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About the Tutorial

* The tutorial is about
— deep connections between Al and DBs
— a unified view on probabilistic reasoning
— a logical approach to prob. reasoning

* The tutorial is NOT an exhaustive
overview of lifted algorithms for graphical
models (see references at the end)
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« StarAl workshop on Monday
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Part 1: Motivation

* Why do we need relational representations
of uncertainty?

* Why do we need probabilistic queries?

 Why do we need lifted inference
algorithms?



Why Relational Data?

« Our data is already relational!
— Companies run relational databases

— Scientific data is relational:
» Large Hadron Collider generated 25PB in 2012
« LSST Telescope will produce 30TB per night

» Big data Is big business:
— Oracle: $7.1BN in sales

— IBM: $3.2BN in sales OOQ
— Microsoft: $2.6BN in sales '

[Gartner’06]



Why Probabilistic Relational Data?

» Relational data Is increasingly probabilistic
— NELL machine reading (>50M tuples)
— Google Knowledge Vault (>2BN tuples)
— DeepDive (>7M tuples)

« Data iIs inferred from unstructured
iInformation using statistical models

— Learned from the web, large text corpora,
ontologies, etc.

— The learned/extracted data is relational

[Carlson’10, Dong'14, Niu'12]
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Representation:
Probabilistic Databases

* Tuple-independent probabilistic databases

§ é Actor Director Prob
&’ Brando 0.9 E Brando Coppola 0.9
Cruise 0.8 o Coppola Brando 0.2
Coppola 0.1 = Cruise Coppola 0.1

* Query: SQL or First-order logic

SELECT Actor.name Q(x) = 3y Actor(x) A WorkedFor(x,y) '

FROM Actor, WorkedFor
WHERE Actor.name = WorkedFor.actor
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> 570 million entities

> 18 billion tuples

Ubergizmo - 3 days ago
Android 4.4 KitKat marks a milestone for Google as they have named
their mobile operating system after a branded chocolate — although ...

Larry Page - Forbes
www forbes.com/profile/larry-page/ ~
Larry Page on Forbes - #20 Billionaires, #20 Powerful People, #13 Forbes 400

Larry Page - Google+

https//plus google com/+LarryPage ~
by Larry Page - in 6,606,272 Google+ circles
Dear Google users— You may be aware of press reports alleging that

Internet companies have joined 3 secret U.S, government program called
PRISH to give ...

Management — Com - I

www.google com/about/company/facts/management/ ~

Larry Page and Sergey Brin founded Google in September 1998. Since then, the
company has grown to more than 20,000 employees worldwide, with a ...

Larry Page Biography - Facts Birthday. Life Story - Biography com
www.biography.com » People *

You dont need a search engine to find out all there is to know about Larry Page, co-
founder of Google. Just come to Biography.com!
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Why Probabilistic Queries?
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Larry Page

Lawrence “Larry” Page is an American computer scientist and Internet
entrepreneur who is the co-founder of Google, alongside Sergey Brin.

On April 4, 2011, Page succeeded Eric Schmiact as the chief executive

officer of Google

Born: March 26, 1973 (age 40), East Lansing, M

Height: 5" 117 (1.80 m)

Spouse: Lucinda Southworth (m. 2007)

Siblings: Carl Victor Page, Jr

Education: East Lansing High School (1987-1991), More
Awards: Marconi Prize, TR100

Recent posts

Just opened the new Android release. KitKat!

People also search for




What we'd like to do...

Has anyone published a paper with both Erdos and Einstein

All News Images Videos Shopping More ~ Search tools

About 82,400 results (0.73 seconds)

Erddés number - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Erdés _number v Wikipedia ~

He published more papers during his lifetime (at least 1,525) than any other ...
Anybody else's Erdés number is k + 1 where kK is the lowest Erdds number of any

coauthor. ... Albert Einstein and Sheldon Lee Glashow have an Erdés number of 2. ...

and mathematician Ruth Williams, both of whom have an Erdés number of 2.

Erdés—Bacon number - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Erdés—Bacon_number » Wikipedia ~

This article possibly contains previously unpublished synthesis of published ... Her
paper gives her an Erdés number of 4, and a Bacon number of 2, both of ...

=



Erdos Is In the Knowledge Graph

Paul Erdos

All Images Videos Books News More * Search tools

About 333,000 results (0.35 seconds)

Paul Erdés - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Paul_Erdés  Wikipedia

Paul Erd6s was a Hungarian Jewish mathematician. He was one of the most prolific
mathematicians of the 20th century. He was known both for his social ...

Fan Chung - Ronald Graham - Béla Bollobas - Category:Paul Erdds

The Man Who Loved Only Numbers - The New York Times
hitps://www.nytimes.com/books/.../hoffman-man.ht... ¥ The New York Times
Paul Erdos was one of those very special geniuses, the kind who comes along only
once in a very long while yet he chose, quite consciously | am sure, to share ...

Paul Erdos | Hungarian mathematician | Britannica.com

www _britannica.com/biography/Paul-Erdes * Encyclopaedia Britannica
Paul Erdds, (born March 26, 1913, Budapest, Hungary—died September 20, 1996,
Warsaw, Poland), Hungarian “freelance” mathematician (known for his work ...

Paul Erd6s - University of St Andrews
www-groups.dcs.st-and.ac.uk/~history/Biographies/Erdos.html ~

Paul Erdds came from a Jewish family (the original family name being Englander)
although neither of his parents observed the Jewish religion. Paul's father ...

