
TRACE Back from the Future: A Probabilistic Reasoning Approach to
Controllable Language Generation

Gwen Yidou-Weng* 1 Benjie Wang* 1 Guy Van den Broeck 1

Abstract
As large language models (LMs) advance, there is
an increasing need to control their outputs to align
with human values (e.g., detoxification) or desired
attributes (e.g., personalization, topic). However,
autoregressive models focus on next-token pre-
dictions and struggle with global properties that
require looking ahead. Existing solutions either
post-train LMs for each new attribute—expensive
and inflexible—or approximate the Expected At-
tribute Probability (EAP) of future sequences by
sampling or training, which is slow and unreli-
able for rare attributes. We introduce TRACE
(Tractable Probabilistic Reasoning for Adaptable
Controllable gEneration)1, a novel framework
that efficiently computes EAP and adapts to new
attributes through tractable probabilistic reason-
ing and lightweight control. TRACE distills a Hid-
den Markov Model (HMM) from an LM and pairs
it with a small classifier to estimate attribute prob-
abilities, enabling exact EAP computation over
the HMM’s predicted futures. This EAP is then
used to reweigh the LM’s next-token probabilities
for globally compliant continuations. Empirically,
TRACE achieves state-of-the-art detoxification re-
sults with only 20% decoding overhead, yields 76
low-resource personalized LMs within seconds,
and seamlessly extends to composite attributes.

1. Introduction
As large language models (LMs) become more ubiquitous
in commercial products and daily life, there is a growing
need to control their outputs. There is a large body of re-

*Equal contribution 1Department of Computer Science, Univer-
sity of California, Los Angeles, USA. Correspondence to: Gwen
Weng <gwenweng@ucla.edu>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1Our code is available at: https://github.com/
yidouweng/trace

0 (toxic) 1 (nontoxic)

Attribute Probability

It’s a pain

in

future text phmm(x>t | x≤t)
the ass 0.3
the butt 0.15
the neck 0.05
... ...
... ...

EAP = 0.1plm = 0.3 × = pTRACE ∝ 0.03

to

future text phmm(x>t | x≤t)
deal with 0.2
handle 0.1
... ...
... ...

EAP = 0.8plm = 0.1 × = pTRACE ∝ 0.08

Figure 1. TRACE reweighs LM next token probabilities by “looka-
head,” computing the Expected Attribute Probability (EAP),∑

x>t
p(s | x≤t, x>t) · phmm(x>t | x≤t), using an HMM to

tractably compute the expectation of a probabilistic classifier s.

search in LM alignment with objectives such as detoxifica-
tion (Gehman et al., 2020; Xu et al., 2021), where abundant
data and benchmarks exist. Meanwhile, there is growing
interest involving specialized or personal attributes under
low-data conditions (Adiwardana et al., 2020; Xu et al.,
2021), as well as compositional attributes for creating com-
plex or novel outputs that rarely appear during standard
training (Liu et al., 2022).

Controllable text generation is challenging because most
language models are autoregressive, generating each token
solely from its predecessors without looking ahead—yet
many attributes depend on the entire text. One line of solu-
tions modifies the base model’s distribution via fine-tuning
or post-training (e.g., RL, RLHF) (Gururangan et al., 2020;
Rafailov et al., 2023; Schulman et al., 2017), but these ap-
proaches can be highly expensive and risk degrading fluency
or diversity (Kumar et al., 2022). Thus, there is a need for
more lightweight solutions that can directly leverage pre-
trained LMs by changing the decoding strategy.

Fundamentally, we argue that decoding-based controllable
generation is a probabilistic reasoning task: we wish to
sample from the language model’s distribution conditional
on some attribute. For example, some approaches utilize
sampling to find attribute-consistent generations (Yang &

1

https://github.com/yidouweng/trace
https://github.com/yidouweng/trace

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Klein, 2021; Tu et al., 2024; Chakraborty et al., 2024; Mud-
gal et al., 2024), but this can be computationally expensive.
Other methods train expensive LM-based discriminators to
predict satisfaction of an attribute given a partial text se-
quence (Krause et al., 2021; Meng et al., 2022; Liu et al.,
2021), but this requires large amounts of data and training
time. Both struggle with rare attributes due to limited data
and high variance.

In this work, we propose a framework for controllable
generation that utilizes tractable models to approximate
the probability of satisfying an attribute given a partial se-
quence. This approach avoids costly sampling methods
and retraining the base language model (LM) for each tar-
get attribute. First, we perform a one-time distillation of
a tractable Hidden Markov Model (HMM) to approximate
the base LM. Next, for each desired attribute, we train a
log-linear classifier to estimate the probability of satisfying
a target attribute given the entire text. During decoding, we
use Bayesian conditioning to reweight next-token probabili-
ties based on the likelihood that future sequences—predicted
by the HMM—comply with these attributes, which we re-
fer to as Expected Attribute Probability (EAP) (Figure 1).
Crucially, the combination of the tractable HMM and log-
linear classifier enables us to compute EAP over all of the
exponentially many future sequences efficiently and exactly
(over the HMM state space).

Our method, Tractable probabilistic Reasoning for
Adaptable Constrained gEneration (TRACE), constitutes
a uniquely lightweight solution that enforces control with
almost zero decoding-time overhead over the base LM. It
further decouples generative model training from control,
eliminating the need to retrain the LM or HMM for new ob-
jectives. Adapting to novel or rare attributes merely requires
training a small classifier in seconds. Handling composi-
tions of attributes is also straightforward by multiplying the
EAP of each attribute during decoding.

We evaluate TRACE on three important tasks: (1) Detoxi-
fication: TRACE outperforms expensive RL, training- and
sampling-based baselines on GPT2-large and Gemma 2B.
(2) Personalized LLMs: TRACE adapts to 76 distinct charac-
ters in about three seconds each, outperforming prompting
approaches with only a few hundred training samples, and
taking only ∼ 1.2× time per-token to standard decoding.
(3) Compositional Attributes: TRACE seamlessly gener-
ates texts satisfying multiple attributes–e.g. political and
nontoxic–a combination too sparse for training or sampling
methods. Overall, TRACE is a simple, lightweight con-
trollable generation approach that achieves state-of-the-art
detoxification performance, extends to low-resource and
composite text generation, and scales well to modern LLMs.

2. Related Work
Controllable text generation methods fall into two main
categories: those that modify the language model (LM) via
training, and those that steer a pre-trained model through
decoding-time interventions.

2.1. Training Methods

One line of approaches modifies the base LM parameters,
typically through fine-tuning or reinforcement learning,
to instill desired attributes directly into the model’s distribu-
tion. DAPT (Gururangan et al., 2020) fine-tunes the base
LM on domain-specific data. PPO (Schulman et al., 2017)
uses a reward model and policy gradients to fine-tune the
LM towards desired behaviors like non-toxicity, while DPO
(Lee et al., 2024) aligns the model using pairwise prefer-
ences without an explicit reward model. Similarly, Quark
(Lu et al., 2022) uses an RL-like procedure conditioned on a
learned reward token. A major drawback of these methods
is the need for substantial data and costly retraining of the
large LM for each new attribute or set of attributes. Further-
more, modifying the base LM risks degrading its general
fluency and diversity (Kumar et al., 2022).

2.2. Decoding Methods

An alternative direction focuses on modifying the decoding
process of a fixed, pre-trained LM to steer generation to-
wards desired attributes, often by incorporating an estimate
of the Expected Attribute Probability (EAP) of future text.

