
Plug-and-Play Context Feature Reuse for Efficient
Masked Generation

Xuejie Liu1,3, Anji Liu2 , Guy Van den Broeck2, Yitao Liang1∗
1Institute for Artificial Intelligence, Peking University

2Computer Science Department, University of California, Los Angeles
3School of Intelligence Science and Technology, Peking University

xjliu@stu.pku.edu.cn, liuanji@cs.ucla.edu
guyvdb@cs.ucla.edu, yitaol@pku.edu.cn

Abstract

Masked generative models (MGMs) have emerged as a powerful framework for
image synthesis, combining parallel decoding with strong bidirectional context
modeling. However, generating high-quality samples typically requires many iter-
ative decoding steps, resulting in high inference costs. A straightforward way to
speed up generation is by decoding more tokens in each step, thereby reducing the
total number of steps. However, when many tokens are decoded simultaneously, the
model can only estimate the univariate marginal distributions independently, failing
to capture the dependency among them. As a result, reducing the number of steps
significantly compromises generation fidelity. In this work, we introduce ReCAP
(Reused Context-Aware Prediction), a plug-and-play module that accelerates infer-
ence in MGMs by constructing low-cost steps via reusing feature embeddings from
previously decoded context tokens. ReCAP interleaves standard full evaluations
with lightweight steps that cache and reuse context features, substantially reducing
computation while preserving the benefits of fine-grained, iterative generation. We
demonstrate its effectiveness on top of three representative MGMs (MaskGIT [5],
MAGE [27], and MAR [29]), including both discrete and continuous token spaces
and covering diverse architectural designs. In particular, on ImageNet256 [7]
class-conditional generation, ReCAP achieves up to 2.4× faster inference than
the base model with minimal performance drop, and consistently delivers better
efficiency–fidelity trade-offs under various generation settings.

1 Introduction

The remarkable success of sequence modeling in language generation [41, 42] has inspired
its adoption in image modeling, where transformer-based models [8, 17, 51] learn the joint
distribution over sequences of visual tokens using either autoregressive [10, 11, 22, 44, 48]
or non-autoregressive [5, 15, 40, 57] strategies. Among them, Masked Generative Models
(MGMs) [27, 29, 52, 53, 55] have emerged as a particularly compelling framework, achieving
competitive generation quality while supporting efficient parallel decoding. The advantages in both
performance and efficiency have positioned MGMs as a promising alternative to latent diffusion
models [2, 39, 45] for high-resolution image generation, with recent work also extending their success
to text-to-image synthesis [4, 12].

Despite these promising results, MGMs still face limitations in inference efficiency. As illustrated
in Figure 1, applying MAR [29], a state-of-the-art MGM, to class-conditional image generation on
ImageNet256 [7] reveals a consistent trade-off: higher sample quality requires more decoding steps,

∗Corresponding author

Preprint. Under review.

ar
X

iv
:2

50
5.

19
08

9v
1

 [
cs

.C
V

]
 2

5
M

ay
 2

02
5

0.0 0.5 1.0 1.5 2.0 2.5
Inference Time (sec / image)

1.6

1.8

2.0

2.2

2.4

2.6

FI
D

MAR-L
MAR-H
VAR-d24 *

VAR-d30 *

U-ViT-H
DiT-XL
REPA
MAR-L+ReCAP(Ours)
MAR-H+ReCAP(Ours)

Figure 1: FID vs. inference time on
ImageNet256 class-conditional generation.
As the number of decoding steps increases,
MAR [29] achieves better FID but incurs high
inference cost. ReCAP significantly acceler-
ates MAR by replacing part of full-eval steps
with low-cost steps, achieving 2.4× faster in-
ference for MAR-Huge with minimal quality
loss (FID 1.56 vs. 1.57). For fair compari-
son, we adopt the version of REPA without
interval guidance [21], as also reported in the
original paper [56]. ∗ denotes the use of KV
caching [47] for fast inference.

which results in longer inference time. This limitation becomes even more pronounced in large-scale
models, where each additional step incurs substantial computational overhead.

We attribute this limitation to a fundamental trade-off in the MGM decoding paradigm. To reduce the
total number of generation steps, MGMs decode multiple visual tokens at each step. Ideally, the model
should sample from the joint distribution over all tokens being decoded. However, it can only predict
the univariate marginal distributions for each token independently due to the sequence-to-sequence
nature of Transformers. Therefore, while reducing the number of decoding steps is computationally
appealing, it often results in significant degradation in generation quality. To address this dilemma,
we pursue an orthogonal direction: lowering the computational cost per decoding step while retaining
the advantages of fine-grained iterative updates.

Our approach is motivated by a key empirical finding: when only a small number of tokens are
updated between decoding steps, the Transformer feature embeddings of the previously decoded
context tokens remain largely unchanged. This property is particularly beneficial in settings with
many decoding steps, where each step only decodes a small subset of tokens. We leverage this
insight to design lightweight decoding steps that reuse the feature representations of context tokens
computed during earlier steps. As illustrated in Figure 1, replacing a portion of the full evaluations in
the decoding procedure of MAR [29] with these lightweight steps allows us to substantially reduce
inference time with minimum reduction on generation quality.

In summary, we propose ReCAP (Reused Context-Aware Prediction), a simple yet effective plug-
and-play module for accelerating MGM inference. ReCAP interleaves standard full evaluations with
cheaper partial evaluations that reuse cached attention features for the unchanged context tokens.
We empirically demonstrate that ReCAP consistently improves quality–efficiency trade-offs across
a variety of MGMs, including discrete MGMs (MaskGIT [5], MAGE [27]) and also MGMs with
continuous-valued tokens (MAR [29]), covering different architectural designs and evaluation setups.
Notably, on ImageNet256 class-conditional generation, ReCAP accelerates inference for MAR-Huge
by 2.4×, while preserving its state-of-the-art FID with no architectural edits or additional training.

2 Related Work

Masked Generative Models (MGMs) originate from non-autoregressive sequence modeling in
machine translation [14, 31], offering parallel decoding and faster inference than autoregressive
models. Recently, MGMs have been successfully adapted to image generation. As a pioneering work,
MaskGIT [5] demonstrated competitive performance on ImageNet using as few as 8 decoding steps,
achieving better quality-efficiency trade-offs than diffusion models. Several works aim to improve
MGM generation quality: Token-Critic [25] introduces an auxiliary model for guided sampling,
MAGE [27] unifies representation and generation via varied masking ratios, and AutoNAT [36]
and AdaNAT [37] search for better sampling schedules through optimization-based strategy or
reinforcement learning algorithm. However, these methods incur significant cost at longer steps. To
bridge the gap with SoTA continuous diffusion models, MAR [29] extends the MGM framework
to continuous-valued token spaces, mitigating the information loss from discrete tokenization, and
achieves state-of-the-art FID below 2.0 on ImageNet.

Inference Efficiency in Generative Models. Accelerating inference is a key challenge in generative
modeling. In autoregressive models, techniques such as key-value (KV) caching [47, 51] and specu-

2

lative decoding [24] reduce redundant computation. In diffusion models, efficiency has improved
through advanced solvers [33, 34], classifier-free guidance [19], and guidance interval sampling [21].
While early MGMs benefit from fewer decoding steps and relatively efficient inference [5], achieving
state-of-the-art performance remains costly. For example, MAR [29] requires 256 decoding steps to
match the quality of leading diffusion models [16, 56], resulting in significant inference overhead.

