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Abstract

We propose a set of modifications that improve training time and likelihood estimation
of hierarchical mixture models implemented via Probabilistic Circuits (PCs). Our proposal
reduces the complexity of mutual information estimation in the structure learning step
of PCs from quadratic to linear in the number of inputs, without sacrificing likelihood
estimation performance on image datasets. We repurpose invertible transformations from
the lossless compression community to improve likelihood estimation by a factor of up to
25% on benchmark image datasets, making PCs competitive with current standard codecs on
low-resolution datasets. Despite our improvements, experiments with low- and high-resolution
image datasets indicate that the advantage of lossless neural compression and PCs over
standard codecs, such as WebP, disappears as the image size increases, motivating future
work on practical lossless neural compression.

1 Introduction

In recent years, the machine learning community has brought forward learnable dis-
crete density estimators to improve compression rates [11, 27, 25, 26, 10] by learning
from data rather than using hand-crafted approaches. However, these rate improve-
ments come at a significant increase in computational complexity when compared to
traditional compression codecs.

Probabilistic circuits (PCs) is a model class implementing mixture models that is
compute constrained by design, allowing efficient marginalisation over input data. In
[14], the authors show this feature allows for efficient encoding and decoding when
used together with an entropy coder such as asymmetric numeral systems [8]. In the
same work, the authors show the complexities of both encoding and decoding can
be reduced from linear to sub-linear in the sequence length, and provide empirical
evidence indicating speed enhancements of 5-40 times over other neural models.

In this paper, we build on prior work on PCs [1, 14] to improve scalability, parameter
efficiency, and inference speed:

• We demonstrate that invertible transforms, commonly found in generic
compression schemes, can significantly improve compression rates for PCs with
a negligible increase in computational overhead.
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• We introduce local mutual information estimation for structured sources.
Our proposal speeds up the process of learning the graphical model for images
from quadratic to linear in the input dimension, and hence enables us to scale
to larger models.

• We provide extensive experiments ablating the effects of batch and patch size
on training of probabilistic circuits, as well as compression results on a recently
introduced dataset of high-resolution images for AR/VR applications [28].

Despite our improvements, we provide evidence that lossless neural compressors
such as IDF/IDF++ [11, 27] and Bits-back Coding [24, 25] have diminishing gains
when evaluated on higher-resolution, real-world, image datasets. In some cases neural
compressors even under-perform when compared to standard codecs (e.g., WebP
[9]), which are significantly faster, do not require training, and have significantly low
memory footprint, motivating future research.

2 Background

Probabilistic Circuits (PCs) [1] define a broad family of tractable probabilistic models,
including the earliest proposal of arithmetic circuits (ACs) [5] and Sum-Product
Networks (SPNs) [19]. A PC represents a mixture distribution over random variables
Xn := (X1, . . . , Xn) via a parametrized directed acyclic graph (DAG) with a single
root node. The DAG comprises three kinds of nodes: input (leaves), sum, and product.
Each node n defines a probability distribution pn, recursively, as follows [15]:

pn(x) :=



fn(x) if n is an input unit,∑
c∈in(x)

θn,c · pc(x) if n is a sum unit,∏
c∈in(x)

pc(x) if n is a product unit.

where fn is a univariate input distribution (e.g., boolean, categorical, or discrete
logistic), θn,c is the mixture component corresponding to edge (n, c), and in(x) is the
set of children nodes of x.

Learning a PC from data is usually a 2-step process: first, the structure of the
DAG is learned, which is followed by the estimation of the parameters θn,c. Parameter
estimation follows the same procedures as traditional neural network training (e.g.,
SGD, train/test/validation splits).

Computing the probability pn(x), of some data point x, can be done similar to
a forward-pass in a neural network, which can benefit from hardware accelerators
such as GPUs. Note that the computational complexity of a forward-pass in a PC, as
well as most neural networks, depends only on the structure of the DAG, and not the
values of parameters θn,c.