PRI Pgul Erdés Mathematical Genius, Human - UnTruth.org
www .untruth.org/~josh/math/Paul%20Erd&s%20bio-rev2.pdf ~
by J Hill - 2004 - Related articles

-

Paul Erdés

Mathematician

Paul Erdés was a Hungarian Jewish mathematician. He was one of the
most prolific mathematicians of the 20th century. He was known both for
his social practice of mathematics and for his eccentric lifestyle.
Wikipedia

Born: March 26, 1913, Budapest, Hungary

Died: September 20, 1996, Warsaw, Poland

Education: Edtvds Lorand University (1934)

Books: Probabilistic Methods in Combinatorics, More

MNotable students: Béla Bollobas, Alexander Soifer, George B. Purdy,

lneanh Krnielkal



Einstein is In the Knowledge Graph

Albert Einstein

All News mages Books Videos Mare = Search tools

About 82,800,000 results (0.45 seconds)

The Official Licensing Site of Albert Einstein

einstein.biz/ ~

Welcome to the Official Licensing Site of Albert Einstein. Learn more about Albert
Einstein and contact us today for any commercial licensing inquiries.

Albert Einstein - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Albert_Einstein ~ Wikipedia

Albert Einstein ('ainstain/; German: [‘albeet ‘amnftamn] ( listen); 14 March 1879 - 18
April 1955) was a German-born theoretical physicist.

Hans Albert Einstein - Mass—energy equivalence - Eduard Einstein - Elsa Einstein

Albert Einstein (@AlbertEinstein) | Twitter
https:/ftwitter.com/AlbertEinstein W

16 hours ago - View on Twitter 20 hours ago - View on Twitter

ICYMI, Albert Einstein knew a thing ortwo  An interesting read on Einstein's
about being romantic. Learn about the superstar status. What are your

love letters he wrote. guff.com/didnt-know-  thoughts? twitter.com/aeonmag/statu...

einst...

Albert Einstein - Biographical - Nobelprize.org
www.nobelprize.org/nobel_prizes/physics/.../einstein-bio.htm... = MNobel Prize
Albert Einstein was born at Ulm, in Wiirttemberg, Germany, on March 14, 1879. ...
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Albert Einstein

Theoretical Physicist

Albert Einstein was a German-born theoretical physicist. He developed
the general theory of relativity, one of the two pillars of modern physics.
Einstein's work is also known for its influence on the philosophy of
science. Wikipedia

Born: March 14, 1879, Ulm, Germany

Died: April 18, 1955, Princeton, NJ

Influenced by: Isaac Newton, Mahatma Gandhi, More

Children: Eduard Einstein, Lieserl Einstein, Hans Albert Einstein
Spouse: Elsa Einstein (m. 1919-1936), Mileva Mari¢ (m. 1903-1919)



This guy Is In the Knowledge Graph
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All Images News Maps Videos More - Search tools

About 349,000 results (0.37 seconds)

Ernst G. Straus - Wikipedia, the free encyclopedia

https:/fen.wikipedia.org/wiki/Ernst_G. Straus ~ Wikipedia Ernst G . Stra us
Ernst Gabor Straus (February 25, 1922 — July 12, 1983) was a German-American o
mathematician who helped found the theories of Euclidean Ramsey theory ... Mathematician

Emst Gabor Straus was a German-American mathematician who helped
Straus biography - University of St Andrews found the theories of Euclidean Ramsey theory and of the arithmetic
www-groups.dcs.st-and.ac.uk/~history/Biographies/Straus .html| - properties of analytic functions. Wikipedia

Ernst Straus's mother was Rahel Goitein who had the distinction of being one of the

Born: February 25, 1922, Munich, Germany
first women medical students officially studying at a German university.

Died: July 12, 1983, Los Angeles, CA

Residence: United States of America
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... and he published with both Einstein and Erdos!



Desired Query Answer

Has anyone published a paper with both Erdos and Einstein L n

FOITCIOIC
Ernst Straus

TRV
Kristian Kersting, ...

). phahakeke
Justin Bieber, ...



Observations

Has anyone published a paper with both Erdos and Einstein !,r n

« Cannot come from labeled data
* Fuse uncertain information from many pages

* EXpose uncertainty in query answers
... and risk incorrect answers
 Embrace probability!



Siri, Alexa and Other Virtual Assistants Put to the Test

Tech Fix
By BRIAN X. CHEN JAN. 27, 2016

WHEN I asked Alexa earlier this week
who was playing in the Super Bowl,
she responded, somewhat
monotonously, “Super Bowl 49’s
winner is New England Patriots.”

o

%

“Come on, that’s last year’s Super

3 1 Bowl,” I said. “Even I can do better
= than that.”
At the time, I was actually alone in my
living room. I was talking to the virtual

companion inside Amazon’s wireless
% speaker, Echo, which was released last
June. Known as Alexa, she has gained
raves from Silicon Valley’s tech-
obsessed digerati and has become one

2.3
of the newest members of the virtual
assistants club.

All the so-called Frightful Five tech

1S

name: Alexa »
1 7 [Chen’106]
. (NYTimes)
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Statistical
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Representations in Al and ML

Statistical

L

Logical

Rain = Cloudy i

Propositional Relational



Graphical Model Learning
> @

Medical Records Bayesian Network
“Name | Cough | Asthma | smokes
, Asthma Smokes

Alice 1 1 0
Bob 0 0
Charlie 0 1 0
Dave 1 0 1
Eve 1 0 0
Fr3 ”kBig_d'ata ? ?

V
Frank 1 0.3 0.2




Representations in Al and ML

Cloudy | Rain | P(Rain|Cloudy)

Statistical

Logical Rain = Cloudy ' W

Propositional Relational



Relational Representations

« Example: First-Order Logic

Formula
A
4 N
vX,y, Smokes(x) A Friends(x,y) = Smokes(y)
— T
Atom Logical Variable

« Logical variables have domain of constants
X,y range over domain People = {Alice,Bob}

« Ground formula has no logical variables
Smokes(Alice) A Friends(Alice,Bob) = Smokes(Bob)



Representations in Al and ML

Cloudy | Rain | P(Rain|Cloudy)

0.80
Statistical 020 @
0.01

0.99

. ) VX, Yy, Smokes(x) A Friends(x,y)
Logical | Rain = Cloudy | - Smokes(y) I

Propositional Relational



Why Statistical Relational Models?