3 Preliminaries of MGMs

In this framework, a raw image X̂ is first encoded into a sequence of N visual tokens X = {Xi}Ni=1
using a pretrained tokenizer. Most approaches leverage vector-quantized (VQ) autoencoders [11,
43, 50] as tokenizers, which map image patches to indices in a learned codebook, representing each
token Xi as a categorical variable.2 A transformer-based sequence model is then employed to learn
the joint distribution over {Xi}Ni=1.

To model the sequence data X, MGMs adopt a masked prediction objective, learning to predict
masked tokens conditioned on a subset of variables termed the context. This training objective
is inspired by masked language modeling tasks used in models like BERT [3, 8, 17] and discrete
diffusion models [1]. The model minimizes the following cross-entropy loss:

L(x) = −Er∼q(·),xM∼qr(·|x)

 ∑
i∈{i|xM

i =[MASK]}

log pθ(xi|xM)

 ,

where r is a sampled masking ratio and qr is a masking distribution that replaces an r-fraction of
tokens in x by [MASK]. At test time, the model begins with an empty context (i.e., all tokens are
masked) and gradually decodes a chosen subset of tokens, expanding the context at each step by
incorporating the newly decoded tokens. Notably, each step updates multiple tokens in parallel,
allowing high-quality generation with significantly fewer decoding steps.

Specifically, the decoding procedure begins with a fully masked sequence x(0). At each step
t ∈ {1, . . . , T}, the model predicts token values based on the current sequence x(t−1). We define nt

as the total number of decoded tokens after step t, and n̂t = nt − nt−1 as the number of tokens to be
decoded at t. Let Mt = {i | x(t−1)

i = [MASK]} denote the masked positions at the beginning of the
t-th step. The sampler selects a subset St ⊂ Mt of size n̂t, either uniformly [29] or proportionally to
the model’s predicted confidence [5, 27] (see Appendix C). For each i ∈ St, the model samples x(t)

i

from the trained MGM pθ(Xi|x(t−1)).

4 The Inference Challenge of MGMs

MGMs offer a powerful framework for high-quality image generation by progressively refining
predictions through iterative masked sampling. However, as shown in Figure 1, achieving high-
fidelity results typically requires a large number of decoding steps, leading to significant inference
costs. For example, MAR-Large [29], a state-of-the-art MGM, achieves an FID of 1.8 using 128
decoding steps, but its performance deteriorates sharply to an FID of 15.9 when constrained to only
8 steps (measured using the official code). For even larger models such as MAR-Huge, inference
latency can exceed 2 seconds per image when using hundreds of steps, posing a challenge for the
practical deployment of MGMs in latency-sensitive applications.

We attribute this undesirable reliance on numerous decoding steps to the inherent limitations of its
parallel decoding procedure. As illustrated in Section 3, in each step t, multiple masked tokens are
sampled independently from the conditional distribution p(xi|x(t−1)), neglecting intricate depen-
dencies among simultaneously unmasked tokens. Similar issues have been identified in discrete
diffusion models for masked language modeling [30, 32], where multiple refinement steps are needed
to recover coherent outputs due to parallel yet independent updates.

As a result, reducing the number of decoding steps inherently limits the model’s ability to capture
inter-token dependencies, thereby degrading generation quality. Using a large number of steps and

2Although we describe our method in the context of discrete MGMs, our method is directly applicable to
MGMs with continuous-valued tokens (Appendix D).

3

allowing more incremental and context-aware updates helps alleviate this issue, but at the cost of
significant computational overhead. Specifically, unlike causal transformers, which support efficient
reuse of intermediate attention states via key-value caching [47], the bidirectional nature of MGMs
necessitates recomputing the attention-based features over all N tokens in the sequence at each step,
which incurs a O(N2) inference cost in each update.

These challenges can be summarized in one central question in our paper: can we reduce the per-step
computation cost while preserving generation quality? We answer the question in its affirmative by
showing that we can cache and reuse feature embeddings of previously decoded tokens with minimum
performance drop with the so-called cheap update steps. By balancing the regular and cheap steps,
our method achieves a substantially better trade-off between inference speed and generation fidelity.

5 Inference Scaling via Context Feature Reuse

To mitigate the inference inefficiency of MGMs, we aim to construct computationally lightweight
decoding steps that accurately simulate standard many-step MGM decoding at significantly lower
cost. Specifically, we interleave the original T full evaluation steps with T ′ low-cost steps, thereby
increasing the number of decoding steps without increasing computational burden proportionally.
This allows the model to better capture inter-token dependencies, which leads to better speed–fidelity
trade-offs. Importantly, our method requires no change to the model architecture and introduces no
additional training cost, making it a simple plug-in mechanism applicable to a broad range of existing
MGM frameworks.

22 24 26

Number of Updated Tokens

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Si
m

ila
rit

y
of

 C
on

te
xt

 F
ea

tu
re

s

K=2
K=4

K=8
K=16

K=24
K=32

K=48
K=64

K=96
K=128

Figure 2: Context feature stability during itera-
tive decoding. We measure similarity between con-
text representations before and after token updates,
using a pretrained MaskGIT on 50K ImageNet256
samples. At each decoding stage, we extract the
input embeddings to the attention module for the
K already-decoded tokens. These are average-
pooled within each layer to obtain an aggregated
context vector. Cosine similarity is computed be-
tween these vectors before and after updates and
averaged across layers; shaded regions indicate
layer-wise standard deviation. Greater stability at
larger K supports reusing cached features in later
decoding stages.

In each decoding step, the model has to re-
compute Transformer feature embeddings for
all tokens in the sequence, even though only a
small subset of these tokens are actually modi-
fied/unmasked between consecutive steps. This
is necessary because the applied bidirectional
attention mechanism allows every token’s rep-
resentation to depend on all others; thus, even
a small input change can, in principle, propa-
gate globally and alter all token embeddings.
However, we hypothesize that when only a few
tokens are newly updated, the feature embed-
dings of the previously decoded context tokens
change only slightly, reducing the need for fre-
quent recomputation.

To validate this hypothesis, we analyze the
representations computed by a pretrained
MaskGIT [5] model on 50K samples from the
ImageNet256 validation set. For each sample,
we randomly select K tokens as context and
mask the remaining ones, simulating an inter-
mediate decoding state with K already-decoded
tokens. As shown in Figure 2, each curve corre-
sponds to a different value of K, and the x-axis
denotes the number of masked tokens subse-
quently unmasked.

To quantify how the context features evolve dur-
ing decoding, we incrementally unmask/update
a growing number of masked tokens, corre-
sponding to increasing positions along the x-axis, and measure how the feature embeddings of
the K given tokens change as a result. Specifically, we extract the input embeddings to the attention
module (i.e., pre-QKV projection features), average-pool them across the K context tokens at each
layer, and compute the cosine similarity between these aggregated features before and after each
update (y-axis). We repeat this process for multiple values of K ∈ {2, 4, 8, . . . , 128} to simulate
decoding states at various stages.