The PCs used in this work are latent variable models constructed from Chow-
Liu Trees [2] (CLT) known as Hidden CLTs (HCLT) [14]. For Xn ∼ PXn , a CLT



is a probabilistic graphical model (PGM) defined by the maximum spanning tree
of the graph with nodes {X1, . . . , Xn} and edge weights the mutual information
[3] between two endpoint variables. The resulting PGM is a directed tree in the
observation space (each node has exactly one parent), implying the model QXn

factorizes into a product of first-order (i.e. Markov) conditionals QXi |Xσ(i)
, where σ(i)

is the parent of i. If the conditionals are computed from the true data distribution, i.e.,
QXi |Xσ(i)

= PXi,Xσ(i)
/PXσ(i)

, then the resulting model minimizes the KL divergence,
KL[PXn ||QXn ], over all models QXn with first-order Markov factorization [13].

An HCLT is a PGM, constructed by adding latent variable nodes to the PGM of
some CLT, where each observed node is assigned a corresponding (discrete) latent
variable with K categories, denoted as the latent size of the HCLT. Each observation
is conditionally independent from the rest given its latent variable. HCLTs allow for
efficient marginalization, as well as computing of conditionals, which can be leveraged
for efficient lossless compression [1].

3 Improving Training and Efficiency for PCs

This section discusses 2 modifications to PCs which together improve compression
performance while enabling scaling to large images.

3.1 Local MI Estimation

Learning the structure of an HCLT requires estimating the mutual information (MI)
of all pairs (Xi, Xj) for 1 ≤ i < j < n. Formally, let M ∈ Rn×n be a matrix with
elements Mij ≥ 0 being an estimate of the MI I(Xi;Xj) computed from the dataset
D of images. In [14], MI is estimated from the empirical distribution over a single
channel-element of a pixel. For x, x′ ∈ [256) := {0, . . . , 255} and d ∈ [256)n a flattened
image in the dataset, define the following empirical distributions

Pi(x) :=
1

|D|
·
∑
d∈D

1{di = x} Pij(x, x
′) :=

1

|D|
·
∑
d∈D

1{di = x} · 1{dj = x′}, (1)

which count the marginal occurrences of x and x′, as well as the joint occurrence, in
the dataset. An estimate for MI is given by

Mij =
∑

x∈[256)

∑
x′∈[256)

Pij(x, x
′) · log2

(
Pij(x, x

′)

Pi(x) · Pj(x′)

)
. (2)

Estimating MI for all pairs scales quadratically with n, the number of input
variables, due to the double-summation.

The DAG of the HCLT [14], discussed in Section 2, is constructed by computing
the maximum-spanning tree (MST) of the graph with weighted-adjacency matrix
equal to M . The MST graph can be found through a greedy procedure known as
Kruskal’s algorithm [12] that visits edges, in the order of highest to lowest weight, and
adds them to the MST graph as long as the addition does not result in the formation
of a cycle (the absence of cycles guarantees the graph will be a tree at every step).



Pairs (Xi, Xj) that have small MI are unlikely to be added to the graph, as they
will be visited last. For images, we expect the MI to correlate with the distance L1 in
the coordinate space, as pixels tend to be more similar to their neighbors. We can
therefore replace the second summation in Equation (2) for a summation over a small
neighborhood of x, which avoids computing most elements in Mij, which are then set
to 0. This reduces structure learning complexity from quadratic to linear in n.

As mentioned in Section 2, the computational complexitey of the PC is determined
solely by its structure (i.e., DAG). Our ablations indicate that defining the neighbor-
hood to be all elements within an L1 distance of 3 was enough to learn exactly the same
HCLT structure as the unconstrained case across all datasets, hyperparameters, and
random seeds. This implies our method does not alter the complexity of computing
the probabilities pn(x). Furthermore, the parameter learning step is not affected in
any way, as it is agnostic to how the structure was learned.

3.2 Invertible Transforms

We applied invertible transformations to the input of PCs to decorrelate the input
pixels and improve likelihood estimation. The transforms selected are inspired by
those employed by standard codecs such as WebP [9].