 Probabillistic graphical models

v Quantify uncertainty and noise

« Not very expressive
Rules of chess in ~100,000 pages

« First-order logic

v Very expressive
Rules of chess in 1 page

+~ Good match for abundant relational data
« Hard to express uncertainty and noise



Graphical Model Learning
g

Medical Records Bayesian Network

Asthma Smokes

Charlie 0

o

D Tl §|-

ave 1 S —

2 |2

Eve 1 a | v
Frank 1 ? ? Rows are independent

during learning and
Frank 1 0.3 0.2 .
inference!

Frank 1 0.2 0.6




Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Intuition

Asthma Smokes

+ Friends have similar
smoking habits

+ Asthma can be hereditary

Markov Logic

2.1 Asthma = Cough

3.5 Smokes = Cough

f

Lo ical variables refer to entitjes
mokes )f) A Frlends(x )

= Smokes(y)
1.5 Asthma (x) A Family(x,y)
= Asthma (y)




Classical Machine Learning

- @

Purchases Model
Dave Android €249 )
_ _ People older than 27
Alice 35 iPhone €799 < .
probably buy iPhone.
Bob 32 iPhone €799
Charlie 22 iPhone €699

People younger than 27

Eve 17 Android €299 probably buy Android.

Frank 15 Android €199 P

Inference: Does Guy buy an iPhone?
Answer: Yes, with probability 66%



Statistical Relational Learning

Purchases Relationships
Name | Age | Product Price
Dave 40 Android €249 Alice Spouse
Alice 35 iPhone €799 Alice Charlie Mother Family 1
Bob 32 iPhone €799 Bob Charlie Father
Charlie 22 iPhone €699 Dave Eve Father
Eve 17 Android €299 Dave Frank Father Family 2
Frank 15 Android €199 Eve Frank Siblings
—_— @ Family members probably buy the same
type of phone.

Model



Example: Markov Logic

« Weighted First-Order Logic

_ - FOL Formula
Weight or Probability A

g .
3.14 Smokes(x) A Friends(x,y) = Smokes(y) I

« Ground atom/tuple = random variable in {true,false}
e.g., Smokes(Alice), Friends(Alice,Bob), etc.

« Ground formula = factor in propositional factor graph

Smokes(Alice) I
Friends(Alice,Alice)

3

Friends(Alice,Bob) Friends(Bob,Alice)

[Richardson’06]



Representations in Al and ML

Cloudy | Rain | P(Rain|Cloudy)

0.80
o . - -
Statistical 0.20 3.14 Smg §rs;f§f<23fyr;e”ds(x’y) I
0.01

0.99

. ) VX, Yy, Smokes(x) A Friends(x,y)
Logical | Rain > Clouay | - Smokes(y) I

Propositional Relational



Collective Classification

e i - Can we predict the

type of the nodes
given information
on its links and
attributes?

(5 E.g., the type of a

... webpage given its links
- .- and the words on the
= page?

[Getoor’07] [DeRaedt’16]



Entity Resolution

L. De Raedt

Ko

Luc D. Raedt

H. Blockeel

Saut® Automatically extracted co-author network:
which nodes refer to the same person?

[Getoor’07] [DeRaedt’16]



Viral Marketing

Which advertising
strategy maximizes
expected profit?

8,

[VdBroeck'10]



Voter Opinion Modeling
hm 2

, [ )
friend
spouse
w carla emma
colleague friend
friend >pouse
[
friend Py * o ?

colleague
w /m
P, spouse

) o

- 2
Can we predict preferences” Bach'15



Summary

SjciBile=U B  Uncertainty in Al

Logical

Propositional Relational



Summary

SjciBile=U B  Uncertainty in Al

Logical Databases

Propositional Relational



Why Lifted Inference?

* Malin idea: exploit high level relational
representation to speed up reasoning

* Let's see an example...
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A Simple Reasoning Problem
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A Simple Reasoning Problem
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A Simple Reasoning Problem
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A Simple Reasoning Problem
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Automated Reasoning

Let us automate this

factor graph)
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Classical Reasoning

Sparse Graph Dense Graph

—

* Higher treewidth
* Fewer conditional independencies
* Slower inference



Is There Conditional Independence?
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Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)
is fully connected!

2. Probabilistic inference algorithm
(e.g., variable elimination or junction tree)
builds a table with 522 rows

[VdB’15]
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Tractable Reasoning
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« High-level (first-order) reasoning

o Symmetry

= Lifted Inference

« Exchangeability

[Niepert'14]



Automated Reasoning

Let us automate this:
~ Relational model

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) >c=cC

- Lifted probabilistic inference algorithm



Other Examples of Lifted Inference

o First-order resolution

vx, Human(x) = Mortal(x)
VX, Greek(x) = Human(x)

iImplies

VX, Greek(x) = Mortal(x)




Other Examples of Lifted Inference

« First-order resolution
« Reasoning about populations

We are investigating a rare disease. The disease is more rare in
women, presenting only in one in every two billion women
and one in every billion men. Then, assuming there are 3.4
billion men and 3.6 billion women in the world, the probability
that more than five people have the disease is

3.6-10° g\ 36:10°—f Y
1-22( )(1—0.5-10) (0.5-1079)

n=0 f=0

y (3.4-109> (1 B 10_9)3-4-109—<n—f> (10_9)(”—f)
(n—f)

[VdB’ 13]



Lifted Inference In SRL

. Statistical relational model (e.g., MLN)

3.14 FacultyPage(x) A Linked(x,y) = CoursePage(y) '

.« As a probabilistic graphical model: —
- 26 pages; 728 variables; 676 factors
- 1000 pages; 1,002,000 variables;
1,000,000 factors

« Highly intractable?
— Lifted inference in milliseconds!