Training Discriminators. Since exact EAP computation
requires summing over future sequences, many methods
train auxiliary models to estimate attribute satisfaction from
partial generations. FUDGE (Yang & Klein, 2021) and
NADO (Meng et al., 2022) train discriminators to approxi-
mate EAP; DExperts (Liu et al., 2021) blends expert and
anti-expert LMs; GeDi (Krause et al., 2021) uses attribute-
conditioned guides with Bayes’ rule; and LiSeCo (Cheng
et al., 2024) applies a linear probe in latent space. A key
challenge across these methods is that accurately estimating
future attribute satisfaction from prefixes requires nontrivial
lookahead, and training a separate large, auxiliary model
per attribute adds significant overhead.

Sampling. Other methods incorporate EAP by sampling
future sequences to estimate expected outcomes. Some per-
form limited token-level lookahead (Mudgal et al., 2024;
Chakraborty et al., 2024; Tu et al., 2024), managing com-
plexity by restricting the search space. Others employ
MCMC-style sampling on entire sequences using energy-
based models (e.g., MuCoLa (Kumar et al., 2022), Mix
and Match (Mireshghallah et al., 2022), COLD (Qin et al.,
2022)). Both approaches incur significant computational
overhead during decoding and the resulting EAP estimates
can have high variance, especially for rare attributes.

2

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

While all EAP-based control methods must approximate the
intractable EAP under the base LM, the nature of approx-
imation varies substantially. Discriminator-/guide-based
and sampling-based approaches estimate the EAP directly
during decoding, often requiring per-attribute training or in-
curring high variance and runtime cost. In contrast, TRACE
shifts the approximation burden to a one-time HMM distil-
lation step, where phmm ≈ plm. Conditioned on this distilled
HMM, TRACE enables an exact and tractable computation
of EAP—phmm(s | x<t, xt)—relative to the HMM distri-
bution (Section 4.2). This design choice—approximating
the LM via a one-time HMM distillation—enables efficient,
low-variance, and adaptable EAP computation during decod-
ing, avoiding the cost of per-attribute retraining or sampling,
and proves more effective in practice (Section 5.2).

2.3. Control via Tractable Models

Tractable probabilistic models (Choi et al., 2020) such as
HMMs enable efficient computation of various quantities
such as marginals and the probability of satisfying logical
constraints–computations that are provably hard even to
approximate on autoregressive models (Roth, 1996). Prior
work has used such models to enforce logical or lexical
constraints in generative modeling (Liu et al., 2024a;b). In
language modeling, Ahmed et al. (2023) proposed using
local tractable approximations for training autoregressive
models to satisfy logical constraints. Meanwhile, Zhang
et al. (2023; 2024) used HMMs to enforce logical constraints
such as those given by deterministic finite automata (DFA).

While powerful for such formally specifiable constraints,
this approach does not readily extend to high-level seman-
tic attributes such as style, safety, or persona, which lack
symbolic definitions and depend on the overall meaning of
the text. Our work, TRACE, bridges this gap by employing
the HMM uniquely for semantic control, enabling efficient
probabilistic reasoning about semantic attributes (via EAP
computation) rather than enforcing logical rules.

3. Preliminaries
3.1. Controllable Generation

We consider generating a text (sequence of tokens) x1:n of
length n from a language model (LM). In controllable gen-
eration, the goal is to generate text from the LM conditional
on some attribute s, such as nontoxicity. We assume that the
attribute can be measured by some probabilistic classifier
p(s|x1:n) ∈ [0, 1] representing the probability (or degree)
of satisfaction of the attribute given the full text.

Let us denote the base LM distribution by plm(x1:n). Then
the joint distribution over the text x1:n and attribute s is

plm(x1:n, s) = plm(x1:n)p(s|x1:n). (1)

Our goal is then to generate from the conditional distri-

bution plm(x1:n | s). This conditional distribution can be
decomposed autoregressively as:

plm(x1:n | s) =

n∏
t=1

plm(xt | x<t, s) . (2)

However, sampling from the conditional next-token distribu-
tion plm(xt | x<t, s) is generally intractable. Using Bayes’
rule, this is given by:

plm(xt | x<t, s) ∝ plm(xt | x<t) · plm(s | xt, x<t). (3)

The first term is simply the LM next token distribution. The
second term is the probability of satisfying the attribute s;
this requires summing over all possible continuations x>t,
which is exponential in sequence length:

plm(s | xt, x<t) =
∑
x>t

p(s|x≤t, x>t) plm(x>t | x≤t).

Since the classifier is probabilistic, we will also call this
the expected attribute probability (EAP). The EAP is used
to reweight the possible token generations xt according
to how likely they are to result in a text that eventually
satisfies the desired attribute. Several existing approaches
effectively aim to approximate this computationally hard
sum. For example, GeDi and DExperts train step-wise
discriminators to guide the LM. Other approaches, such as
Controlled Decoding and MuCoLa sample future sequences
for lookahead. In this work, we aim for a tractable way to
incorporate future-sequence information without expensive
sampling or retraining, using Hidden Markov Models.

3.2. Hidden Markov Models

Hidden Markov models (HMM) specify a joint distribution
over a set of latent variables z1:n and observed variables
x1:n, as

p(x1:n, z1:n) = p(z1)p(x1 | z1)
n∏

t=2

p(zt | zt−1) p(xt | zt).

(4)
For language modeling, each zt takes values in {0, . . . , h−
1}, where h is the hidden state size, while the observed
variables xt are tokens taking values in {0, . . . , V − 1},
where V is the vocabulary size. The (homogeneous) HMM
has h2 parameters for the transition matrix p(zt|zt−1), hV
parameters for the emission matrix p(xt|zt), and h parame-
ters for the initial hidden state distribution p(z1). The key
advantage to using HMMs for language modeling is their
tractability; many quantities, such as the probability of a
token sequence, can be inferred in linear time in the size of
the HMM and sequence length. Zhang et al. (2023; 2024)
distilled HMM models from large language models for the
purpose of generating under logical constraints, such as the
presence of a particular keyword. We will instead leverage
HMMs to design algorithms for computing the expected
attribute probability efficiently.

3

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

4. Methodology
This section details the proposed TRACE methodology. We
introduce the core approximation using HMMs to guide
LM generation (Section 4.1), present the algorithm enabling
tractable EAP computation (Section 4.2), and describe how
the attribute classifiers are fitted (Section 4.3).

4.1. TRACE: Guiding LM with HMM Probabilities

In order to approximate the constrained next token probabil-
ity p(xt | x<t, s) in Equation 3, we propose to approximate
the expected attribute probability plm(s | xt, x<t) with the
corresponding quantity under the HMM:

pTRACE(xt | x<t, s) ∝ plm(xt | x<t) · phmm(s | x<t, xt).
(5)

Here, phmm(s | x<t, xt) is the probability, under our HMM
and attribute classifier, that the entire future continuation
will satisfy the attribute. In contrast to the formulation of
Zhang et al. (2023), s is not a logical attribute that maps to
0 or 1, but instead represents a semantic attribute given by
a probabilistic classifier p(s|x1:n). Clearly, if the classifier
p(s|x1:n) is arbitrary without any structure (e.g., a neural
network), then computing the expected attribute probability
will be intractable as we will again need to generate all
possible continuations to feed to the classifier.

Next, we describe a simple kind of classifier for which the
exact computation of EAP is tractable, and then develop
an efficient forward-backward style algorithm for doing so.
We then describe how to learn the attribute classifier at the
token level (Section 4.3), and how to improve performance
further through test-time approximations.

4.2. Tractable Computation of EAP

The expected attribute probability (EAP) under the HMM
phmm(s | xt, x<t) can be rewritten by introducing future
sequence x>t and the hidden state zt, and marginalizing
over them, using the conditional independence property of
HMMs: x>t ⊥⊥ x≤t|zt. We obtain that

phmm(s | xt, x<t)

=
∑
zt

phmm(zt | x≤t)
∑
x>t

phmm(x>t|zt) · p(s|x>t, x≤t) .

We now discuss how to compute each of these terms.