4

KV Cache

Q

Pr(· |)

Reuse

Full-FE
(t,0)

Local-FE
(t,1)

Local-FE
(t,2)

Grouped Decoding Pipeline

x : t-1 x : t,0 x : t,1

x t-1 x t,0

Recomputed QKV Cached KV

Context tokens Masked target tokensMasked tokens Decoded target tokens

...

step #1

step #t

step #T

...

Pr(· |)

KV Q KV Q KV

Concatenation

...

Figure 3: Grouped Decoding Pipeline with Cached Attention. Inference is organized into T
groups, each performing one Full-FE and several Local-FE steps. In the Full-FE, full attention is
computed over the entire sequence, and KVs for the static context tokens () and other masked
tokens () are cached. In each Local-FE, only the QKVs of the target tokens () are recomputed
(), while the cached KVs () are reused to form the full attention context. The context feature
reuse mechanism effectively reduces computation cost in local evaluation steps.

The results in Figure 2 provide strong empirical support for our hypothesis. Across all values of K,
when only a small number of tokens are updated (left side of the x-axis), the cosine similarity remains
close to 1, indicating that the representations of previously decoded tokens change minimally. This
suggests that attention features for the decoded context can be safely cached and reused in subsequent
steps, enabling more efficient computation.

Moreover, we can observe in Figure 2 that as decoding progresses and the context becomes richer with
K increases, the extent of feature drift further diminishes, suggesting that the internal representations
associated with context tokens become increasingly stable. This empirical evidence suggests that
cached context embeddings can be increasingly reused in later decoding steps, with minimal fidelity
loss introduced. Building on these observations, we propose a grouped decoding strategy that
interleaves full and partial function evaluations to enable context feature reuse and improve inference
efficiency. The overall pipeline is illustrated in Figure 3. Intuitively, the key idea is to cache and reuse
the Transformer feature embeddings of unchanged tokens. We implement this by caching and reusing
their corresponding key-value (KV) pairs in attention computation, as detailed in the following.

Grouped Decoding Pipeline. As illustrated on the left of Figure 3, we organize the MGM inference
process into T grouped decoding stages, where masked tokens () are progressively converted into
decoded context tokens () over time. The detailed structure of each grouped step t is shown in
the central gray box of Figure 3. Within each group t, a target set of masked tokens St is selected
and decoded using multiple light-weight steps. These target tokens are marked in red () and are
initially masked (). As decoding progresses, they are gradually replaced with decoded tokens ().

Each group consists of a Full Function Evaluation (Full-FE) at sub-step (t, 0), followed by lt Local
Function Evaluation (Local-FE) sub-steps (t, 1), . . . , (t, lt). At each sub-step j ∈ [0, lt], a disjoint
subset S(j)

t ⊆ St is decoded and used as context in later sub-steps. At the end of group t, all tokens
in St will be unmasked, serving as the input context for the next group t+ 1.

Full-FE with Cache Construction. At sub-step (t, 0), i.e., the “Full-FE” panel of Figure 3, we
perform a full attention computation over the current sequence x(t−1). This includes computing QKV

5

representations for all tokens. We then cache the KVs for the complement set S̄t, which consists of
the context tokens () and unselected masked tokens (). These cached KVs (highlighted in),
denoted as kcached

S̄t
,vcached

S̄t
, will be reused in subsequent Local-FEs. Next, we decode the first subset

S(0)
t by sampling from the model distribution p(Xi | x(t−1)), producing the updated sequence x(t,0).

Local-FE with Reused KVs. In each Local-FE sub-step (t, j) for j ∈ [1, lt], we decode the subset
S(j)
t based on the current sequence x(t,j−1). Instead of recomputing attention for all tokens, we only

recompute the QKVs for the target subset S(j)
t (highlighted in). These are then concatenated with

the cached KVs to form the full attention context:

attnS(j)
t

= Softmax

(
qS(j)

t
k⊤
1:N

√
dk

)
v1:N ,

where k1:N = Concat(kS(j)
t

,kcached
S̄t

), v1:N = Concat(vS(j)
t

,vcached
S̄t

), dk denotes the dimensionality

of the key/value vectors. Each Local-FE then produces x(t,j) by sampling from the model distribution
conditioned on x(t,j−1). This process continues until all lt Local-FEs are completed. While the initial
Full-FE incurs a full O(N2) cost, each subsequent Local-FE performs a much cheaper update with
complexity O(n̂t ·N), where n̂t = |S(j)

t | ≪ N . Group t then concludes by setting x(t) := x(t,lt).

Efficiency and Fidelity Trade-off. Overall, our method realizes a (T + T ′)-step generation process,
where T ′ =

∑
lt denotes the number of inserted Local-FEs. This strategy effectively adapts the

KV caching mechanism to the bidirectional masked generation. Unlike autoregressive transform-
ers—where each decoding step is inherently cache-friendly due to causal masking—bidirectional
MGMs require periodic full evaluations to prevent error accumulation. Our grouped decoding frame-
work interleaves exact (Full-FE) and approximate (Local-FE) steps, offering a flexible trade-off
between inference speed and generation fidelity.

6 Experiment

Our method ReCAP (Reused Context-Aware Prediction) is a plug-and-play approach that can be
seamlessly integrated into the inference pipeline of existing MGMs. By interleaving full and partial
attention computations, ReCAP significantly reduces the per-step inference cost. In this section, we
evaluate whether the use of Local-FEs can effectively lead to efficiency gains and, more importantly,
whether it can achieve better trade-offs between generation quality and inference speed.

To this end, we apply ReCAP to three representative MGM baselines and conduct a thorough
evaluation. Our experiments span a diverse set of settings, varying in task (class-conditional vs.
unconditional generation) and model architecture (decoder-only vs. encoder-decoder). The selected
baselines are: i) MaskGIT [5]: A widely-used discrete MGM that uses a VQGAN tokenizer [11],
followed by a Transformer trained with a BERT-style masked modeling objective, as described in
Section 3. ii) MAR [29]: A state-of-the-art continuous-valued MGM designed to avoid quantization
artifacts by operating on latent embeddings. It reconstructs masked tokens via a per-token diffusion
loss. (see Appendix D) iii) MAGE [27]: A discrete MGM improving MaskGIT by incorporating a
variable mask ratio training objective, which serves as a strong unconditional generation baseline that
does not rely on pretrained self-supervised features [28, 38].

Among these, MaskGIT uses an decoder-only architecture, while MAR and MAGE adopt an encoder-
decoder architecture following the Masked Autoencoders (MAE) [17]. As demonstrated in the
following sections, ReCAP is model-agnostic and can be effectively applied across diverse model
designs. We report Fréchet Inception Distance (FID) [18] and Inception Score (IS) [46] following
common practice [9]. All inference times are re-evaluated using the official implementations on a
single NVIDIA A800 GPU with a default batch size of 200 and reported as time per image.

6.1 Improving MaskGIT with ReCAP

MaskGIT adopts a cosine decoding schedule and a confidence-based token sampler. When adapting
ReCAP, we use the same token sampler to obtain St after each Full-FE step (see Appendix B).

Following the decoding schedule used in MaskGIT, early decoding steps reveal only a small number of
tokens, while later steps decode progressively more. Recall in Figure 2, we show that context features

6

Table 1: Performance of MaskGIT w/ and w/o ReCAP on ImageNet256 class-conditional gen-
eration w/o CFG [19]. # Steps = T + T ′ denotes the total number of decoding iterations. u is the
number of initial grouped steps without Local-FEs when applying ReCAP. Results show that ReCAP
reliably reduces inference time while maintaining competitive FID.