Statistical Properties

1. Independence

mmm )

Alice

P( Bob 0 0 0 )= X P( Bb 0 0 0 )

Charlie 0 1 0
X P( Charlie 0 1 0 )

2. Partial Exchangeability

mmm mmm
Alice Charlie 1
P ( Bob 0 0 0 ) - P ( Alice 0 0 0 )
Charlie 0 1 0 Bob 0 1 0

3. Independent and identically distributed (i.i.d.)
= Independence + Partial Exchangeability



Statistical Properties for Tractability

* Tractable classes independent of representation

e Traditionally:
— Tractable learning from i.i.d. data
— Tractable inference when cond. independence

* New understanding:
— Tractable learning from exchangeable data

— Tractable inference when
* Conditional independence
* Conditional exchangeability
* A combination

[Niepert’14]



Summary of Motivation

* Relational data Is everywhere:
— Databases in industry and sciences
— Knowledge bases
— Probabillistically extracted/learned/queried

* Lifted inference:
— Use relational structure during reasoning
— Very efficient where traditional methods break

This tutorial; Lifted Inference in Relational Models
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What Everyone Should Know about
Databases

« Database = several relations (a.k.a. tables)
« SQL Query = FO Formula

« Boolean Query = FO Sentence



What Everyone Should Know about

Databases

Database: relations (= tables)

D =

Smoker

Friend

X

Y

X

Alice

2009

Alice

Alice

2010

Alice
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2009

Bob

Carol

2010

Carol




What Everyone Should Know about
Databases

Database: relations (= tables)
D =

Smoker

X

Y

Friend

Alice

2009

X

Alice

2010

Alice

Bob

Bob

2009

Alice

Carol

Carol

2010

Bob

Carol

Carol

Bob

Query: First Order Formula

Find friends of smokers in 2009

Conjunctive Queries CQ = FO(3, A)
Union of CQs UCQ =FO(3, A, V)

Q(z) = Ax (Smoker(x,’2009’) A Friend(x,2))

y 4

Query answer: Q(D) = Bob

Carol




What Everyone Should Know about
Databases

Database: relations (= tables)
D =

Smoker

X

Y

Alice

2009

Alice

2010

Bob

2009

Carol

2010

Friend

X y 4
Alice Bob
Alice Carol
Bob Carol
Carol Bob

Query: First Order Formula

Find friends of smokers in 2009

Conjunctive Queries CQ = FO(3, A)
Union of CQs UCQ =FO(3, A, V)

Q(z) = Ax (Smoker(x,’2009’) A Friend(x,2))

y 4

Query answer: Q(D) = Bob

Carol

Boolean Query: FO Sentence

Query answer: Q(D) = TRUE

Q = 3x (Smoker(x,’2009") A Friend(x, Bob’))
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Declarative Query - Query Plan
“‘what’ - “how”
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What Everyone Should Know about

Databases
Declarative Query - Query Plan
“‘what’ > “how”

Q(z) = Ax (Smoker(x,’2009’) A Friend(x,z))

I,
Oy=2009’
—>
/ X x\
Smoker(x,y) Friend(x,z)

Logical Query Plan




What Everyone Should Know about

Databases
Declarative Query - Query Plan
“‘what’ > “how”

Q(z) = Ax (Smoker(x,’2009’) A Friend(x,z))

M, .

z

|
/NX

> >
/ M X\ y=2009’
|

Smoker(x,y) Friend(x,z) Smoker(x,y) Friend(x,z)
Logical Query Plan Logical Query Plan

Oy=2009’ o
y Optimize




What Everyone Should Know about

Databases
Declarative Query - Query Plan
“what” - “how”
1 Q(2) = 3x (Smoker(x,2009') A Friend(x,2)) .
', [

Oo
Y4
Oy=2009’ . |
Optimize NG
D],
O

> >
/ M X\ (;:y=‘2009’
|

Smoker(x,y) Friend(x,z) Smoker(x,y) Friend(x,z)
Logical Query Plan Logical Query Plan [ Physical Query Plan }
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Problem: compute Q(D) Moshe Vardi [Vardi'82]
2008 ACM SIGMOD Contribution Award

This talk: query = blue, data = red
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What Every Researcher Should
Know about Databases

Problem: Compute Q(D) Moshe Vardi [Vardi’'82] o
2008 ACM SIGMOD Contribution Award

« Data complexity:
fix Q, complexity = (D)

* Query complexity: (expression complexity)
fix D, complexity = f(Q)

« Combined complexity:
complexity = f(D, Q)

This talk: query = blue, data = red



Probabilistic Databases

» A probabilistic database = relational

database where each tuple is a random
variable

« Semantics = probability distribution over
possible worlds (deterministic databases)

* In this talk: tuples are independent events



Probabilistic database D:

Example

Friend

Py

P,

W > | > |X

OO | 0|

Ps3




Probabilistic database D:

Possible worlds semantics:

P1P2P3

X
A
A
B

OO | |

Example

Friend

Py

P,

W > | > |X

OO | 0|

Ps3




Probabilistic database D:

Possible worlds semantics:

P1P2P3,

Example

Friend

X
1%
A
B

(1-p,)

0,03

X y

A | C

B | C
[~ ]

Py

P,

W > | > |X

OO | 0|

Ps3




Probabilistic database D:

Possible worlds semantics:

P1P2P3,

Example

X
1%
A
B

(1-p,)

0,03

Friend X y P
A B o
Al C 1| P
B | C | ps
P (1-p1)(1-po)(1-p3)
B| A A A X );'I |
1~ B < A X y
B C




Query Semantics

Fix a Boolean query Q, probabillistic database D:

P(Q | D)= Py(Q) = marginal probability of Q
on possible words of D



Q = 3Ix3y Smoker(2<)'/\ Friend(g,x)_

An Example
P(Q| D)=
Friend
X |y | P
A | D]| q
Smoker| x | P Al|E| q,
A | P B| F | d;
B | P, B| G| q,
C | Ps B | H]| Qs