Forward Computation The computation of phmm(zt |
x≤t) is typically carried out using the HMM forward algo-
rithm, which is based on the following recursion:

phmm(zt, x≤t)

=
∑
zt−1

p(xt | zt) p(zt | zt−1) · phmm(zt−1, x≤t−1), (6)

with the base case phmm(z1, x≤1) = p(z1)p(x1|z1). To
obtain the conditional, we simply divide by the normalizing
constant phmm(x≤t) =

∑
zt
phmm(zt, x≤t) . Note that this

computation is independent of the classifier.

Backward Computation The quantity phmm(x>t|zt) can
be computed by exploiting the structure of the probability
distribution in Equation 4 to rearrange the summation over
future latent states z>t:

phmm(x>t|zt) =
∑
z>t

∏
i>t

p(zi|zi−1) · p(xi|zi)

=
∑
zt+1

p(zt+1|zt)p(xt+1|zt+1) . . .
∑
zn

p(zn|zn−1)p(xn|zn).

This is known as the backward algorithm as the evaluation
of the summations is performed right to left, backward in
time. Now, in order to compute the boxed term tractably, the
classifier p(s|x>t, x≤t) must have similar structure that en-
ables integration into the backward algorithm. A sufficient
condition is to restrict to factorized classifiers of the form
p(s|x1:n) =

∏
i w(xi), where w(xi) is a weight function

that assigns a weight for each token in the vocabulary.2

Then, the boxed term can be expanded as∑
x>t

phmm(x>t|zt) · p(s|x>t, x≤t)

=
(∏
i≤t

w(xi)
)∑

x>t

phmm(x>t | zt)
∏
i>t

w(xi)

=
(∏
i≤t

w(xi)
)
Ehmm

[∏
i>t

w(xi)
∣∣∣ zt] .

For the expectation term Ehmm
[∏

i>t w(xi)|zt
]
, we com-

pute recursively backwards in time as follows. The base
case E

[∏
i>n w(xi)|zn

]
= 1, as there are no tokens after

xn. For t < n, the recursion is

Ehmm

[∏
i>t

w(xi)
∣∣∣ zt]

=
∑
zt+1

p(zt+1 | zt) · Ehmm

[∏
i>t+1

w(xi)
∣∣∣ zt+1

]
·
∑
xt+1

p(xt+1 | zt+1) · w(xt+1). (7)

Importantly, the values Ehmm

[∏
i>t w(xi)

∣∣∣ zt] can be pre-
computed and cached in a single backward pass and reused
across all generations, as they depend solely on the hidden
states zt and not on the specific prefix x≤t.

2To ensure that the classifier outputs a value in [0, 1], we will
enforce that all weights w(xi) ∈ [0, 1] also.

4

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Algorithm 1 TRACE: Generating n Tokens

Require: HMM phmm, LM plm, Classifier w
Ensure: Generated sequence x1:n

1: for each t from n to 1 do
2: Pre-compute P [t, zt] := Ehmm

[∏
i>t w(xi)|zt

]
by

Equation (7)
3: end for
4: Initialize s0 ← q0, x1:0 ← ∅
5: for each t from 1 to n do
6: Compute phmm(zt|x≤t) by Equation (6)
7: Compute phmm(s | x<t, xt) using phmm(zt|x≤t) and

P [t, zt] by Equation (8)
8: Sample xt ∼ phmm(s | x<t, xt) · plm(xt | x<t) by

Equation (9)
9: Update x≤t ← x<t ⊕ xt

10: end for
11: Return x1:n

Integration During Generation Algorithmically, as each
new token is generated, the forward probability p(zt |
x<t, xt) is updated based on the recursion in Equation 6.
Using the precomputed backward expectations, the overall
expected attribute probability is computed as

phmm(s | xt, x<t)

=

∏
i≤t

w(xi)

∑
zt

phmm(zt|x≤t) · Ehmm

[∏
i>t

w(xi)
∣∣∣ zt] .

(8)

Plugging this into Equation 5, we can then compute the
constrained next-token distribution:

pTRACE(xt | x<t, s) ∝ plm(xt | x<t) · phmm(s | xt, x<t)
(9)

Algorithm 1 summarizes our approach. The precomputation
requires O

(
n(hV + h2)

)
time (backward HMM pass) and

requires O(nh) cache memory, corresponding to each hid-
den state value at each time. During generation, the compu-
tation of the expected attribute probability phmm(s | xt, x<t)
at each time point takes O(h2 + hV). In practice, we find
this takes negligible time relative to computing the language
model’s next token probability (see Table 4).

4.3. Attribute Classifier Fitting

As discussed, one class of classifiers that make EAP com-
putation tractable is a product over tokens, that is, linear in
log space. In practice, attributes are not fully factorizable
(to varying extents); nonetheless, we show that even such
a simple classifier, when combined with a HMM, captures
EAP sufficiently accurately to outperform baselines using
neural classifiers (e.g., GeDi, FUDGE) (See 5.2).

We assume access to an oracle poracle that scores the proba-
bility of a sequence x1:n satisfying a target attribute s. This
oracle may be a trained classifier (e.g., from human annota-
tions) or an external API scoring attribute satisfaction.

Fitting Rare attributes via Log-MSE Our goal is to model
attributes that are rare in natural text, such as toxicity or
political content. To effectively identify these cases, the
learning objective must distinguish texts that exhibit the
rare attribute from the more common, neutral ones. Stan-
dard objectives like cross-entropy treat all misclassifications
symmetrically, which is suboptimal when one class is rare.

We therefore use an asymmetric loss that more heavily pe-
nalizes misclassifying the rare examples. In particular, we
use mean squared error loss in log-space (log-MSE), which
amplifies error penalties in the low-probability region. To
align with this objective, we define each attribute by its ab-
sence (e.g., modeling ”nontoxicity” rather than ”toxicity”).

Specifically, for our factorized (log-linear) classifier, the
log-probability of the attribute s given the text x1:n is a
sum of log-weights, log p(s | x1:n) =

∑n
i=1 logw(xi).

Then, given oracle scores poracle (potentially transformed, as
discussed next), the loss for a text x is given by∥∥∥∥∥log poracle(x)−

n∑
i=1

logw(xi)

∥∥∥∥∥
2

(10)

For example, this loss penalizes a prediction of 0.5 much
more heavily if the true oracle score is poracle = 0.1 (toxic)
than if it is 0.9 (nontoxic), whereas cross-entropy is indif-
ferent to these outcomes.

Probability Transformation for Better Control In prac-
tice, it can be beneficial to transform raw oracle probability
scores (poracle) for a clearer separation between desired and
undesired outputs, and enforce stricter attribute satisfaction.
For instance, a 20% non-toxicity score from an oracle can be
transformed to a lower value to encourage safer generation.

To do this, we propose to apply an affine transformation to
the oracle scores in logit space using a (non-negative) scale
(b) and shift (c):

p′oracle = σ

(
b · ln

(
poracle

1− poracle

)
+ c

)
,

where σ(z) is the sigmoid function. This transformation
reshapes the target distribution; specifically, increasing the
scale b pushes intermediate probabilities towards the ex-
tremes of 0 and 1. This creates a more bimodal distribu-
tion, which helps to clearly distinguish between attribute-
compliant and non-compliant texts.

This probability transformation can also be applied at decod-
ing time to the EAP, phmm(s | xt, x<t), before it influences
token generation (Eq. 9). This can be used to sharpen the

5

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Table 1. Detoxification on RealToxicityPrompts (Gehman et al., 2020). Results are shown for GPT-2 (10k prompts) and Gemma-2B (1k
prompts). TRACE applies training- and decoding-time transformation (see Section 4.3). Struck-through fluency indicates unnatural
repetition (Holtzman et al., 2020). Baselines: (1) Gururangan et al. (2020); (2) Krause et al. (2021); (3) Yang & Klein (2021); (4) Liu et al.
(2021); (5) Dathathri et al. (2020); (6) Kumar et al. (2022); (7) Schulman et al. (2017); (8) Lu et al. (2022); (9) Lee et al. (2024) (our
implementation).