Steps
MaskGIT-r (Full only) MaskGIT-r+ReCAP
FID↓ Time↓ u # Full-FE(T) # Local-FE(T ′) FID↓ Time↓

16 4.46 0.095 0 8 8 5.02 0.055
8 12 4 4.50 0.076

20 4.18 0.118 10 15 5 4.23 0.094
24 4.09 0.142 10 16 8 4.09 0.107
32 3.97 0.189 12 22 10 3.98 0.137

become more stable as more tokens are decoded. Therefore, we introduce Local-FEs primarily in
the later grouped steps. Specifically, for MaskGIT+ReCAP, let T denote the number of grouped
decoding steps, which also corresponds to the number of Full-FEs (recall from Figure 3 that each
group begins with a Full-FE). We define u as the number of initial steps that only perform Full-FE,
i.e., l1:u = 0. After step u, we insert one Local-FE per step, i.e., lu+1:u+T ′ = 1, where T ′ is the total
number of Local-FEs and the total number of decoding steps equals T + T ′.

0.05 0.08 0.1 0.15 0.2
Inference Time (sec / image)

4.0

4.5

5.0

5.5

6.0

6.5

7.0

FI
D

Ours
MaskGIT-r
MaskGIT
MaskGIT *

AutoNAT
MAR-B
U-ViT-H

Figure 4: FID vs. inference time for
MaskGIT variants and comparative mod-
els. ∗: taken from the MaskGIT pa-
per [5]. †: with CFG [19]. U-ViT [2]
adopts 7 sampling steps in this figure.

To assess the impact of ReCAP, we conduct a controlled
experiment by fixing the total number of decoding steps
T + T ′ and adjusting the allocation between Full- and
Local-FEs for ReCAP via the parameter u. As a base-
line, we replace all Local-FEs with Full-FEs, denoted
MaskGIT-r (Full only), which serves as a principal “up-
per bound” in performance but incurs higher inference
cost. Here, MaskGIT-r represents our re-implemented
MaskGIT with an enhanced sampling schedule, demon-
strating improved inference scaling with increasing de-
coding steps compared to the original MaskGIT in Fig-
ure 4 (see Appendix A). The FIDs and the corresponding
runtimes per image of both methods are presented in Ta-
ble 1. In each row using a certain number of total steps,
MaskGIT-r+ReCAP achieves notable inference speedups
by replacing a subset of Full-FEs with cheaper Local-FEs.
For example, with 32 total steps, ReCAP reduces inference
time from 0.189s to 0.137s per image while maintaining a
nearly identical FID (3.97 vs. 3.98). With 20 steps, although the FID slightly increases from 4.18
to 4.23, the inference time drops to match that of the 16-step baseline—while significantly outper-
forming it (FID 4.46). These results demonstrate that ReCAP effectively improves quality-speed
trade-offs of the base MaskGIT, achieving comparable or better performance at lower cost.

We further visualize this improvement in Figure 4, comparing ReCAP against various strong baselines.
The “MaskGIT-r (Full only)” and “MaskGIT-r+ReCAP” in Table 1 correspond to MaskGIT-r and
Ours in Figure 4, respectively. By substantially reducing inference time while preserving generation
quality, ReCAP enhances the base model’s inference-scaling behavior. Moreover, without relying
on classifier-free guidance (CFG) [19], our ReCAP-augmented model achieves a more favorable
quality–efficiency trade-off compared to advanced continuous diffusion models such as U-ViT-
H† [2], which incorporate both DPM solvers [33, 34] and CFG. Our performance is also comparable
to AutoNAT [36], which improves sampling via an extensive hyperparameter search. However,
AutoNAT does not generalize well to longer decoding schedules. In contrast, ReCAP is broadly
applicable as long as the performance of the base model improves as we increase the number of steps.

We provide a comprehensive comparison against more strong generative baselines in Appendix E.1,
such as Token-Critic [25] and DPC [26] with learnable guidance, StraIT employing hierarchical
modeling [40]. Notably, our MaskGIT-r baseline—obtained by simply adjusting the sampling
schedule and increasing decoding steps—already outperforms these approaches with more complex
architectures or guidance mechanisms. ReCAP further improves MaskGIT-r by offering plug-and-play
efficiency gains, requiring no additional training or architectural modifications.

7

0.050.2 0.4 0.6 1.0
Inference Time (sec / image)

1.8

2.0

2.2

2.4

FI
D

MAR-L+ReCAP(Ours)
MAR-L
VAR-d24*

VAR-d30 *

DiT-XL
U-ViT-H
REPA
REPA

0.0 0.5 1.0 1.5 2.0 2.5
Inference Time (sec / image)

1.5

1.6

1.7

1.8

1.9

2.0

2.1

FI
D

MAR-H+ReCAP(Ours)
MAR-H
VAR-d30 *

REPA
REPA

Figure 5: Speed/Performance trade-off for MAR variants and SoTA baselines. ReCAP consistently
improves inference efficiency of MAR-Large and -Huge. VARs [48] are SoTA AR models performing
next-scale prediction, ∗ denotes the use of KV caching [47]. REPA [56], a SoTA flow-matching
model relying on vision foundation models [38], ‡ denotes the use of advanced guidance interval
sampling [21]. DPM solvers [33, 34] augment DiT [39] and U-ViT [2].

6.2 ReCAP for Continuous-Valued MGMs

We further adapt ReCAP to the state-of-the-art continuous-valued MGMs, MAR [29]. Unlike
MaskGIT, MAR adopts a MAE-style [17] encoder-decoder architecture, where the encoder operates
only on unmasked tokens, while the decoder process the full sequence. Both components employ
bidirectional full attention. To fully improve efficiency, we incorporate ReCAP into both the encoder
and decoder of MAR-Large and MAR-Huge. For sampling, MAR uses a random sampler for token
selection, and additionally requires a denoising MLP process for token reconstruction.3 Following
Section 6.1, we set l1:u = 0 and lu+1:u+T ′ = 1 with u = T+T ′

2 by default. Other sampling
configurations, such as the CFG scale, all follow the official MAR codebase.