Q = 3Ix3y Smoker(2<)'/\ Friend(g,x)_

An Example
P(Q[D)= 1-(1-9,)*(1-q,)
Friend

X |y P
A | D| q
Smoker| x | P 11A|E]| q
A | P | B|F o
B | P, B| G| q,
C | Ps B | H]| Qs




Q = 3Ix3y Smoker(2<)'/\ Friend(g,x)_

An Example
P(Q|D)= p.*[ 1-(1-g.)*(1-q,) |
Friend

X |y | P
|A|D|q
Smoker| x |[P| __— | |[A|E|q
AP | B|F| a
B | P, B |G| q,
C | Ps B|H| Qs




Q = 3Ix3y Smoker(2<)'/\ Friend(g,x)_

An Example

P(Q|D)= p.*[ 1-(1-9,)*(1-qy) ]
1-(1-093)*(1-9,4)*(1-95)

Friend
X |y | P
|A|D|q
Smoker| x | P /‘ Al|E]| q
A | Py (| B|F|a
B | p, 4 | B| G| q
C | Ps | Bl H]| G




Q = 3Ix3y Smoker(2<)'/\ Friend(g,x)_

An Example

P(Q|D)= p.*[ 1-(1-9,)*(1-qy) ]
P 1-(1-03)*(1-0,4)*(1-0s) |

Friend
X |y | P
|A|D|q
Smoker| x | P /‘ Al|E]| q
A | Py (| B|F|a
B | Py B| G| q,
C | Ps | Bl H]| G




Q = 3Ix3y Smoker(x)./\ Friend(X,y)

An Example

PQID)= 1-11-p* 1-(1-9)*(1-qy) |}~

Smoker

{1- p*[ 1-(1-95)*(1-94)*(1-9s) ] }

Friend
X |y | P
|A|D|q
X | P /-AEq2
AP [ | B|F|d
B | Py B| G| q,
C | Ps | Bl H]| G




Q = 3Ix3y Smoker(g)/\Friend(x,y)

An Example

PQID)= 1-11-p* 1-(1-9)*(1-qy) |}~

{1- p*[ 1-(1-95)*(1-94)*(1-9s) ] }

One can compute P(Q | D) in PTIME

Smoker

in the size of the database D Friend
X |y | P
" |A| D] q
X | P / Al E]| q,
AP " | B | F Js
B | p, B| G| q
C | Ps Bl H| g




Q = 3Ix3dy Smoker(x) A Friend(x, y)

An Example
I_ICD

Use the SQL engine
to compute the query!

Aggregate on probabillities.
X |y P
A | D
X | P I_Ix E
A|lE] g
A | Py ‘ B | F | q
B | p, | Smoker(x) Friend(X,y) TG q3
4
= 1P 8 [ H | a




Q = 3x3y Smoker(x) A Friend(x, y)

An Example
I_I(D
X P
Use the SQL engine A 1-(1-9,)(1-9)
to compute the query! B 1-(1-9,)(1-qe) (1-qg)

Aggregate on probabillities.
X |y P
A | D
X | P I_Ix E
A|lE] g
A | Py ‘ B | F | q
B | p, | Smoker(x) Friend(X,y) TG q3
4
= 1P 8 [ H | a




Q = 3x3y Smoker(x) A Friend(x, y)

An Example

1-{1-p,[1-(1-91)(1-0,)]}*

{1-p,[1-(1-0)(1-q9) (-ae)l} | [

X P
Use the SQL engine A 1-(1-0,)(1-9;)
to compute the query! B 1-(1-9,)(1-q5) (1-qg)
Aggregate on probabillities.
x|y | P
A | D|g
X | P I_Ix .
A|lE] g
A | Py ‘ B | F | q
B | p, | Smoker(x) Friend(X,y) TG q3
4
= 1P 8 [ H | a




Problem Statement

Given: probabilistic database D, query Q

Compute: P(Q | D)

Data complexity: fix Q, complexity = f(|D|)



Approaches to Compute P(Q | D)

* Propositional inference:
— Ground the query Q = F, 5, compute P(Fg p)
— This is Weighted Model Counting (later...)
— Works for every query Q
— But: may be exponential in |D| (data complexity)

* Lifted inference:
— Compute a query plan for Q, execute plan on D
— Always polynomial time in |D| (data complexity)
— But: does not work for all queries Q

[Olteanu’08, Jha’13, Dalvi’'04, Dalvi'12]



Lifted Inference Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

P(?Q)_: 1-— P(Q). negation

P(Q1 A Q2) = P(Q1)P(Q2)
P(QLV Q2) =1- (1~ PQU)(L-P(Q2))

P(3z Q
P(vz Q

AEDomam (1 P(Q[NZ])
Domaln P(Q[A/Z]

):
):

Independent
join / union

Independent project

P(Q1 A Q2) =P(Q1) +P(Q2) - P(Q1 Vv Q2)

P(Q1 Vv Q2) = P(Q1) + P(Q2) - P(Q1 A Q2)

Inclusion/
exclusion




Example

Q = VXVvy (‘Smoker(>‘<)'v Friend(>‘<,y)2' =vX (Smoker(x) vvy Friend(x,y))

©)

— : . °Check independence:
P(Q) - I-IA € Domain P(SmOker(A) \ Vy Fl’lend(A,y)) Smoker(Alice) V vy Friend(Alice,y)
Smoker(Bob) V Vy Friend(Bob,y)



Example

Q = Vxvy (Smoker(x) v Friend(X,y)) =vX (Smoker(x) vvy Friend(x,y))

©)

P(Q) = I-IA € Domain P(SmOker(A) \ Vy Fl’lend(A,y)) ) check ig(rjneglfenr((jilri]geG): V vy Friend(Alice,y)