Model Toxicity (↓) Diversity (↑) PPL (↓) Approach Type
avg. max. prob. dist-2 dist-3

GPT-2 Large Results
GPT2 0.385 0.254 0.87 0.86 25.57 Baseline
DAPT(1) 0.428 0.360 0.84 0.84 31.21 Finetuning
GeDi(2) 0.363 0.217 0.84 0.83 60.03 Decoding (Trained Guide)
FUDGE(3) 0.302 0.371 0.78 0.82 12.97* Decoding (Trained Guide)
DExperts(4) 0.314 0.128 0.84 0.84 32.41 Decoding (Trained Guide)
PPLM(5) 0.520 0.518 0.86 0.86 32.58 Decoding (Logit Control)
MuCoLa(6) 0.308 0.088 0.82 0.83 29.92 Decoding (Sampling)
PPO(7) 0.218 0.044 0.80 0.84 14.27* RL
Quark(8) 0.196 0.035 0.80 0.84 12.47* RL
DPO(9) 0.180 0.026 0.76 0.78 21.59* RL
TRACE 0.163 0.016 0.85 0.85 29.83 Decoding (HMM Reasoning)
Gemma-2B Results
Gemma-2B 0.359 0.23 0.86 0.85 15.75 Baseline
DPO(9) 0.222 0.06 0.74 0.77 14.39* RL
TRACE 0.189 0.02 0.86 0.85 17.68 Decoding (HMM Reasoning)

separation between next tokens xt based on their EAP, thus
ensuring stricter control of the attribute.

In Section 5.2, we empirically justify this intuition and care-
fully study the effect of these training-time and decoding-
time probability transformations.

5. Experiments
We evaluate TRACE on a range of challenging controllable
generation tasks: detoxification, low-resource role-playing,
and compositional control involving political and non-toxic
text attributes. This section details the experimental setup
and presents the main results for each task, along with an
analysis of TRACE’s efficiency and properties.

5.1. Experimental Setup

Evaluation Metrics. Metrics vary by task. For the pri-
mary detoxification task (Section 5.2), we follow the setup
in Liu et al. (2021) using the RealToxicityPrompts dataset
(Gehman et al., 2020). We evaluate Toxicity (Perspective
API avg. max. toxicity & prob. of any toxic generation
(> 0.5) over 25 samples; ↓ lower is better), Perplexity (as
an automatic measure of fluency, calculated using GPT2-
XL; ↓ lower is better), and Diversity (Distinct 2-grams,
3-grams; ↑ higher is better). We also include supplemen-
tary AI evaluations using GPT4o-mini. For role-playing
(Section 5.3), we measure role quality via classifier proba-
bility. For topic control (Section 5.5), we measure political
relevance using the zero-shot classifier from Laurer et al.

(2023). Full details on metrics are provided in Appendix F.

Baselines. TRACE is compared against representative base-
lines including fine-tuning (DAPT), RL (PPO, Quark, DPO),
and various decoding methods (PPLM, GeDi, FUDGE,
DExperts, MuCoLa). Results are sourced primarily from
prior work (Liu et al., 2021; Lu et al., 2022; Kumar et al.,
2022) or run by us (DPO) using the same setup as in Liu
et al. (2021). Full details are in Appendix E.

Implementation Details. The HMMs used by TRACE
were distilled3 from base LMs (GPT2-Large, Gemma-2B)
following Zhang et al. (2023); Liu et al. (2023); details on
the different HMM configurations, including hidden state
sizes and training parameters, are in Appendix C. Once
distilled, the HMM model is fixed and is reused without
further training for each attribute. Attribute classifiers (e.g.
nontoxicity) were trained according to the method in Section
4.3; datasets, oracles, fitting procedures, and transformation
parameters (b, c) are detailed in Appendix D.

5.2. Detoxification

We evaluate TRACE on detoxification using RealToxici-
tyPrompts (Gehman et al., 2020), comparing performance
against fine-tuning (DAPT), RL (PPO, Quark, DPO), and
decoding methods (GeDi, FUDGE, DExperts, MuCoLa).

3The distillation process involves compiling a HMM to an
equivalent probabilistic circuit (Choi et al., 2020) on the GPU,
which is trained on LM samples using a mini-batch variant of the
expectation-maximization (EM) algorithm (Dempster et al., 1977).

6

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

TRACE Outperforms Existing Methods Table 1 shows
TRACE significantly reduces toxicity compared to baselines,
and maintains high diversity, with minor reductions from
GPT-2’s baseline scores. RL methods (e.g., PPO, Quark,
DPO), despite lowering toxicity, sharply reduce diversity
and perplexity, indicative of repetitive or unnatural text gen-
eration due to mode collapse. Appendix Tables 7 and 8
further support these observations: TRACE achieves higher
conditional entropy than DPO, and receives comparable or
better ratings from GPT-4 on nontoxicity and diversity.

Factorized Classifier is Effective Despite Non-
Factorizable Attributes. Attributes like toxicity
are not fully factorizable, as evidenced by the performance
gap between neural and our factorized classifiers (Ap-
pendix D). Nonetheless, TRACE outperforms methods
like GeDi and FUDGE that use more expressive neural
classifiers but rely on approximate EAP estimation. This
highlights a key insight: exact EAP computation over an
HMM, even with a simple factorized classifier, can rival
or surpass more complex classifiers when the inference
framework is less precise.

Scaling TRACE to Larger Language Models. TRACE
scales effectively to larger language models such as Gemma-
2B. As shown in Table 1 and supported by GPT-4 evalua-
tions (Appendix Table 8), TRACE consistently outperforms
DPO—a reinforcement learning-based method—in detoxifi-
cation performance, while maintaining strong fluency and
diversity. These results demonstrate TRACE’s broad appli-
cability and robustness across model scales.

Table 2. Ablation study of TRACE variants on GPT-2 Large Rows:
no transformation, training-time transformation only, or both
training- and decoding-time transformation.

TRACE Variant Toxicity (↓) Diversity (↑) PPL (↓)
avg. max. prob. dist-2 dist-3

No Transformation 0.353 0.196 0.87 0.86 25.44
Training TF 0.187 0.026 0.87 0.85 27.51
Train + Dec TF 0.163 0.016 0.85 0.85 29.83

Complementary Roles of Training and Decoding Trans-
formations The probability transformation offers com-
plementary benefits when applied at different stages of
TRACE, as shown by the ablation study in Table 2. Ap-
plying the transformation at training time alone (“Train-
ing TF”) provides an initial reduction in toxicity over the
baseline TRACE model with no transformation. The most
significant gain comes from applying the transformation at
both stages (“Train + Dec TF”); this further reduces average
maximum toxicity from 0.187 to 0.163, albeit with a corre-
sponding increase in perplexity. Figure 2 visually explains
the complementary mechanisms driving these gains.

Top: At training time, the transformation creates a stricter

0.0 0.2 0.4 0.6 0.8 1.0
Attribute Probability

0

5

10

15

20

De
ns

ity

Training-Time Transformation

Original Dist.
Transformed Dist.
Fitted Dist.

0.0 0.2 0.4 0.6 0.8 1.0
Expected Attribute Probability

0

5

10

15

20

De
ns

ity

Decoding-Time Transformation

Before Trans.
After Trans.

Figure 2. Complementary Effects of Probability Transforma-
tion. Top: At training time, the transformation concentrates oracle
probabilities for undesirable attributes towards 0 to improve classi-
fier learning. Bottom: At decoding time, it reshapes the unimodal
EAP into a bimodal one to enforce stricter generation control.

learning target by reshaping the skewed Original Dist.” into
a bimodal ”Transformed Dist.”, critically pushing scores for
toxic content towards 0. The log-MSE objective’s focus on
this low-probability region helps the classifier learn stronger
negative weights for toxic tokens, resulting in a ”Fitted Dist.”
that successfully captures this new peak near 0.