Table 2: Benchmarking with state-of-the-art models on ImageNet256 class-conditional generation
with classifier-free guidance. We compare ReCAP against representative diffusion baselines such as
U-ViT[2], DiT[39], and REPA[56], each evaluated under varying sampling steps to illustrate their
step-scaling behavior. Notably, to achieve a FID of 1.8, the original MAR-L requires ∼0.6s per
image, whereas our MAR-L+ReCAP only needs 0.33s, outperforming the SoTA REPA‡ (0.35s). ‡

denotes the use of interval guidance [21]

Method # Params NFE FID ↓ IS ↑ Time (s)↓
Diffusion Models
ADM-G [9] 554M 250×2 4.59 186.7 –
VDM++ [20] 2B 512×2 2.12 267.7 –
LDM-4-G [45] 400M 250×2 3.60 247.7 –
U-ViT-H/2 [2] 501M 50×2 2.29 263.9 0.33

25×2 2.64 262.9 0.22
7×2 4.03 234.5 0.14

DiT-XL/2 [39] 675M 250×2 2.27 276.2 1.71
150×2 2.39 271.6 1.03
50×2 3.75 243.5 0.35

DiffiT [16] 561M 250×2 1.73 276.5 –
MDTv2-XL/2 [13] 676M 250×2 1.58 314.7 –
CausalFusion-H [6] 1B 250×2 1.64 - -

Flow-Matching Models
SiT-XL [35] 675M 250×2 2.06 270.3 –
REPA [56] 675M 250×2 1.80 284.0 1.76
REPA‡ [56] 675M 250×1.4 1.42 305.7 1.50

100×2 1.49 299.7 0.56
60×1.4 1.80 291.2 0.35

Method # Params NFE FID ↓ IS ↑ Time (s)↓
VARs
GIVT-Causal-L+A [49] 1.67B 256×2 2.59 – –
VAR-d20 [48] 600M 10×2 2.57 302.6 –
VAR-d24 [48] 1B 10×2 2.09 312.9 0.03
VAR-d30 [48] 2B 10×2 1.92 323.1 0.04

MGMs
MAR-L [29] 479M 256×2 1.76 294.2 1.20

128×2 1.79 294.2 0.60
64×2 1.83 292.7 0.31
20×2 3.12 276.7 0.14

MAR-H [29] 943M 256×2 1.56 301.6 2.40
128×2 1.59 300.1 1.20
48×2 1.69 292.5 0.47

Ours
MAR-L+ReCAP 479M (72+24)×2 1.77 293.9 0.37

(64+20)×2 1.80 293.9 0.33
(20+8)×2 2.41 274.8 0.145

MAR-H+ReCAP 943M (96+32)×2 1.57 300.6 1.00
(36+12)×2 1.69 291.9 0.40

As shown in Figure 5, MAR-L and MAR-H require many decoding steps to achieve state-of-
the-art FID, resulting in considerable inference cost. Augmenting with ReCAP offers substantial
speedup—achieve up to 2∼2.4× faster inference while maintaining the performance (±0.01 FID) to
their original counterparts. Furthermore, MAR+ReCAP matches the best performance of REPA [56],

3In MAR, inference cost stems from both transformer attention and the per-token diffusion MLP. A detailed
cost breakdown is provided in Appendix E.2.

8

which is obtained by adopting the advanced guidance interval sampling [21]. Notably, REPA
is a leading flow-matching model that leverages self-supervised features from vision foundation
models [38] for training. While autoregressive models like VAR [48] remain more efficient due to
the use of KV caching [47], MAR+ReCAP outperforms them in generation quality.

We further benchmark our method against a wide range of state-of-the-art generative models un-
der classifier-free guidance, as shown in Figure 5. Our ReCAP-augmented variants demonstrate
substantial improvements in inference efficiency. For instance, MAR-H+ReCAP with (96+32) de-
coding steps, i.e., 96 Full-FEs and 32 Local-FEs, achieves a FID of 1.57—closely matching the
original MAR-H at 256 steps (FID 1.56)—while reducing inference time from 2.4s to 1.0s per image.
Likewise, MAR-L+ReCAP with (64+20) steps achieves a FID of 1.80 in just 0.33s, outperforming
the baseline MAR-L (FID 1.83 at 64 steps) while incurring only an additional 0.02s of inference
time from 20 local evaluations. These results highlight the plug-and-play effectiveness of ReCAP
in accelerating inference for continuous-valued masked models, enabling strong efficiency–quality
trade-offs even when using classifier-free guidance.

6.3 MAGE with ReCAP for Unconditional Generation

0.3 0.5 0.8 1.0 1.5
Inference Time (sec / image)

7.12
7.3
7.5

8.0

8.5

9.0

FI
D

MAGE+ReCAP(Ours)
MAGE

Figure 6: FID vs. inference time for un-
conditional generation on ImageNet256.
ReCAP consistently achieves lower in-
ference cost across decoding steps, while
matching or improving FID.

We further evaluate ReCAP on MAGE [27], a state-of-
the-art MGM for unconditional generation without con-
ditioning on self-supervised representations [28]. MAGE
operates on discrete visual tokens using a confidence-
based sampling strategy similar to MaskGIT, but adopts
an encoder-decoder architecture akin to MAR. Accord-
ingly, we apply ReCAP in the same manner as in previous
experiments. Specifically, we set u = 0, meaning that
each grouped decoding step consists of a Full-FE followed
immediately by a Local-FE.

The original MAGE paper only reports performance at
20 decoding steps with FID=9.1, already surpassing prior
unconditional models (see Appendix E.3). As shown in
Figure 6, extending the number of decoding steps to 128
leads to significant FID improvements (down to 7.12), but
also incurs substantial inference cost (0.25s → 1.5s per
image). After incorporating ReCAP, we observe a clear
improvement in efficiency scaling: inference time is significantly reduced across all steps with
negligible performance loss. Detailed FID/IS/time values and sampling configurations are provided
in Appendix E.3. These results align well with our findings in Section 6.1 and Section 6.2, which
further highlight the general applicability of ReCAP.

7 Limitation and Discussion

Our work presents ReCAP, a plug-and-play module designed to accelerate MGM inference. When
plugged into a base MGM, ReCAP effectively amplifies the model’s inference scaling capability,
achieving stronger generation quality at reduced cost. However, this also implies that ReCAP’s
effectiveness depends on the base model already exhibiting meaningful improvements via scaling
decoding steps. Moreover, its assumption of stable context features holds best in high-step regimes,
making it more beneficial for large models or long-sequence generation tasks.

Furthermore, our core idea is to construct low-cost steps for non-autoregressive (NAR) masked
generation, with ReCAP serving as a simple yet effective instantiation. This opens several promising
directions for future work. One is to make the insertion of cheap partial evaluations more adaptive
and informed, potentially by some learning strategies. Another is to explore principled ways of
combining the outputs from full and partial evaluations to further close the performance gap. More
broadly, the concept of constructing low-cost steps could be extended beyond attention reuse.

Finally, we note that ReCAP is a general framework for accelerating NAR sequence models. While
this paper focuses on image generation, we envision extending ReCAP to other domains, such as
language modeling, protein and molecule generation, and beyond.

9

Acknowledgements. This work was funded in part by the National Science and Technology Major
Project (2022ZD0114902), DARPA ANSR, CODORD, and SAFRON programs under awards
FA8750-23-2-0004, HR00112590089, and HR00112530141, NSF grant IIS1943641, and gifts from
Adobe Research, Cisco Research, and Amazon. Approved for public release; distribution is unlimited.

References
[1] Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured

denoising diffusion models in discrete state-spaces. Advances in neural information processing systems,
34:17981–17993, 2021.

[2] Fan Bao, Chongxuan Li, Yue Cao, and Jun Zhu. All are worth words: a vit backbone for score-based
diffusion models. In NeurIPS 2022 Workshop on Score-Based Methods, 2022.

[3] Hangbo Bao, Li Dong, Songhao Piao, and Furu Wei. Beit: Bert pre-training of image transformers. In
International Conference on Learning Representations (ICLR), 2022.