WebP [9] offers a wide range of all 3 types of decorrelation functions. The simplest
option, which we adopted, is to transform the red (R) and blue (B) channels according
to the value of the green (G) channel, which is kept fixed. This is done by subtracting
the green channel from the remaining 2 (Subtract-Green transform), which is easily
reversible by adding back the green channel during decoding time.

Spatial decorrelation is performed via the transform described next, which is similar
to the Delta transform [3]. For an image of height H, width W , and C channels, let
xi ∈ [0, d− 1] (typically, d = 256) be a single channel element of a pixel. The image is
assumed to be flattened using some procedure known both to the encoder and decoder
(i.e., in raster-scan or row-major order) such that pixels are ordered x1, . . . , xH×W×C .
The transformed elements yi are defined as

yi = xi − xi−1 for i > 0, and y0 = x0. (3)

Transmitting the first pixel (top-left, i = 0) unchanged guarantees this transform is
lossless,

xi =
i∑

j=0

yj for i > 0, and x0 = y0. (4)

Finally, lossless image compression precludes modelling in the YCbCr colorspace
as the transform between RGB and YCbCr is lossy. Instead, we adopt a lossless image
color transform, YCoCg-R [18], which has similar properties to YCbCr but is lossless
with respect to RGB.

4 Experiments

In this section we experimentally validate the modifications to PCs discussed in
Section 3 through a series of ablations, as well as compare it to baseline standard



codecs and recently introduced neural codecs.
We experimented on well-known benchmark datasets of low-resolution images,

CIFAR-10 [23] and ImageNet [6], as well as high-resolution datasets, CLIC [22] and
(the recently introduced) Multiface (MF) [28] AR/VR dataset.

4.1 Models and Training Details

We benchmark PCs against standard codecs (PNG [7] and WebP [9]) as well as neural
codecs HiLLoC [25] (i.e., an implemention of bits-back coding [26]) and integer discrete
flow [11, 27]. For PCs, We used the hidden chow-liu tree (HCLT) model present in
[14]. The improvements discussed in Section 3, i.e., invertible transforms and local MI
estimation, were applied to HCLTs to create an additional model which we named
HCLT++.

For PC results on CLIC and MF the learning rate and batch size were fixed to
0.035, after an initial sweep between 10−5 and 1, with batch size 214 = 16, 384; while
batch size was fixed to 128 and learning rate sweeped from 0.1 to 0.01 for CIFAR,
IM32, and IM64. We experimented changing colorspaces from RGB to YCoCg-R [18]
and found no significant change in performance for neural compressors.

4.2 Computational Requirements

The computational resource required to run HCLT++ is very close to that of HCLT,
as the invertible transformations are significantly faster than performing the forward
pass in the network. Local MI estimation does not affect the compute needed for
HCLT++, as computing the likelihood in a PC depends only on its structure (see
Section 2).

As expected, standard codecs on CPU are orders of magnitude faster than both
PCs and Neural Codecs on GPU. For example, on the largest dataset, Multiface, WebP
with YCoCg encodes at 43.8 Mbps, while the fastest IDF++ implementation reaches
only 13.8 kbps on an NVIDIA Tesla V100 GPU. For PCs, reported throughputs are
roughly 20x that of IDF [14], which is still significantly slower than standard codecs.

4.3 Main Results

Compression results across all models and datasets are shown in Table 1. As expected,
IDF++ [27] achieves the lowest bitrate across all datasets, including large datasets
where patch-level compression must be used due to limited memory constraints.
Probabilistic circuit methods achieve lower bitrates than the best traditional codec
(WebP) on all datasets other than Multiface, but we note that WebP requires far less
compute to achieve these compression ratios.

The performance of neural compression methods diminishes significantly when
moving from low-to-high resolution datasets. On CIFAR, IDF++ achieves a bitrate
29.2% lower than WebP, while HCLT++ achieves a bitrate 10% lower. However,
on CLIC the IDF++ bitrate is only 5.8% better than WebP, while the HCLT++
bitrate is 4.2% better, at the expense of a large increase in both compute and memory
resources. This illustrates a property of traditional compressors where they perform



Table 1: PC results compared to standard codecs and neural compressors. PCs provide a gain
in compression performance relative to standard codecs, while not requiring as much compute
as neural compressors. The advantage of both PCs and neural codecs diminishes as the
average image size of the dataset increases (left-to-right). All units are bits-per-dimension.