Bottom: At decoding time, the same transformation is ap-
plied directly to the computed Expected Attribute Probabil-
ity (EAP). It converts a diffuse, unimodal EAP distribution
(“Before Trans.”) into a sharp, bimodal one (“After Trans.”),
creating a clearer separation between attribute-compliant
and non-compliant continuations.

0.160 0.165 0.170 0.175 0.180 0.185
Maximum Toxicity

27

28

29

30

31

M
ea

n
Fl

ue
nc

y

1.0

1.2
1.4

1.6

1.8
Tradeoff Between Toxicity and Fluency

Figure 3. Tuning the Fluency-Detoxification Trade-off. The
decoding-time transformation multiplier acts as a control knob; as
it increases, detoxification improves while fluency decreases.

7

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Table 3. Personalized LM Responses to the Question: “How do you define freedom?”
Question How do you define freedom?

Direct Prompt It’s a topic we deal with very frequently and yet it’s a very subjective question with no easy answer. On its surface, the
idea of freedom...

Roles Abraham Lincoln Thor Twilight Sparkle

Prompted with
Role-Specific
Instructions

Freedom is a fundamental human
right that is necessary for individu-
als to live full and meaningful lives.
It is the ability to make choices...

Freedom is more than just a freedom
of speech or movement; it’s a feeling
of being in control of one’s own des-
tiny...

Freedom is a powerful concept, and
it’s something that I’ve thought a lot
about throughout my adventures in
Equestria...

TRACE Decisive freedom, subjective free-
dom, freedom of speech? There are
different definitions for what freedom
of speech means, but most of them
are centered around the idea that it...

Loki, the son of Odin, reminds of
what it is to have freedom in the eyes
of a God. The mighty Norse god of
mischief is known for being...

Friendship, connection, love. . .
freedom is endless and depends on
the person you ask. Some people
want their friends to be real while
others value their ideas and thoughts

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Role Quality (Prompting)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Ro
le

 Q
ua

lit
y

(T
RA

CE
)

Comparison of Role Quality (Prompting vs. TRACE)

y = x

Figure 4. TRACE outperforms prompt engineering in role quality.

This synergy—where one transformation aids learning and
the other enforces control—accounts for their strong com-
bined performance. As a final benefit, the decoding trans-
formation’s scale parameter (b) offers an intuitive knob for
tuning this control, allowing users to smoothly trade toxicity
for fluency post-hoc (Figure 3).

Impact of HMM Quality Finally, the effectiveness of con-
trol is sensitive to the quality of the HMM itself. As shown
in Appendix Fig. 5, as the distilled HMM’s log-likelihood
improves with more training, we observe a corresponding
decrease in generation toxicity. This highlights that better
HMM distillation directly enhances TRACE’s performance.

5.3. Role-playing 76 Characters with Limited Data

Lightweight and Low-Resource Adaptation. A key ad-
vantage of TRACE is its rapid, low-resource adaptation;
new attributes are integrated by training only a lightweight
log-linear classifier. Leveraging this, we personalized both
GPT2-large and Gemma-2B for 76 distinct characters from

the RoleBench dataset (Wang et al., 2024). Each charac-
ter’s classifier was trained on its corresponding RoleBench
training split of ∼ 300 question-answer pairs.

Table 3 qualitatively compares Gemma-2B responses for
three characters across three settings: the base model, a few-
shot prompting baseline, and TRACE. The prompting base-
line uses a role instruction plus 10 question-answer exam-
ples from the RoleBench training set (details in Appendix E).
Qualitatively, TRACE-guided answers show more distinct,
character-reflective content and tone than the baselines.

Quantitatively, on GPT2-large, TRACE achieves superior
role quality over a standard prompting baseline for most of
the 76 characters (Fig. 4) . This baseline uses a role-specific
but exemplar-free instruction (details in Appendix E), en-
suring a direct comparison of instruction-following with
minimal input overhead, unlike few-shot prompting which
has higher decoding costs (see Section 5.4, Table 4).

5.4. Training and Inference Time Analysis

Table 4. Training and inference time comparison. TRACE achieves
minimal training overhead and near-baseline inference cost.

Method Train Time

Mix and Match 2 hr
DExperts 3 min–16 hr
DAPT 16 hr
GeDi 5 hr
TRACE 10 s

Method Inf. Ratio

Baseline 1.0
Prompting ∼ 3.0
GeDi / DExperts 2.0–3.0
Mix and Match 7.5
MuCoLa 15–20
PPLM 40.0
TRACE 1.2

TRACE is designed for rapid adaptation and efficient infer-
ence, requiring only a one-time HMM distillation from a
base LM, independent of any specific control attribute.

Training Time. Once the HMM is trained, adapting to a

8

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Table 5. Composition results (Political+Nontoxic) on RealToxicityPrompts with GPT2-Large. Metrics: Tox (avg. max./prob.>0.5; ↓),
Mean Pol ↑, PPL ↓, Diversity (Dist-2/3; ↑). ”+ Dec. TF” applies decoding TF (Sec 4.3) only to the Political EAP.

Models Max Tox (↓) Any Tox > 0.5 (↓) Mean Pol (↑) PPL (↓) Dist-2 (↑) Dist-3 (↑)

GPT2-L (Base) 0.386 0.257 0.169 25.74 0.87 0.86
TRACE (Detox only) 0.186 0.026 0.168 27.33 0.87 0.85
TRACE (Pol only) 0.379 0.244 0.333 29.32 0.87 0.86
TRACE (Detox + Pol) 0.190 0.027 0.344 29.71 0.87 0.86

new attribute only requires fitting a lightweight classifier.
This process takes up to 10 seconds, in sharp contrast to
baselines like DAPT, DExperts, GeDi, and Mix and Match,
which requires anywhere from minutes to 16 hours of train-
ing on various GPUs. This rapid adaptation makes TRACE
highly suitable for dynamic or low-resource scenarios.

Inference Time. TRACE maintains efficiency during gen-
eration. While alternative approaches that rely on in-context
learning, discriminators, or iterative updates incur substan-
tial decoding costs—with inference ratios ranging from 7.5x
to 40x the baseline—TRACE introduces only minor over-
head. This efficiency stems from its design; the HMM’s
Expected Attribute Probability (EAP) calculation uses a pre-
computed backward pass and an efficient forward update per
token. Consequently, the total inference time is only about
1.2x that of the baseline language model, as the process
remains dominated by the base model’s computation.

5.5. Composition: Political and Nontoxic Texts

A key benefit of TRACE is its ability to compose multiple
attributes without retraining. Conditioning on the conjunc-
tion of two attributes (s1, s2) is achieved by multiplying
their probabilities during decoding, based on the modeling
assumption of attribute independence given the text (x):
p(s1 and s2|x) = p(s1|x)p(s2|x). For TRACE’s factorized
classifiers, this simplifies to creating a new composite clas-
sifier by multiplying the token weights (w) of the individual
classifiers: w′ = w1 · w2. To demonstrate, we task the
model with generating text that is simultaneously politi-
cal and nontoxic. This combination is rare, making joint
training challenging for other methods, but TRACE remains
effective as it only needs the individually trained classifiers.

The results in Table 5 demonstrate effective composition.
Controlling for a single attribute primarily affects only that
dimension: TRACE (Detox only) reduces Max Tox-
icity from 0.386 to 0.186 while leaving the Mean Politi-
cal score nearly unchanged (0.169 vs 0.168). Conversely,
TRACE (Pol only) increases the Mean Political score
from 0.169 to 0.333 with almost no change in toxicity. The
compositional TRACE (Detox + Pol) approach suc-
cessfully achieves both goals simultaneously, reaching a
toxicity level (0.190) and a political score (0.344) compara-
ble to their respective single-attribute control settings.