[4] Huiwen Chang, Han Zhang, Jarred Barber, Aaron Maschinot, Jose Lezama, Lu Jiang, Ming-Hsuan Yang,
Kevin Murphy, William T. Freeman, Michael Rubinstein, Yuanzhen Li, and Dilip Krishnan. Muse: Text-to-
image generation via masked generative transformers. In Proceedings of the 40th International Conference
on Machine Learning (ICML), pages 4055–4075. PMLR, 2023.

[5] Huiwen Chang, Han Zhang, Lu Jiang, Ce Liu, and William T. Freeman. Maskgit: Masked generative image
transformer. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pages 11315–11325, 2022.

[6] Chaorui Deng, Deyao Zhu, Kunchang Li, Shi Guang, and Haoqi Fan. Causal diffusion transformers for
generative modeling. arXiv preprint arXiv:2412.12095, 2024.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: A large-scale hierarchical
image database. In CVPR, 2009.

[8] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
pages 4171–4186, 2019.

[9] Prafulla Dhariwal and Alexander Nichol. Diffusion models beat GANs on image synthesis. In NeurIPS,
2021.

[10] Patrick Esser, Robin Rombach, Andreas Blattmann, and Bjorn Ommer. Imagebart: Bidirectional context
with multinomial diffusion for autoregressive image synthesis. Advances in neural information processing
systems, 34:3518–3532, 2021.

[11] Patrick Esser, Robin Rombach, and Björn Ommer. Taming transformers for high-resolution image synthesis.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages
12873–12883, 2021.

[12] Lijie Fan, Tianhong Li, Siyang Qin, Yuanzhen Li, Chen Sun, Michael Rubinstein, Deqing Sun, Kaiming
He, and Yonglong Tian. Fluid: Scaling autoregressive text-to-image generative models with continuous
tokens. arXiv preprint arXiv:2410.13863, 2024.

[13] Shanghua Gao, Pan Zhou, Ming-Ming Cheng, and Shuicheng Yan. Mdtv2: Masked diffusion transformer
is a strong image synthesizer. arXiv preprint arXiv:2303.14389, 2023.

[14] Jiatao Gu and Xiang Kong. Fully non-autoregressive neural machine translation: Tricks of the trade. arXiv
preprint arXiv:2012.15833, 2020.

[15] Shuyang Gu, Dong Chen, Jianmin Bao, Fang Wen, Bo Zhang, Dongdong Chen, Lu Yuan, and Baining Guo.
Vector quantized diffusion model for text-to-image synthesis. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pages 10696–10706, 2022.

[16] Ali Hatamizadeh, Jiaming Song, Guilin Liu, Jan Kautz, and Arash Vahdat. Diffit: Diffusion vision
transformers for image generation. In European Conference on Computer Vision, pages 37–55. Springer,
2024.

[17] Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked autoencoders
are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), pages 15979–15988, 2022.

[18] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. GANs
trained by a two time-scale update rule converge to a local nash equilibrium. In NIP, 2017.

[19] Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv:2207.12598, 2022.

10

[20] Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36:65484–65516, 2023.

[21] Tuomas Kynkäänniemi, Miika Aittala, Tero Karras, Samuli Laine, Timo Aila, and Jaakko Lehtinen.
Applying guidance in a limited interval improves sample and distribution quality in diffusion models. arXiv
preprint arXiv:2404.07724, 2024.

[22] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and Wook-Shin Han. Autoregressive image
generation using residual quantization. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 11523–11532, 2022.

[23] Doyup Lee, Chiheon Kim, Saehoon Kim, Minsu Cho, and WOOK SHIN HAN. Draft-and-revise: Effective
image generation with contextual rq-transformer. Advances in Neural Information Processing Systems,
35:30127–30138, 2022.

[24] Yaniv Leviathan, Matan Kalman, and Yossi Matias. Fast inference from transformers via speculative
decoding. In International Conference on Machine Learning, pages 19274–19286. PMLR, 2023.

[25] José Lezama, Huiwen Chang, Lu Jiang, and Irfan Essa. Improved masked image generation with token-
critic. In European Conference on Computer Vision, pages 70–86. Springer, 2022.

[26] Jose Lezama, Tim Salimans, Lu Jiang, Huiwen Chang, Jonathan Ho, and Irfan Essa. Discrete predictor-
corrector diffusion models for image synthesis. In The Eleventh International Conference on Learning
Representations, 2022.

[27] Tianhong Li, Huiwen Chang, Shlok Kumar Mishra, Han Zhang, Dina Katabi, and Dilip Krishnan. Mage:
Masked generative encoder to unify representation learning and image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 12345–12355, 2023.

[28] Tianhong Li, Dina Katabi, and Kaiming He. Return of unconditional generation: A self-supervised
representation generation method. Advances in Neural Information Processing Systems, 37:125441–
125468, 2024.

[29] Tianhong Li, Yonglong Tian, He Li, Mingyang Deng, and Kaiming He. Autoregressive image generation
without vector quantization. Advances in Neural Information Processing Systems, 37:56424–56445, 2024.

[30] Anji Liu, Oliver Broadrick, Mathias Niepert, and Guy Van den Broeck. Discrete copula diffusion. arXiv
preprint arXiv:2410.01949, 2024.

[31] Marjan Ghazvininejad Omer Levy Yinhan Liu and Luke Zettlemoyer. Maskpredict: Parallel decoding of
conditional masked language models. In Proceedings of the 2019 Conference on Empirical Methods in
Natural Language Processing.—-2019, 2019.

[32] Aaron Lou, Chenlin Meng, and Stefano Ermon. Discrete diffusion modeling by estimating the ratios of the
data distribution. arXiv preprint arXiv:2310.16834, 2023.

[33] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver: A fast ode
solver for diffusion probabilistic model sampling in around 10 steps. Advances in Neural Information
Processing Systems, 35:5775–5787, 2022.

[34] Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast solver
for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095, 2022.

[35] Nanye Ma, Mark Goldstein, Michael S Albergo, Nicholas M Boffi, Eric Vanden-Eijnden, and Saining
Xie. Sit: Exploring flow and diffusion-based generative models with scalable interpolant transformers. In
European Conference on Computer Vision, pages 23–40. Springer, 2024.

[36] Zanlin Ni, Yulin Wang, Renping Zhou, Jiayi Guo, Jinyi Hu, Zhiyuan Liu, Shiji Song, Yuan Yao, and Gao
Huang. Revisiting non-autoregressive transformers for efficient image synthesis. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 7007–7016, 2024.

[37] Zanlin Ni, Yulin Wang, Renping Zhou, Rui Lu, Jiayi Guo, Jinyi Hu, Zhiyuan Liu, Yuan Yao, and Gao
Huang. Adanat: Exploring adaptive policy for token-based image generation. In European Conference on
Computer Vision, pages 302–319. Springer, 2024.

[38] Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov, Pierre
Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning robust visual
features without supervision. arXiv preprint arXiv:2304.07193, 2023.

[39] William Peebles and Saining Xie. Scalable diffusion models with Transformers. In ICCV, 2023.

[40] Shengju Qian, Huiwen Chang, Yuanzhen Li, Zizhao Zhang, Jiaya Jia, and Han Zhang. Strait: Non-
autoregressive generation with stratified image transformer. arXiv preprint arXiv:2303.00750, 2023.

[41] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
by generative pre-training. OpenAI, 2018.

[42] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models
are unsupervised multitask learners. 2019.

