through connections between the blocks (Peharz
et al. 2020; Liu, Ahmed, and Van den Broeck 2024; Loconte
et al. 2024). We write n to denote a node block and |n| for
the number of nodes in the block.
Definition 2.3 (Sum Block). A sum block n has a set of
child blocks {c(i)}mi=1, such that each sum node in the block
is connected to every node in each of the child blocks. We

can write W ∈ R|n|×(
∑m

i=1 |c(i)|)
≥0 for the weight matrix.

Definition 2.4 (Product Block). A product block n has a set
of child blocks {c(i)}mi=1. We define two types of product
node block with different connectivity:

• Hadamard
⊙

: If |c(i)|= |n| for all i=1, . . . , n, then we
define a Hadamard product block where n=

⊙m
i=1 c

(i).
• Kronecker

⊗
: If |n| =

∏m
i=1 |c(i)|, then we can define a

Kronecker product node block where n =
⊗m

i=1 c
(i).

Sum blocks represent parameterized linear maps, while
product blocks represent fixed multilinear maps. Typically,
for smooth and decomposable PCs, one builds the circuit by
alternating between sum and product blocks (i.e., children
of sum blocks are product blocks, children of product blocks
are sum/leaf blocks). In this paper, we focus on the parame-
terization of the sum blocks, which is independent from the
choice of Hadamard or Kronecker product blocks (we use
Hadamard product blocks for our experiments).

3 From Circuit Multiplication to
Generalized Monarch Matrices

We start by considering the task of circuit multiplication:
given two circuits A and B, the goal is to construct a
tractable circuit C such that pC(x) ∝ pA(x) · pB(x). It has
been shown that if A and B are structured-decomposable
with respect to the same vtree, i.e., the product nodes in A
and B always factor the same way, then C can be constructed
in polynomial-time (Shen, Choi, and Darwiche 2016; Ver-
gari et al. 2021).
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Figure 2: Generalized monarch matrices.

To multiply two structured-decomposable PCs, we pro-
ceed bottom-up and locally multiply sum/product blocks
with respect to the same scope. Here we focus on the op-
eration of multiplying two sum blocks. Given two sum
blocks with weight matrices A ∈ RdA,out×dA,in

≥0 and B ∈
RdB,out×dB,in

≥0 (Figure 1a), their product can be represented
as a sum block with its weight matrix given by the Kro-
necker product A ⊗ B (Vergari et al. 2021). Figure 1b
shows a circuit materialization of A ⊗ B, consisting of
O(dA,outdB,outdA,indB,in) edges. We make the key observa-
tion that the linear transformation given by A ⊗ B can ac-
tually be executed in a significantly more efficient way: let
x ∈ RdA,indB,in

≥0 be an input vector, we compute the linear
transformation (A⊗B)x as

((A⊗B)x)ij

=
∑

kl
(A⊗B)ij,klxkl =

∑
k,l
AikBjlxkl

=
∑

l
Bjl

∑
k
Aikxkl =

∑
l
Bjl(Ax)il

=
∑

l
Bjl(Ax)Tli = (B(Ax)T )ji = (B(Ax)T )Tij ;

hence, we have

(A⊗B)x = (B(Ax)T )T . (1)

Figure 1c shows the materialization of Equation 1 as
a circuit and the total number of edges is bounded by
O(dA,outdA,indB,in+dB,outdA,outdB,in). For a rough compar-
ison against the naive construction of A ⊗ B, if A,B ∈
Rm×m, then the naive circuit construction contains O(m4)
edges while the construction based on Equation 1 contains
only O(m3) edges.

Despite the fact that the circuit shown in Figure 1c is ob-
tained by multiplying two sum blocks, its structure imme-
diately gives rise to a sparse representation for some linear
transformation M from RdA,indB,in

≥0 to RdA,outdB,out
≥0 and more

importantly, the A and B blocks do not need to have the
same parameters for M to be valid. For clarity, we repre-
sent the structure of each layer of circuit 1c as a matrix and
show them in Figure 2. From here, we characterize a family
of linear transformations as follows:

Definition 3.1 (Generalized Monarch Matrices). Given
a, b, c, d ∈ N, we define a family of linear transformations
M : Rm

≥0 → Rn
≥0, where m = bd and n = ac, as follows.

Let R be a block diagonal matrix diag(R1, R2, . . . , Rd) with
Ri ∈ Ra×b

≥0 ; similarly, let L be a block diagonal matrix
diag(L1, L2, . . . , La) with Li ∈ Rc×d

≥0 . Let PR (resp. PL)
be a permutation matrix that views a vector x ∈Rad (resp.
Rca) as x ∈ Ra×d (resp. Rc×a) and takes its transpose
before flattening back to a vector Rda (resp. Rac). We call
M=PLLPRR a (generalized) monarch matrix.

When Ri = A for all i and Li = B for all i this cor-
responds exactly to circuit multiplication. The number of
FLOPs for applying the linear transformation M to a vector
is bounded by O(abd+acd) = O(am+nd) ≤ O(nm). The
original monarch matrices (Dao et al. 2022) have been pro-
posed to capture a wide range of linear transformations as
the composition of a series of sparse yet structured matrices.
We refer to our construction as generalized monarch matri-
ces in the sense that if we have m=n, then our construction
reduces to the original definition of a square monarch ma-
trix.