6. Conclusion
We introduced TRACE, a lightweight framework for con-
trollable text generation that uses tractable probabilistic
inference. Its core strengths are efficiency, adaptability,
and strong performance, all achieved without modifying or
finetuning the base LM. TRACE distills a Hidden Markov
Model (HMM) from a base LM and combines it with simple,
efficiently trained classifiers to tractably compute the Ex-
pected Attribute Probability (EAP), which guides generation
towards desired attributes.

Empirically, TRACE achieves state-of-the-art detoxifica-
tion with only a ∼20% decoding overhead. It also excels
in low-resource scenarios, adapting to personalize genera-
tion for 76 distinct characters in seconds, and successfully
composes multiple attributes, such as generating text that is
simultaneously political and non-toxic.

Despite TRACE’s already strong empirical performance,
its capabilities can be further boosted by improving the
expressivity of both the HMM and the attribute classifier.
Our results show that higher-quality HMMs yield better re-
sults, suggesting that improved distillation techniques are
a promising direction. Additionally, while our simple fac-
torized classifiers are effective even for non-factorizable at-
tributes, extending TRACE to incorporate more expressive
models—such as tractable probabilistic circuits (Khosravi
et al., 2019; Choi et al., 2020)—that remain compatible with
efficient EAP computation could enable stronger control
over complex attributes like long-range coherence.

Acknowledgements
This work was funded in part by the DARPA ANSR,
CODORD, and SAFRON programs under awards FA8750-
23-2-0004, HR00112590089, and HR00112530141, NSF
grant IIS1943641, and gifts from Adobe Research, Cisco
Research, and Amazon. Approved for public release; distri-
bution is unlimited.

9

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

References
Adiwardana, D., Luong, M.-T., So, D. R., Hall, J., Fiedel,

N., Thoppilan, R., Yang, Z., Kulshreshtha, A., Nemade,
G., Lu, Y., et al. Towards a human-like open-domain
chatbot. arXiv preprint arXiv:2001.09977, 2020.

Ahmed, K., Chang, K.-W., and Van den Broeck, G. A
Pseudo-Semantic Loss for Autoregressive Models with
Logical Constraints. Advances in Neural Information
Processing Systems, 36:18325–18340, December 2023.

Chakraborty, S., Ghosal, S. S., Yin, M., Manocha, D., Wang,
M., Bedi, A. S., and Huang, F. Transfer q-star: Princi-
pled decoding for llm alignment. In Advances in Neural
Information Processing Systems, volume 37, pp. 101725–
101761, 2024.

Cheng, E., Baroni, M., and Alonso, C. A. Linearly con-
trolled language generation with performative guarantees.
arXiv preprint arXiv:2405.15454, 2024.

Choi, Y., Vergari, A., and Van den Broeck, G. Probabilistic
circuits: A unifying framework for tractable probabilistic
models. oct 2020.

Dathathri, S., Madotto, A., Lan, J., Hung, J., Frank, E.,
Molino, P., Yosinski, J., and Liu, R. Plug and play lan-
guage models: A simple approach to controlled text gen-
eration. In International Conference on Learning Repre-
sentations, 2020.

Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum
likelihood from incomplete data via the em algorithm.
Journal of the royal statistical society: series B (method-
ological), 39(1):1–22, 1977.

Gehman, S., Gururangan, S., Sap, M., Choi, Y., and Smith,
N. A. RealToxicityPrompts: Evaluating Neural Toxic
Degeneration in Language Models. In Cohn, T., He, Y.,
and Liu, Y. (eds.), Findings of the Association for Com-
putational Linguistics: EMNLP 2020, pp. 3356–3369,
Online, November 2020. Association for Computational
Linguistics. doi: 10.18653/v1/2020.findings-emnlp.301.

Gururangan, S., Marasović, A., Swayamdipta, S., Lo, K.,
Beltagy, I., Downey, D., and Smith, N. A. Don‘t Stop Pre-
training: Adapt Language Models to Domains and Tasks.
In Jurafsky, D., Chai, J., Schluter, N., and Tetreault, J.
(eds.), Proceedings of the 58th Annual Meeting of the As-
sociation for Computational Linguistics, pp. 8342–8360,

Online, July 2020. Association for Computational Lin-
guistics. doi: 10.18653/v1/2020.acl-main.740.

Holtzman, A., Buys, J., Du, L., Forbes, M., and Choi, Y. The
curious case of neural text degeneration. In International
Conference on Learning Representations, 2020.

Khosravi, P., Choi, Y., Liang, Y., Vergari, A., and Van den
Broeck, G. On tractable computation of expected pre-
dictions. Advances in Neural Information Processing
Systems, 32, 2019.

Krause, B., Gotmare, A. D., McCann, B., Keskar, N. S.,
Joty, S., Socher, R., and Rajani, N. F. GeDi: Gener-
ative Discriminator Guided Sequence Generation. In
Moens, M.-F., Huang, X., Specia, L., and Yih, S. W.-
t. (eds.), Findings of the Association for Computational
Linguistics: EMNLP 2021, pp. 4929–4952, Punta Cana,
Dominican Republic, November 2021. Association for
Computational Linguistics. doi: 10.18653/v1/2021.
findings-emnlp.424.

Kumar, S., Paria, B., and Tsvetkov, Y. Gradient-based con-
strained sampling from language models. In Proceedings
of the 2022 Conference on Empirical Methods in Natural
Language Processing, pp. 2251–2277, 2022.

Laurer, M., van Atteveldt, W., Casas, A., and Welbers, K.
Building Efficient Universal Classifiers with Natural Lan-
guage Inference, December 2023. arXiv:2312.17543 [cs].

Lee, A., Bai, X., Pres, I., Wattenberg, M., Kummerfeld,
J. K., and Mihalcea, R. A mechanistic understanding of
alignment algorithms: A case study on dpo and toxicity.
In International Conference on Machine Learning, pp.
26361–26378. PMLR, 2024.

Liu, A., Sap, M., Lu, X., Swayamdipta, S., Bhagavatula,
C., Smith, N. A., and Choi, Y. DExperts: Decoding-
Time Controlled Text Generation with Experts and Anti-
Experts. In Zong, C., Xia, F., Li, W., and Navigli, R.
(eds.), Proceedings of the 59th Annual Meeting of the
Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Pro-
cessing (Volume 1: Long Papers), pp. 6691–6706, Online,
August 2021. Association for Computational Linguistics.
doi: 10.18653/v1/2021.acl-long.522.

Liu, A., Zhang, H., and Van den Broeck, G. Scaling up
probabilistic circuits by latent variable distillation. In
Proceedings of the International Conference on Learning
Representations (ICLR), may 2023.

Liu, A., Niepert, M., and Van den Broeck, G. Image in-
painting via tractable steering of diffusion models. In
Proceedings of the Twelfth International Conference on
Learning Representations (ICLR), May 2024a.

10

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Liu, N., Li, S., Du, Y., Torralba, A., and Tenenbaum, J. B.
Compositional visual generation with composable dif-
fusion models. In European Conference on Computer
Vision, pp. 423–439. Springer, 2022.

Liu, X., Liu, A., Van den Broeck, G., and Liang, Y. A
tractable inference perspective of offline rl. In Advances
in Neural Information Processing Systems 37 (NeurIPS),
dec 2024b.

Lu, X., Welleck, S., Hessel, J., Jiang, L., Qin, L., West,
P., Ammanabrolu, P., and Choi, Y. QUARK: Control-
lable Text Generation with Reinforced Unlearning. In
Advances in Neural Information Processing Systems, Oc-
tober 2022.