11

[43] Ali Razavi, Aäron van den Oord, and Oriol Vinyals. Generating diverse high-fidelity images with vq-vae-2.
In Advances in Neural Information Processing Systems (NeurIPS), volume 32, pages 14837–14847, 2019.

[44] Sucheng Ren, Qihang Yu, Ju He, Xiaohui Shen, Alan Yuille, and Liang-Chieh Chen. Beyond next-token:
Next-x prediction for autoregressive visual generation. arXiv preprint arXiv:2502.20388, 2025.

[45] Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-resolution
image synthesis with latent diffusion models. In CVPR, 2022.

[46] Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen. Improved
techniques for training GANs. In NeurIPS, 2016.

[47] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[48] Keyu Tian, Yi Jiang, Zehuan Yuan, Bingyue Peng, and Liwei Wang. Visual autoregressive modeling:
Scalable image generation via next-scale prediction. Advances in neural information processing systems,
37:84839–84865, 2024.

[49] Michael Tschannen, Cian Eastwood, and Fabian Mentzer. Givt: Generative infinite-vocabulary transformers.
In European Conference on Computer Vision, pages 292–309. Springer, 2024.

[50] Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learning. In
Advances in Neural Information Processing Systems (NeurIPS), volume 30, pages 6306–6315, 2017.

[51] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, volume 30, pages 5998–6008, 2017.

[52] Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh Chen.
Maskbit: Embedding-free image generation via bit tokens. arXiv preprint arXiv:2409.16211, 2024.

[53] Zebin You, Jingyang Ou, Xiaolu Zhang, Jun Hu, Jun Zhou, and Chongxuan Li. Effective and efficient
masked image generation models. arXiv preprint arXiv:2503.07197, 2025.

[54] Jiahui Yu, Xin Li, Jing Yu Koh, Han Zhang, Ruoming Pang, James Qin, Alexander Ku, Yuanzhong Xu,
Jason Baldridge, and Yonghui Wu. Vector-quantized image modeling with improved vqgan. arXiv preprint
arXiv:2110.04627, 2021.

[55] Lijun Yu, José Lezama, Nitesh B Gundavarapu, Luca Versari, Kihyuk Sohn, David Minnen, Yong Cheng,
Vighnesh Birodkar, Agrim Gupta, Xiuye Gu, et al. Language model beats diffusion–tokenizer is key to
visual generation. arXiv preprint arXiv:2310.05737, 2023.

[56] Sihyun Yu, Sangkyung Kwak, Huiwon Jang, Jongheon Jeong, Jonathan Huang, Jinwoo Shin, and Saining
Xie. Representation alignment for generation: Training diffusion transformers is easier than you think.
arXiv preprint arXiv:2410.06940, 2024.

[57] Yixiu Zhao, Jiaxin Shi, Feng Chen, Shaul Druckmann, Lester Mackey, and Scott Linderman. Informed
correctors for discrete diffusion models. arXiv preprint arXiv:2407.21243, 2024.

12

Supplementary Material
A Implementation Details of MaskGIT-r

First, we adopt the pretrained MaskGIT from [36], with the Transformer architecture following
U-ViT [2] (25 layers, 768 embedding dimensions).

As reported in the original MaskGIT paper [5], performance does not improve consistently when using
more decoding steps, but instead peaks at a “sweet spot” (typically 8–12 steps) before deteriorating.
We observe the same trend in Figure 4 under the default sampling configuration:

• Constant sampling temperature τ1(t) = 1.0 (no temperature scaling)

• Choice temperature τ2(t) initialized at τ2(1) = 4.5 with linear decay

• Unmasking schedule following cosine function:

nt =

⌊
cos

(
πt

2T

)
· L
⌋
, t ∈ {0, 1, ..., T − 1} (1)

where T is the total generation steps and L is the sequence length. The definitions of temperature
parameters τ1 and τ2 are detailed in Appendix C.

The original paper [5] hypothesizes that such sweet spots exist because excessive iterations may
discourage the model from retaining less confident predictions, thereby reducing token diversity. We
observe that the lack of performance improvement with more decoding steps stems from suboptimal
sampling schedules, which obscure the scaling trend. To address the diversity issue, we propose the
following modifications for longer decoding steps (16, 20, 24, 32):

• Increased initial choice temperature to τ2(1) = 5.5 (still with linear decay)

• Temperature scaling for token sampling (τ1(t)):

τ1(t) = τlow + (1− t0.5)(1.0− τlow) (2)

where τhigh = 1.0 and τlow takes values 0.65/0.68/0.72/0.75 for 16/20/24/32 steps respec-
tively.

• Polynomial unmasking schedule (replacing cosine):

nt =
⌊
(1− t2.5) · L

⌋
(3)

As demonstrated in Figure 4, our revised sampling schedule in MaskGIT-r partially mitigates the
diversity issue, enabling consistent improvements from 12 to 32 steps.

B Implementation Details of ReCAP

When applying ReCAP to both MaskGIT-r and MAGE, we maintain the original confidence-based
sampling approach where token selection occurs after each full forward pass (Full-FE). Since
confidence scores C(t)

i = log p(Xi = x
(t)
i |x(t−1)) depend on realized token values, we first sample

all masked tokens Xi ∼ p(·|x(t−1)) (with fixed temperature τ1 = 1.0) before selecting subset
St using the choice temperature schedule from MaskGIT-r (see Appendix C for sampling details).
The target subsets {Sj

t }
lt
j=0 are then constructed by: (1) sorting St by descending confidence, (2)

partitioning sequentially according to the polynomial unmasking schedule in Equation 3, and (3)
sampling each Sj

t using MaskGIT-r’s sampling temperature schedule, i.e., Equation 2. This preserves
the original scheduling behavior while adapting to ReCAP’s grouped decoding framework.

C Confidence-based Token Sampler

Unlike random selection, the confidence-based token sampler prioritizes tokens based on their
confidence scores. Since confidence depends on token values x(t)

i , the method first performs parallel

13

Table 3: System-level comparison on ImageNet256 conditional generation w/o CFG. Our enhanced
baseline, MaskGIT-r, achieves competitive performance compared to more complex approaches.
When augmented with ReCAP, MaskGIT-r+ReCAP achieves comparable or better FID with reduced
runtime, offering a plug-and-play efficiency boost. Step counts for ReCAP-enhanced models are
reported as T+T ′, indicating the number of Full-FEs and Local-FEs, respectively.

Method #Params NFE FID ↓ IS ↑ Time per image (ms)↓
ARs
VQGAN [11] 1.4B 256 15.78 74.3 -
RQTran. [22] 3.8B 68 7.55 134.0 -
ViTVQ [54] 1.7B 1024 4.17 175.1 -

Discrete diffusion models
VQ-Diffusion [15] 518M 100 11.89 - -
Informed corrector [57] 230M 17 6.45 185.9 -

Masked models
MaskGIT [5] 227M 8 6.18 182.1 0.05
MAGE [27] 230M 20 6.93 - -
Draft-and-revise [23] 371M 64 5.45 172.6 -
StraIT [40] 863M 12 3.97 214.1 -
w/ learnable guidance
DPC [26] 391M 180 4.45 244.8 -
MaskGIT + Token-Critic [25] 422M 36 4.69 174.5 -
w/ sampling hyperparameter search
MaskGIT +AutoNAT 194M 12 4.45 193.3 0.07
w/ continuous-valued tokens
MAR-B [29] 208M 64 4.33 172.4 0.18
MDTv2-XL/2 [13] 676M 250 5.06 155.6 -
MaskGIT + GIVT [49] 304M 16 4.64 - -

Ours
MaskGIT-r 194M 12 5.49 205.6 0.07

16 4.46 196.3 0.10
20 4.18 194.0 0.12
24 4.09 188.4 0.14
32 3.97 184.9 0.19

MaskGIT-r(cache)+ReCAP 194M 8+8 5.02 166.6 0.05
12+4 4.50 192.1 0.08
15+5 4.23 193.4 0.09
16+8 4.09 186.5 0.11
22+10 3.98 183.8 0.14

sampling of all masked tokens from the conditional distribution pτ1(t)(Xi | x(t−1)), where τ1(t) is
the sampling temperature scheduling function.