CIFAR IM32 IM64 CLIC MF

Standard Codecs

PNG(RGB) 5.87 6.05 5.34 3.49 2.87
PNG(YCoCg) 5.23 5.54 4.88 3.13 3.01
WebP(YCoCg) 4.87 5.20 4.51 2.68 2.66
WebP(RGB) 4.61 4.98 4.30 2.59 2.61

PCs HCLT 6.04 6.16 5.92 4.10 3.12
HCLT++ 4.13 4.72 4.29 2.48 2.75

Neural Codecs
HiLLoC 3.56 4.20 3.90 2.63 -
IDF 3.32 3.95 3.66 2.43 2.57
IDF++ 3.26 3.94 3.62 2.44 2.54

Adv. of best Prob. Circuit over WebP 10.8% 5.8% 1.0% 4.0% -5.4%
Adv. of best Neural Codec over WebP 29.2% 20.8% 15.9% 6.1% 2.7%

Table 2: Lossless compression results for our method (HCLT++) and the HCLTs of [14]. All
units are bits-per-dimension.

CIFAR IM32 IM64 CLIC MF
# H. dim. HCLT HCLT++ HCLT HCLT++ HCLT HCLT++ HCLT HCLT++ HCLT HCLT++

1 7.89 4.93 7.89 5.27 7.91 4.93 7.94 3.42 5.81 3.40
8 6.39 4.22 6.47 4.73 6.28 4.31 5.67 2.71 3.52 2.81

16 6.14 4.12 6.25 4.69 6.02 4.26 5.09 2.68 3.17 2.78
32 6.04 4.11 6.16 4.69 5.92 4.26 4.65 2.56 3.12 2.77
64 6.04 4.12 6.17 4.71 5.93 4.27 4.41 2.51 3.12 2.76

128 6.08 4.13 6.24 4.72 6.01 4.29 4.10 2.48 3.14 2.75

far better on high-resolution data than low-resolution data. We discuss this property
further in Section 5.

4.4 HCLTs with Invertible Transforms (HCLT++)

Table 2 shows the performance gained from HCLT++: it outperforms the HCLT on
all datasets for all hidden dimension sizes.1 The difference in performance between the
two methods slightly diminishes as the hidden dimension size grows. We experimented
changing the order of the two operations that define HCLT++ (i.e., color and delta
transforms), as well as interleaving them with the YCoCg-R color transform, but
found no difference in performance.

To understand better how each transform affects the overall performance, we
ablated each transform (Subtract-Green and Delta) on the CLIC. We focused the
ablation on the CLIC dataset as it is the closest dataset representing to real-world
high-resolution images. The hidden dimension size was fixed to 128 to match that of
Table 1. Adding Subtract-Green to the HCLT reduces the bits-per-dimension (bpd)

1Prior work [16, 17] reports PC likelihoods on natural image datasets such as CIFAR, IM32,
and IM64 assuming that the data is given directly in the YCbCr or the YCoCg space without
accounting for the lossy conversion from RGB. Hence, those numbers are not directly comparable to
our likelihoods in the RGB space.
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Figure 1: Left: Compressing performance (lower is better) of probabilistic circuits for varying
patch sizes. Increasing patch size beyond a certain limit increases BPD for probabilistic
circuits. Right: Compression performance on the test set improves consistently with larger
batch sizes for probabilistic circuits.

Figure 2: Pixels are more similar to their neighbors as images increase in size. See the text
for details and discussions.

from 4.10 to 2.98, while adding Delta (without Subtract-Green) reduces bpd to 2.65.
Using both transforms gives further gains: 2.48 bpd.