Meng, T., Lu, S., Peng, N., and Chang, K.-W. Control-
lable text generation with neurally-decomposed oracle.
Advances in Neural Information Processing Systems, 35:
28125–28139, 2022.

Mireshghallah, F., Goyal, K., and Berg-Kirkpatrick, T. Mix
and Match: Learning-free Controllable Text Genera-
tionusing Energy Language Models. In Muresan, S.,
Nakov, P., and Villavicencio, A. (eds.), Proceedings of
the 60th Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pp. 401–415,
Dublin, Ireland, May 2022. Association for Computa-
tional Linguistics. doi: 10.18653/v1/2022.acl-long.31.

Misra, R. News category dataset. arXiv preprint
arXiv:2209.11429, 2022.

Mudgal, S., Lee, J., Ganapathy, H., Li, Y., Wang, T., Huang,
Y., Chen, Z., Cheng, H.-T., Collins, M., Strohman, T.,
et al. Controlled decoding from language models. In In-
ternational Conference on Machine Learning, pp. 36486–
36503. PMLR, 2024.

Peharz, R., Lang, S., Vergari, A., Stelzner, K., Molina, A.,
Trapp, M., Van den Broeck, G., Kersting, K., and Ghahra-
mani, Z. Einsum networks: Fast and scalable learning
of tractable probabilistic circuits. In International Con-
ference on Machine Learning, pp. 7563–7574. PMLR,
2020.

Qin, L., Welleck, S., Khashabi, D., and Choi, Y. COLD De-
coding: Energy-based Constrained Text Generation with
Langevin Dynamics. Advances in Neural Information
Processing Systems, 35:9538–9551, December 2022.

Rafailov, R., Sharma, A., Mitchell, E., Manning, C. D., Er-
mon, S., and Finn, C. Direct preference optimization:
Your language model is secretly a reward model. Ad-
vances in Neural Information Processing Systems, 36:
53728–53741, 2023.

Roth, D. On the hardness of approximate reasoning. Artifi-
cial intelligence, 82(1-2):273–302, 1996.

Sato, M.-a. Fast learning of on-line em algorithm. Rapport
Technique, ATR Human Information Processing Research
Laboratories, 74:115–208, 1999.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and
Klimov, O. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347, 2017.

Tu, L., Yavuz, S., Qu, J., Xu, J., Meng, R., Xiong, C.,
and Zhou, Y. Unlocking Anticipatory Text Generation:
A Constrained Approach for Large Language Models
Decoding. In Al-Onaizan, Y., Bansal, M., and Chen,
Y.-N. (eds.), Proceedings of the 2024 Conference on
Empirical Methods in Natural Language Processing,
pp. 15532–15548, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.emnlp-main.870.

Wang, N., Peng, Z., Que, H., Liu, J., Zhou, W., Wu, Y.,
Guo, H., Gan, R., Ni, Z., Yang, J., et al. Rolellm: Bench-
marking, eliciting, and enhancing role-playing abilities of
large language models. In Findings of the Association for
Computational Linguistics ACL 2024, pp. 14743–14777,
2024.

Xu, A., Pathak, E., Wallace, E., Gururangan, S., Sap,
M., and Klein, D. Detoxifying Language Models
Risks Marginalizing Minority Voices. In Toutanova, K.,
Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Belt-
agy, I., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y. (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 2390–2397, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.190.

Yang, K. and Klein, D. FUDGE: Controlled Text Gen-
eration With Future Discriminators. In Toutanova, K.,
Rumshisky, A., Zettlemoyer, L., Hakkani-Tur, D., Belt-
agy, I., Bethard, S., Cotterell, R., Chakraborty, T., and
Zhou, Y. (eds.), Proceedings of the 2021 Conference
of the North American Chapter of the Association for
Computational Linguistics: Human Language Technolo-
gies, pp. 3511–3535, Online, June 2021. Association
for Computational Linguistics. doi: 10.18653/v1/2021.
naacl-main.276.

Zhang, H., Dang, M., Peng, N., and Van den Broeck, G.
Tractable Control for Autoregressive Language Genera-
tion. In Proceedings of the 40th International Conference
on Machine Learning (ICML), jul 2023.

11

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Zhang, H., Kung, P.-N., Yoshida, M., den Broeck, G. V., and
Peng, N. Adaptable Logical Control for Large Language
Models. In Advances in Neural Information Processing
Systems 37 (NeurIPS), dec 2024.

Zhang, H., Wang, B., Dang, M., Peng, N., Ermon, S., and
Van den Broeck, G. Scaling up probabilistic circuits via
monarch matrices. In Proceedings of the 42nd Interna-
tional Conference on Machine Learning (ICML), 2025.

12

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

A. Factorizability of Attributes
To illustrate the extent to which the attributes evaluated in this work deviate from the factorized assumption made by
TRACE’s classifier (Section 4.3), Table 6 compares the best achievable fit of the factorized classifier against a more
expressive neural classifier. Performance is measured via Cross-Entropy (CE) loss relative to oracle scores (lower indicates
better fit).

Table 6. Attribute Factorizability: Gap Between Factorized and Neural Classifiers’ Fit to Oracle Scores.

Attribute Factorized Classifier CE Loss Neural Classifier CE Loss

Toxicity 0.386 0.007
Politics 0.0064 0.0003

The results indicate that both Toxicity and Politics exhibit non-factorizable characteristics to varying degrees, as expected
for complex semantic attributes. Nonetheless, as discussed in Section 5.2, TRACE achieves strong empirical performance
on these tasks even with the simpler factorized classifier, highlighting the effectiveness of combining it with exact EAP
computation over the HMM.

B. Additional Detoxification Metrics
To further support the findings in Section 5.2, we provide two supplementary evaluations.

Conditional Entropy. Table 7 reports the conditional entropy of continuations given a prompt under each model. Lower
entropy indicates less lexical and structural diversity, often symptomatic of repetitive or degenerate outputs. TRACE achieves
entropy comparable to the base LM and much higher than DPO, reinforcing that RL methods tend to reduce generation
diversity.

Table 7. Conditional entropy of continuations given prompt for detoxification, under each model and top-p = 0.9 sampling.

Method Entropy (↑)

GPT2-large 52.06
DPO 39.52
TRACE 52.54

GPT-4 LM-as-a-Judge Evaluation. Table 8 presents human-aligned evaluations from GPT-4, comparing continuations
across nontoxicity, fluency, and diversity. TRACE matches or exceeds DPO on nontoxicity and diversity, while maintaining
comparable fluency to both Gemma2B and DPO, affirming that TRACE achieves strong controllability without harming
output quality.

Table 8. GPT4 LM-as-a-judge Evaluations.

Method Nontoxicity (↑) Fluency (↑) Diversity (↑)

Gemma2B 4.39 3.76 2.93
DPO 4.65 3.94 2.86
TRACE 4.69 3.72 2.94

Impact of HMM Quality The quality of the distilled Hidden Markov Model (HMM) has a direct impact on the
effectiveness of TRACE for controllable generation. To illustrate this, Figure 5 plots the HMM’s log-likelihood on a
validation set against the average maximum toxicity of the generations it produces at different points during its training.
The results clearly show that as the HMM becomes a better probabilistic model of the language (higher log-likelihood), its
ability to guide the generation towards non-toxic outputs improves (lower toxicity). This suggests that further advancements
in HMM distillation techniques will likely yield even better performance from TRACE.

13

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Training Steps

Lo
g-

Li
ke

lih
oo

d

A
vg

. M
ax

. T
ox

ic
ity

-225

-220

-215

-210

-205

-200

0.17

0.18

0.19

0.20

0.21

0 2500 5000 7500

Log-Likelihood Avg. Max. Toxicity

Effect of HMM Quality on Toxicity

Figure 5. Effect of HMM Quality on Detoxification. As the HMM is trained for more steps, its fit to the data improves (increasing
Log-Likelihood, blue), which corresponds to a decrease in the average maximum toxicity of generated text (red). This shows that
higher-quality HMMs lead to more effective control.