Dao et al. (2022) has shown that by replacing dense layers
with monarch matrices, deep neural networks can be trained
to attain the same/similar performance with less # of train-
ing FLOPs. In light of this, we propose to replace dense sum
blocks in PCs with (compositions of) Monarch matrices to
scale up PCs in a computationally efficient way. In our ex-
periments we use a composition of two Monarch matrices as
this is known to provide additional expressivity.

4 Density Estimation Experiments
We benchmark our method on a language model distillation
task and standard image datasets to demonstrate its compet-
itive performance on common generative modeling tasks.

4.1 Distilling from Large Language Models
In this section, we present experiments on a language model-
ing task, focusing on distilling a GPT-2 Large model. Specif-
ically, we use the GPT-2 Large checkpoint (finetuned for do-
main adaptation) provided by Zhang et al. (2023, 2024) as
our base model. Following their pipeline, we sample 25.6M
examples from the base model and train the HMM and
Monarch-HMM for 2304 EM update steps, with each step
processing 100K examples. Models are trained with hidden
state sizes ranging from 128 to 65,536.

We use the number of floating point operations (FLOPs)
per token as a measurement of a model efficiency. Given
hidden states of size m, the FLOPs per token is m2 for an
HMM and 3m3/2 for a Monarch-HMM. We report the test
log-likelihoods as a function of FLOPs per token in Figure 3.
It shows that Monarch-HMM scales more effectively than
HMM across varying computational budgets.

4.2 Large-Scale Image Models
In this section, we conduct experiments on the ImageNet32
dataset, which is a downscaled 32× 32 version of ImageNet
(Deng et al. 2009). Following recent work on PC modeling
for these datasets (Liu, Zhang, and Van den Broeck 2023;
Liu, Niepert, and Van den Broeck 2024; Liu, Ahmed, and
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Figure 3: Results for Distilling GPT-2 Large. Test log-
likelihoods (higher is better) as a function of training FLOPs
per token. Monarch-HMM demonstrates greater efficiency
than HMM across varying computational budgets.

ImageNet 32×32

LVD (2023) 4.38
LVD-PG (Liu et al. 2023) 4.06
QPC (Gala et al. 2024) 4.46
Monarch-HCLT (ours) 4.04

Table 1: Density estimation on image datasets. Test set
log-likelihoods are in bits-per-dimension (lower is better).
Our method performs favorably relative to all baselines.

Van den Broeck 2024), we transform the data from RGB us-
ing the lossy YCoCg transform. Note that likelihoods on on
YCoCg transformed data are thus not comparable to like-
lihoods on the original RGB dataset. To improve training
efficiency, we split each image into four 16×16 patches and
train and evaluate our PCs over these 16 × 16 images. We
train all models using expectation-maximization. We evalu-
ate models using test-set bits-per-dimension (bpd); as this is
normalized for dimension, our bpds are directly comparable
with bpds on the entire 32× 32 image.

We use hidden Chow-Liu trees (HCLT) (Liu and Van den
Broeck 2021) to define the variable decomposition (vtree)
of the PC. We also tie the parameters of the Categorical
leaf distributions across pixels. We train for 1000 EM update
steps over randomly selected batches of 60K examples from
the ImageNet32 training set of 1.28M images. Analogously
with HMMs for language modeling, we use the number of
floating point operations per pixel as a measure of model
efficiency, which is also m2 for a HCLT and 3m3/2 for a
Monarch-HCLT. We show the scaling plot for both PC vari-
ants in Figure 4.

It can be seen that Monarch-HCLTs show improved scal-
ing beyond what is achievable with standard HCLTs. This
enables our largest model, with m = 16384 hidden states,
to achieve state-of-the-art performance for PCs on Ima-
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Figure 4: Results for Training on Imagenet Dataset. Test
bits-per-dimension (lower is better) as a function of training
FLOPs per pixel. Monarch-HCLT demonstrates greater effi-
ciency than HCLT as the computation budget increases.

geNet32 (Table 1), beating even LVD-PG (Liu et al. 2023),
which is an image-specialized PC-based model that uses a
high-level PC over 4 × 4 patch PCs, together with a com-
plex optimization procedure involving latent variable distil-
lation (Liu, Zhang, and Van den Broeck 2023) for initializ-
ing the parameters and a progressive growing technique. In
contrast, we simply use random initializations, the generic
HCLT variable decomposition, and train using only the well-
established EM algorithm for PCs. This can be attributed to
the fact that, using Monarch matrices, the largest model we
can fit in memory has m = 16384 hidden states, which is
far larger than the m=512 hidden states used by the largest
models previously.

5 Related Work
Our work is connected to recent efforts in the probabilistic
circuits community to find more efficient parameterizations
of tensorized circuits. While early implementations of ten-
sorized circuits used Kronecker product blocks (Peharz et al.
2020), the recent trend has been to prefer Hadamard product
blocks. Loconte et al. (2024) noted that the composition of
Kronecker/Hadamard product blocks with sum blocks can
be interpreted as Tucker (Tucker 1964) / canonical-polyadic
(CP) (Carroll and Chang 1970) tensor decompositions re-
spectively. Our work tackles an orthogonal aspect in that it
focuses on the sum-to-product connection, which has thus
far always been implemented as a dense matrix.

6 Conclusion
We propose scaling up probabilistic circuits learning by
replacing dense matrices in sum layers with structured
sparse matrices, specifically Monarch matrices. Our ap-
proach demonstrates significant empirical improvements in
both density estimation tasks and computational efficiency.
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