4.5 Scaling Batch and Patch Sizes

The right plot of Figure 1 shows results, on the test set, when increasing batch size
during training of probabilistic circuits with the EM algorithm. Large batch sizes were
implemented by accumulating EM computations, similar to how gradient accumulation
is performed, before updating the parameters. Larger batch sizes consistently improve
generalization to the test set, but plateau for both types of data between 212 and 214.

The left plot in Figure 1 contains results for patch size ablations. Images were
partitioned into non-overlapping patches with 0-padding at the borders. An HCLT
probabilistic circuit with 128 hidden dimensions was trained for each patch size for
150 epochs. Increasing patch size beyond 24 gave a small performance boost peeking
at 40. This pattern repeated for any number of hidden dimensions, learning rates, or
batch sizes.

5 Limitations of Lossless Neural Compressors

Table 1 shows the compression performance of standard codecs, probabilistic circuits,
and neural codecs, across 5 datasets. Models are ordered, from top-to-bottom, by



both compute and memory usage, with standard codecs being least intensive. Neural
codecs, such as IDF and bits-back, can significantly outperform standard codecs on
low-resolution datasets, but at a significant increase in compute and memory resources
compared to WebP or PNG [14]. Probabilistic circuits (PC) are a candidate for a
good middle ground between standard and neural codecs.

WebP in RGB space outperformed PNG on all datasets. Results for probabilistic
circuits improve as the number of hidden latent dimensions grows, as expected, but
eventually plateau. IDF/IDF++ achieved the best results across all datasets but are
significantly more resource intensive than WebP. The performance across all algorithms
improves as image size increases.

WebP improves significantly faster and eventually performs on par with, or better,
than probabilistic circuits. Average image size increases across columns from left-to-
right in Table 1 as the gap between the best neural and standard codec diminishes
(last row). There are many conjectures as to why the performance of standard codecs
improves drastically, of which we discuss two. First, pixels are more similar to their
neighbours as the image size increases, improving the performance of the simple
prediction algorithms used by standard codecs. This is illustrated in Figure 2 on
patches of 5 images taken from the CLIC dataset [22]. The center of each patch
coincides with the center of the image they were taken from. Images grow in size from
left to right but patch size remains constant at 64x64, which corresponds intuitively
to a “zoom in” effect, reducing variability drastically. Finally, standard codecs employ
dictionary coding methods from the Lempel-Ziv (LZ) family [29]. Increasing the image
size is equivalent to increasing the number of samples, as modelling happens at the
pixel-level. The compression rate of the LZ family is known to approach the entropy
rate of any stationary and ergodic source [3], and have been empirically observed to
perform well in practice [21], when given access to enough samples.

6 Conclusion

In this work we provided improvements to training and likelihood estimation with
probabilistic circuits (PCs). Repurposing invertible transforms from standard codecs
gives a significant boost in performance for PCs. This suggests more research needs
to be done at the input layer of PCs to increase the expressivity of these models while
still guaranteeing lossless decodability.

Our findings indicate that the performance gain observed for lossless neural com-
pression on small-resolution datasets does not simply transfer to the high-resolution
setting. This result, coupled with the large increase in compute when going from
standard to neural codecs, highlights the limited practicality of current lossless neural
compression models based on likelihood estimation.

We conclude with some remarks and potential research directions. While this work
brings probabilistic circuits closer to being competitive for lossless compression, the
amount of computational and memory resources needed, compared to standard codecs,
is high for many applications. One direction to reducing these costs is pruning based
solutions such as those presented in [4]. Pruning addresses both computational and
memory concerns by removing computational units from the PCs.



Finally, it is possible to go beyond the i.i.d. setting and target lower entropy rates
by, for example, modelling batches of data where patches are not treated as i.i.d.
observations. Many real-world applications have easily-accessible side information [3,
20], available at both encoder and decoder, which can be used to condition models and
potentially improve compression rates. The gain seen from using invertible transforms
with probabilistic circuits suggests incorporating sub-routines of standard compression
algorithms into neural codecs might be a way to reduce compute while maintaining
performance.
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