C. HMM Implementation Details
We employ standard Hidden Markov Models (HMMs) for all TRACE experiments, distilled from the base language models
(GPT2-large, Gemma-2B) following the approach described in Zhang et al. (2023); Liu et al. (2023).

Parameters and Training Data. Text sequences were sampled unconditionally from the respective base LMs. We used
two HMM configurations depending on the task. For the primary detoxification and composition tasks, the HMM hidden
state size was set to h = 4096. For the low-resource personalization experiments (Section 5.3), a smaller HMM with
h = 256 was used to demonstrate TRACE’s effectiveness even with a more compact model.

Training sample sizes for the larger (h = 4096) HMM were:

GPT2-large HMM: 10 million samples.

Gemma-2B HMM (Standard): 10 million samples.

Training Details. We initialize the parameters of the HMM using the latent variable distillation technique (Liu et al.,
2023). For training of the HMM, we employed a mini-batch variant of expectation maximization (EM) (Sato, 1999; Peharz
et al., 2020) which interpolates between the old and new parameters (based on a mini-batch) using a step size α. We use a
mini-batch size of 4096 and train for 50 epochs, and anneal the step-size according to a linear decay schedule from 1.0 to
0.0 following Zhang et al. (2025).

Training Time. For the standard 10M-sample, 4096-state HMM used with GPT2-large, the process involved approximately
18 hours for text sampling plus 2 hours for HMM training itself on a single NVIDIA RTX A6000 GPU.

D. Attribute Classifier Implementation Details
Attribute classifiers were trained following the methodology in Section 4.3 (factorized log-linear model, log-MSE loss,
optional probability transformation). Specifics for each attribute were:

Non-Toxicity Classifier. Training data was generated by prompting GPT-2 Large with training split prompts from
RealToxicityPrompts (Gehman et al., 2020). Generated continuations were scored using the Perspective API, providing the
target non-toxicity probabilities p. The log-linear weights l(xi) were fitted using log-MSE loss against these scores after
applying the logit transformation (Section 4.3) with scale b = 10 and shift c = 3.

14

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

Role Classifier. For the 76 characters used in Section 5.3, classifiers were trained on the RoleBench dataset (Wang et al.,
2024). Specifically, the training split provides approx. 300 question-answer pairs per character, which were used as positive
examples for that character’s classifier. Fitting used log-MSE loss.

Non-Politicalness Classifier. As RealToxicityPrompts rarely elicit political content, training data was sourced from the
News Category dataset (Misra, 2022). Articles were labeled for political relevance using the zero-shot classifier from Laurer
et al. (2023), providing target probabilities p. We modeled non-politicalness (1-p) and fitted the log-linear weights using
log-MSE loss against these scores after applying the logit transformation (Section 4.3) with scale b = 1 and shift c = −10.

E. Baseline Details
Sourced Baseline Results. Performance results for prior work baselines presented in Table 1 (excluding our implementa-
tions) were sourced to ensure comparability under the DExperts setup (Liu et al., 2021), which uses 10k RealToxicityPrompts
test prompts and top-p = 0.9 sampling (25 generations/prompt):

• DExperts, PPLM, DAPT, GeDi results from Liu et al. (2021).

• MuCoLa, FUDGE results from Kumar et al. (2022).

• PPO, Quark results from Lu et al. (2022).

Training times and inference time ratios (Table 4) for baselines were sourced from:

• Inference Ratios: DExperts, DAPT, GeDi, PPLM from Liu et al. (2021); Mix and Match, FUDGE from Mireshghallah
et al. (2022); MuCoLa from Kumar et al. (2022).

• Training Times: DExperts, DAPT from Liu et al. (2021); Mix and Match from Mireshghallah et al. (2022); GeDi from
official repository (https://github.com/salesforce/GeDi).

Implemented Baselines. We implemented the following for direct comparison:

Direct Preference Optimization (DPO): The original DPO paper (Lee et al., 2024) used different settings; we adapted the
official implementation for GPT2-large/Gemma-2B and evaluated under the DExperts setup for comparability.

Prompting Baselines for Role-Playing: For Section 5.3, we used two strategies. Role-Specific Instruction + 10 QA (for
Gemma-2B qualitative eval, Table 3) prepended a role instruction and 10 QA examples from RoleBench (Wang et al., 2024)
to the query (see example structure below). Role-Specific Instruction Only (for GPT2-large quantitative eval, Figure 4)
used only the instruction text.

EXAMPLE FEW-SHOT ROLE-PLAYING PROMPT (ABRAHAM LINCOLN)

You are an advanced role-playing assistant trained to embody characters with accuracy and authenticity. In this instance, you will
assume the persona of Abraham Lincoln. Example Interactions:
1. Question: Abraham Lincoln, how did your personal tragedies and political opposition affect your commitment to justice and
equality during your presidency?
Answer: My presidency was marked by personal tragedy and intense political opposition. The loss of my son, Willie, was
particularly devastating, and it weighed heavily on my mind during my time in office. Additionally, I faced intense opposition from
those who were resistant to change and the abolition of slavery. However, I remained steadfast in my commitment to justice and
equality, and I firmly believed that these principles were worth fighting for. I was determined to address these issues head-on, no
matter the challenges that I faced.
[... 9 more QA examples ...]
Question: Abraham Lincoln, how do you define freedom?
Answer:

F. Evaluation Details
Generation Setup. Unless otherwise specified (e.g., baseline sourcing), text generation uses nucleus sampling (top-p)
with p = 0.9. For detoxification evaluations on RealToxicityPrompts (Gehman et al., 2020), we use the standard 10k test

15

https://github.com/salesforce/GeDi

TRACE Back from the Future: A Probabilistic Reasoning Approach to Controllable Language Generation

prompts from Liu et al. (2021) and generate k = 25 continuations per prompt.

Detoxification Metrics. Toxicity: Assessed via Perspective API scores. We report average maximum toxicity over k = 25
generations, and the empirical probability of ≥ 1 generation having toxicity ≥ 0.5. Perplexity(PPL): Mean perplexity of
generations using GPT2-XL. Diversity: Mean distinct n-grams (n = 2, 3), normalized by length, over k = 25 generations
(Dist-2, Dist-3).

GPT-4 Evaluation (Detoxification). We used GPT4o-mini for supplementary evaluation. For each prompt, the 25
generated continuations were presented together. The model was asked to rate the set on toxicity, fluency, and diversity (1-5
scale) using the following prompt format:

GPT-4 EVALUATION PROMPT & FORMAT
I will provide you with a prompt, followed by 25 continuations of that prompt sampled from a model. Please provide an overall
score for the set of continuations according to toxicity, fluency, and diversity, each on a scale of 1 to 5.
Output your evaluation in the following format:
Evaluation for Toxicity: (your rationale for the rating, as text)
Toxicity rating: (your rating, as a number between 1 and 5 where 1 is toxic and 5 is non-toxic)
Evaluation for Fluency: (your rationale for the rating, as text)
Fluency rating: (your rating, as a number between 1 and 5 where 1 is not fluent and 5 is fluent)
Evaluation for Diversity: (your rationale for the rating, as text)
Diversity rating: (your rating, as a number between 1 and 5 where 1 is not diverse and 5 is diverse)

Role Quality Metric. As ground truth for role quality is unavailable, we use the trained character-specific classifier itself
as an evaluator. Role quality is measured as the average probability assigned by the target character’s classifier to the
generated texts.

Political Relevance Metric. Political content for the composition task (Section 5.5) is scored using the zero-shot classifier
from Laurer et al. (2023); we report the mean score over generations.

16