Smoker(Bob) V Vy Friend(Bob,y)

P(Q) = Tae pomain [1 = (1= P(Smoker(A))) x (1 - P(vy Friend(A.y)))]

)



Example

Q = Vxvy (Smoker(x) v Friend(X,y)) =vX (Smoker(x) vvy Friend(x,y))

©)

P(Q) = I-IA € Domain P(SmOker(A) \ Vy Fl’lend(A,y)) ) check ig(rjneglfenr((jilri]geG): V vy Friend(Alice,y)

Smoker(Bob) V Vy Friend(Bob,y)

P(Q) = Mae pomain [1 — (1= P(Smoker(A))) x (1 —P(vy I:fielﬂd(A,Y)))

P(Friend(A,B)))]

(¢]

P(Q) = MNxcpomain [1 — (1= P(Smoker(A))) x (1 -T1

B € Domain

©)



Example

Q = Vxvy (Smoker(x) v Friend(X,y)) =vX (Smoker(x) vvy Friend(x,y))

©)

P(Q) = I-IA € Domain P(SmOker(A) \ Vy Fl’lend(A,y)) ) check ig(rjneglfenr((jilri]geG): V vy Friend(Alice,y)

Smoker(Bob) V Vy Friend(Bob,y)

P(Q) = Mae pomain [1 — (1= P(Smoker(A))) x (1 —P(vy I:fielﬂd(A,Y)))

P(Q) = Nacpomain [1 = (1= P(Smoker(A))) x (1 -T1 P(Friend(A,B)))]

B € Domain

/ o
Lookup the probabilities }

in the database




Example

Q = Vxvy (Smoker(x) v Friend(X,y)) =vX (Smoker(x) vvy Friend(x,y))

©)

P(Q) = I-IA € Domain P(SmOker(A) \ Vy Fl’lend(A,y)) ) check ig?neflfenr((jilri]geG): V vy Friend(Alice,y)

Smoker(Bob) V Vy Friend(Bob,y)

P(Q) = Mae pomain [1 — (1= P(Smoker(A))) x (1 —P(vy Ffiend(A,Y)))

P(Q) = Nacpomain [1 = (1= P(Smoker(A))) x (1 -T1 P(Friend(A,B)))]

B € Domain

/ o
Lookup the probabilities }

_ in the database
Runtime = O(n>?).




Discussion: CNF vs. DNF

Databases KR/AI

Conjunctive FO®3, A) Positive Clause FO(V, V)
Queries CQ
Union of Conjunctive FO3, A, V) = Positive FO FO(V, A, V) =
Queries UCQ 3 Positive-DNF Vv Positive-CNF
UCQ with “safe 3 DNF First Order CNF v CNF
negation” UCQ"~

Q = 3x,3y, Smoker(x) AFriend(x,y) Q = vxvy (Smoker(x) v Friend(x,y))

3x,3y, Smoker(x) A Friend(x,y) = - V¥x,Vy, (-Smoker(x) v =Friend(x,y))




Discussion

Lifted Inference Sometimes Fails.

Ho = ¥xVy (Smoker(x) V Friend(x,y) V Jogger(y))

The V-rule does not apply: Hj[Alice/x] and Hy[Bob/x] are dependent:
Hi[Alice/x] = vy (Smoker(Alice) V  Friend(Alice,y) V  Jogger(y))

H,[Bob/x] = vy (Smoker(Bob) V Friend(Bob,y) V  Jogger(y))

Computing P(H, | D) is #P-hard in |D| Dependent
(Proof: later...)



Discussion

Lifted Inference Sometimes Fails.

H, = Yxvy (Smoker(x) V Friend(x,y) V Jogger(y))

The V-rule does not apply: Hj[Alice/x] and Hy[Bob/x] are dependent:
Hi[Alice/x] = vy (Smoker(Alice) V  Friend(Alice,y) V  Jogger(y))

H,[Bob/x] = vy (Smoker(Bob) V Friend(Bob,y) V  Jogger(y))

Computing P(H, | D) is #P-hard in |D| Dependent
(Proof: later...)

Consequence: assuming PTIME # #P, H, is not liftable!



Summary

Database D = relations

Query Q = FO

Query plans, query optimization

Data complexity: fix Q, complexity (D)
Probabilistic DB’s = independent tuples
Lifted inference: simple, but fails sometimes
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WMC Probabilistic Inference

« Model = solution to a propositional logic formula A
« Model counting = #SAT

Model?

A = (Rain = Cloudy) ' Rain | Cloudy

No

e

#SAT =3



WMC Probabilistic Inference

« Model = solution to a propositional logic formula A
« Model counting = #SAT
* Weighted model counting (WMC)

— Weights for assignments to variables
— Model weight is product of variable weights w(.)

A = (Rain = Cloudy) .

Cloudy

Rain

w(R)

w(=R)

w(C)

w(=C)

1

3

5

Rain | Cloudy

|
]

Model?

No

S

#SAT =3

Weight




WMC Probabilistic Inference

« Model = solution to a propositional logic formula A
« Model counting = #SAT
* Weighted model counting (WMC)

— Weights for assignments to variables
— Model weight is product of variable weights w(.)

A = (Rain = Cloudy) . Rain | Cloudy Model? Weight
Rain Cloudy

wR) [ WeR) | | we) | wi-0)
1 2 3 ) YeS

2*5=10
+

+

#SAT =3 WMC=19



Weighted Model Counting

« Assembly language for non-lifted inference

* Reductions to WMC for inference in
— Bayesian NEetWOrKS (chavira0s, sang05 , Chavira08]
— Factor graphs choi3
— Relational Bayesian networks ichaviraos;
— Probabilistic logic programs rierens 11, Fierens'1s]
— Probabillistic databases (oteanuos, ha11]

o State-of-the-art exact solvers
— Knowledge compilation (WMC — d-DNNF — AC)

Winner of the UAI'O8 exact inference competition!
— DPLL counters




Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))

Days = {Monday}

[VdB’'11, Gogate’11]



Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d) Rain(M) | Cloudy(M)
= Cloudy(d))

T

F
Days = {Monday} I =
F

Model?