For each masked position i ∈ Mt, the confidence score is computed as:

C
(t)
i = log p(Xi = x

(t)
i | x(t−1)) (4)

The subset St is then sampled without replacement from Mt according to the normalized probabili-
ties:

Softmax
(
C(t)

τ2(t)

)
(5)

where τ2(·) is the choice temperature scheduling function. In practice, this sampling procedure is
efficiently implemented using the Gumbel-Top-k trick, which provides a numerically stable way
to sample from a categorical distribution while preserving the original ranking based on confidence
scores.

14

D Continuous-valued MGMs

Apart from discrete-valued tokenizers, some approaches omit the quantization step and directly
generate continuous-valued tokens [29], where each Xi is a continuous embedding. For modeling,
continuous-valued MGMs additionally incorporate a diffusion process for reconstructing the masked
tokens. Specifically, the transformer first produces continuous embeddings z1:N = fattn(xM) ∈
RN×d. At masked positions i, the embedding zi serves as a noisy latent variable from which the
ground-truth token xi is reconstructed by modeling the conditional probability p(xi|zi) using a
per-token diffusion loss:

L(zi, xi) = Eε,td

[
∥ε− ε ∗ θ(xi|td, zi,td)∥

2
]
.

where td is the diffusion timestep, ε ∼ N (0, I), and θ denotes a denoising MLP model. The gradients
from this loss with respect to zi are backpropagated to update the parameters of Transformer.

E Additional Experiment Results

E.1 System Comparison on Class-conditional Generation w/o CFG

Table 3 compares our method with a wide range of strong generative baselines. MaskGIT-r, obtained
by simply increasing the number of decoding steps and adjusting the sampling schedule, already
outperforms many approaches with sophisticated designs, such as Token-Critic [25] and DPC [26],
which require additional modules or learnable guidance. Remarkably, at 32 steps, MaskGIT-r matches
the performance of StraIT [40]—a significantly larger model that performs hierarchical modeling.
Crucially, our ReCAP-enhanced variant further improves upon MaskGIT-r, improving efficiency for
free without retraining or architectural modifications.

E.2 Cost Breakdown of MAR

Table 4: Cost Breakdown of MAR Models. Diff Time denotes the time spent on denoising MLP per
image. ReCAP configurations show the (#Full-FE + #Local-FE) steps structure.

Model #Params NFE FID Time(s) Diff Time(s)

MAR-L 479M 256×2 1.76 1.20 0.47
128×2 1.79 0.60 0.25
64×2 1.83 0.31 0.14
20×2 3.12 0.14 0.086

MAR-L+ReCAP (72+24)×2 1.77 0.37 0.16
(64+20)×2 1.80 0.33 0.14
(20+8)×2 2.41 0.145 0.08

MAR-H 943M 256×2 1.56 2.40 1.03
128×2 1.59 1.20 0.54
48×2 1.69 0.47 0.23

MAR-H+ReCAP (96+32)×2 1.57 1.00 0.46
(36+12)×2 1.69 0.40 0.20

As shown in Table 4, the original MAR architecture uses 100 denoising MLP steps, while our
ReCAP implementation reduces this to 50 steps for Local-FE for further acceleration. The remaining
computation time primarily comes from attention operations in Transformer blocks, which constitutes
the main optimization target of ReCAP. The table demonstrates that ReCAP maintains comparable
FID scores while significantly reducing inference time, with the denoising MLP accounting for a
consistent portion of the total latency across different configurations.

15

Figure 7: Selected qualitative examples of class-conditional image generation on ImageNet256
using our MAR-L+ReCAP model with (64+20)×2 NFE configuration (FID 1.80, IS 293.9).

E.3 Detailed Results of MAGE and MAGE+ReCAP

As presented in Table 5, we evaluate the unconditional generation performance of both MAGE and
our proposed MAGE+ReCAP on ImageNet 256×256. The table demonstrates that MAGE+ReCAP
achieves comparable FID and IS scores to the original MAGE while maintaining faster generation
speed. Both MAGE and MAGE+ReCAP employ the confidence-based token sampler with linearly
decaying choice temperature, where the initial temperature is scaled according to the total NFE:
τinit = {6.0, 6.5, 7.0, 8.0, 8.5, 9.0, 9.5, 12.0, 13.0} for NFE ∈ {20, 30, 40, 50, 60, 70, 80, 100, 128}
respectively. This progressive temperature scheduling strategy enhances diversity in early generation
steps while maintaining sample quality in later stages. The (#Full-FE + #Local-FE) step configuration

16

Table 5: Unconditional generation performance on ImageNet 256×256. Results compare MAGE and
MAGE+ReCAP across different number of function evaluations (NFE), showing Fréchet Inception
Distance (FID ↓), Inception Score (IS ↑), and generation time. ReCAP configurations show (#Full-FE
+ #Local-FE) steps structure.

Method #Params NFE FID IS Time(s)

ADM 554M - 26.2 39.70 -

MaskGIT 203M - 20.7 42.08 -

MAGE 439M 20 9.10 105.1 0.245
30 8.44 116.1 0.366
40 8.04 122.3 0.487
50 7.66 123.9 0.608
60 7.47 125.7 0.729
70 7.42 127.3 0.85
80 7.33 128.3 0.971
100 7.29 124.6 1.215
128 7.12 125.4 1.56

MAGE+ReCAP 20+20 8.26 110.2 0.271
25+25 7.89 117.3 0.335
30+30 7.57 117.4 0.399
35+35 7.46 121.8 0.463
40+40 7.38 124.9 0.527
50+50 7.25 124.3 0.654
80+48 7.14 126.2 1.018

in ReCAP provides flexible trade-offs between quality and speed, with all variants outperforming
previous baselines like ADM and MaskGIT.

17

	Introduction
	Related Work
	Preliminaries of MGMs
	The Inference Challenge of MGMs
	Inference Scaling via Context Feature Reuse
	Experiment
	Improving MaskGIT with ReCAP
	ReCAP for Continuous-Valued MGMs
	MAGE with ReCAP for Unconditional Generation

	Limitation and Discussion
	Implementation Details of MaskGIT-r
	Implementation Details of ReCAP
	Confidence-based Token Sampler
	Continuous-valued MGMs
	Additional Experiment Results
	System Comparison on Class-conditional Generation w/o CFG
	Cost Breakdown of MAR
	Detailed Results of MAGE and MAGE+ReCAP