No

-l

|

Yes

#SAT =3

[VdB’'11, Gogate’11]



Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))
Days = {Monday
Tuesday}

[VdB’'11, Gogate’11]

Rain(M) | Cloudy(M)

|
|

T

F
F

Rain(T) | Cloudy(T) Model?

Z
(e}

| No |

Z | Z2 2
O O | O

es

Z
(e}

(@)

Yes
Yes

< =z | X
(@)




Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))
Days = {Monday
Tuesday}

[VdB’'11, Gogate’11]
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))

Days = {Monday

il

Rain(M) | Cloudy(M)

Tuesday}
Rain
d | w(R(d)) | w(=R(d))
M 1 2
T 4 1
Cloudy
d | w(C(d)) | w(=C(d))
M 3 5
T 6 2

[VdB’'11, Gogate’11]
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

Rain(M) | Cloudy(M)

Rain(T) | Cloudy(T) Model? Weight
1*3*4*6= 72

A = vd (Rain(d)
= Cloudy(d))

Yes

|

—I 0
Pays = {jonday I
) 0

| 0
Rain 0
d | wRW) |w-R@) 0
M| 1 2
. ]
Cloudy
d | w(C(d) | w(=C(d))
T s - 0
T] 6 2

+

[VdB’11, Gogate’11] #SAT =9



Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)

= Cloudy(d))

Days = {Monday

|
|

Tuesday}
Rain
d | w(R(d)) | w(=R(d))
M 1 2
T 4 1
Cloudy
d | w(C(d)) | w(=C(d))
M 3 5
T 6 2

[VdB’'11, Gogate’11]
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WFOMC Probabillistic Inference

» Assembly language for lifted inference

* Reduction to WFOMC for lifted inference in
— Markov logic networks vds11,cogate 1]

Parfactor graphs a3
Probabllistic logic programs vas1s;

Probabilistic databases (cribkofr14



Assembly language for
high-level probabilistic reasoning

Probabilistic
Parfactor graphs :
logic programs

Relational Bayesian
networks

Probabilistic
databases

Weighted First-Order
Model Counting

Markov Logic
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From Probabillities to Weights

Friend X y w(Friend(x,y)) | w(=Friend(x,y))
X y P 2| A B Wi =P, W, = 1-pg
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Discussion

Simple idea: replace p, 1-p by w, w
Query computation becomes WFOMC

To obtain a probability space, divide the weight of
each world by Z = sum of weights of all worlds:

Z = (Wytw,) (WotW,) (Watwg) ...

Why weights instead of probabilities?
They can describe complex correlations (next)



Markov Logic

Capture knowledge through soft constraints (a.k.a. “features”):

° 1~ Smoker(x) = Person(x)

Soft constraint, -
3.75 Smoker(x) AFriend(x,y) = Smoker(yu

[Richardson’06]
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Markov Logic

Capture knowledge through soft constraints (a.k.a. “features”):

° 1~ Smoker(x) = Person(x)

Soft constraint, -
3.75 Smoker(x) AFriend(x,y) :Smoker(w

An MLN is a set of constraints (w, [(x)), where w=weight, [ (x)=FO formula

Weight of a world = product of exp(w), for all MLN rules (w, [(x))
and grounding I (a) that hold in that world

Probability of a world = Weight / Z
Z = sum of weights of all worlds (no longer a simple expression!)

[Richardson’06]



Discussion

* Probabilistic databases = independence
MLN = complex correlations

 To translate weights to probabilities we need
to divide by Z, which often is difficult to
compute

* However, we can reduce the Z-computation
problem to WFOMC (next)
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1. Formula A

2. Weight function w(.)




Z > WFOMC(A)

1. Formula A

If all MLN constraints are hard:

2. Weight function w(.)

A=A wroemn (VX (X))




Z > WFOMC(A)

1. Formula A

If all MLN constraints are hard:
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a) Remove (w, ['; (x)) from the MLN

b) Add new probabilistic relation F;(x)

c) Add hard constraint («, ¥x (Fi(x) < [;(X)))

2. Weight function w(.)

For all constants A, relations F,,
set  w(F,(A)) =exp(w), w(=F(A)) =1

Better rewritings in
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Z > WFOMC(A)

1. Formula A

If all MLN constraints are hard:

A=A wroemn (VX (X))

If (w;, ['; (X)) Is a soft MLN constraint, then:

a) Remove (w, ['; (x)) from the MLN

b) Add new probabilistic relation F;(x)

c) Add hard constraint («, ¥x (Fi(x) < [;(X)))

2. Weight function w(.)

For all constants A, relations F,,

set  W(F(A)) = exp(w), w(=F,(A)) =1

Theorem: Z = WFOMC(A)

Better rewritings in
[Jha’12],[V.d.Broeck’'14]
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Example

« Smoker(x) = Person(x)

1. Formula A

3.75 Smoker(x) A Friend(x,y) = Smoker(y)

A = vx (Smoker(x) = Person(x))
A VXYY (I_:(>‘<,y)'<:> [Smoker(>_<)'/\ Friend(>_<,y)'=> Smoker()_/)]')'

2. Weight function w(.)

F
X y W(F(xy)) | w=F(x.y)) f "
Note: if no tables given
A A eXp(3.75) ! for Smoker, Person, etc,
A B exp(3.75) 1 (i.e. no evidence)
A C exp(3.75) 1 then settheirw=w=1
B A exp(3.75) 1




Example

« Smoker(x) = Person(x)
3.75 Smoker(x) A Friend(x,y) = Smoker(y)

1. Formula A

A = vx (Smoker(x) = Person(x))
A VXYY (I_:(>‘<,y)'<:> [Smoker(>_<)'/\ Friend(>_<,y)'=> Smoker()_/)]')'

2. Weight function w(.)

F
X y W(F(xy)) | w=F(x.y)) f "
Note: if no tables given
A A eXp(3.75) ! for Smoker, Person, etc,
A B exp(3.75) 1 (i.e. no evidence)
A C exp(3.75) 1 then settheirw=w=1
B A exp(3.75) 1
Z = WFOMC(A)




Lessons

* Weighed Model Counting:
— Unified framework for probabilistic inference tasks
— Independent variables

* Weighed FO Model Counting:

— Formula described by a concise FO sentence
— Still independent variables

e MLNSs:
— Weighted formulas
— Correlations!
— Can be converted to WFOMC



Lessons

* Weighed Model Counting:
— Unified framework for probabilistic inference tasks
— Independent variables

* Weighed FO Model Counting:

— Formula described by a concise FO sentence
— Still independent variables

e MLNSs:
— Weighted formulas
— Correlations!
— Can be converted to WFOMC

Tuple-independence is not a severe representational restriction!
It is a convenience for building inference algorithms.




Symmetric vs. Asymmetric

Symmetric WFOMC.:

* In every relation R, all tuples have same weight

« Example: converting MLN “without evidence” into

WFOMC leads to a symmetric weight function aY

Asymmetric WFOMC:

« Each relation R is given explicitly
« Example: Probabllistic Databases
« Example: MLN’s plus evidence

[Gribkoff'14]

W(F(x.y))

W(=F(x.y))

exp(3.75)

1

exp(3.75)

W|>|[>]|>|X

exp(3.75)

1

SO lm | >

exp(3.75)

1




Comparison

Random variable is a

Weights w associated with

Typical query Q is a

Data is encoded into

Correlations induced by

Model generalizes across domains?

Query generalizes across domains?

Sum of weights of worlds is 1 (normalized)?

MLNs Prob. DBs
Ground atom DB Tuple
Formulas DB Tuples
Single atom FO formula/SQL
Evidence (Query) | Distribution
Model formulas Query

Yes No

No Yes

No Yes




Outline

 Part 1: Motivation
e Part 2: Probabilistic Databases
» Part 3: Weighted Model Counting

[- Part 4: Lifted Inference for WFOMC
O
« Part 5: Completeness of Lifted Inference
« Part 6: Query Compilation
« Part 7: Symmetric Lifted Inference Complexity
« Part 8: Open-World Probabllistic Databases

 Part 9: Discussion & Conclusions




Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc.

o A formal definition: Domain-lifted inference

Inference runs in time polynomial
In the number of objects in the domain.

- Polynomial in #people, #webpages, #cards
- Not polynomial in #predicates, #formulas, #logical variables
- Related to data complexity in databases

[VdB’'11, Jaeger’12]
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o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

o A formal definition: Domain-lifted inference

o~ L
L 4

Run Time

propositional == ===

lifted ——
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Domain Size
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Defining Lifted Inference

o Informal:

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc. [Poole’03, etc.]

o A formal definition: Domain-lifted inference

Run Time

propositional == ===

lifted ——

>

Domain Size

o Alternative in this tutorial:

Lifted inference = 3Query Plan = 3FO Compilation

[VdB’'11, Jaeger’12]
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then apply these rules (some have preconditions)
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Asymmetric WFOMC Rules

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

WMC(A,AD,) = WMC(A ,) * WMC(A ,) Independent

WMC(3z A) = Z = MNcepomain (£c—WMC(A[C/z]) Independent
WMC(VZ A) = MNecpomain WMC(A[C/Z] project

WMC(AAA,) = WMC(A)+FWMC(A,)-WMC(AVA,) | Inclusion/
WMC(A,VA,) = WMC(A,)+WMC(A,)-WMC(A,AA,) | exclusion



Symmetric WFOMC Rules

« Simplification to independent project:

If A[C,/X], A[C,/X], ... are independent
WMC3z A) = Z - (ch_WMC(A[Cl/z])lDomaim
WMC(vz A) = WMC(A[C,/z])IPomain|

[VdB'11]



Symmetric WFOMC Rules

« Simplification to independent project:

If A[C,/X], A[C,/X], ... are independent
WMC3z A) = Z - (ch_WMC(A[Cl/z])lDomaim
WMC(vz A) = WMC(A[C,/z])IPomain|

« A powerful new inference rule: atom counting
Only possible with symmetric weights .
Intuition: Remove unary relations °

The workhorse of
Symmetric WFOMC

[VdB'11]



WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1
* Apply inference rules backwards (step 4-3-2-1)



WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1

* Apply inference rules backwards (step 4-3-2-1)

4. | A= (Stress(Alice) = Smokes(Alice))

Domain = {Alice}




WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1

* Apply inference rules backwards (step 4-3-2-1)

4. | A= (Stress(Alice) = Smokes(Alice))

—> 3 models

Domain = {Alice}




WFOMC Inference: Example

* FO-Model Counting: w(R) =w(-R) =1
* Apply inference rules backwards (step 4-3-2-1)

4. | A=(Stress(Alice) = Smokes(Alice)) Domain = {Alice}

WMC(=Stress(Alice) V Smokes(Alice))) =
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* FO-Model Counting: w(R) =w(-R) =1

* Apply inference rules backwards (step 4-3-2-1)

4. | A= (Stress(Alice) = Smokes(Alice))

WMC(-Stress(Alice) V. Smokes(Alice))) =

Domain = {Alice}
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WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n people}
- 3" models
A =VYy, (ParentOf(y) A Female = MotherOf(y)) D = {n people}

WMC(A) = WMC(- Female V Vy, (ParentOf(y) = MotherOf(y)))
=2*2n*2n- (2-1)* (2" * 2" — WMC(Vvy, (ParentOf(y) = MotherOf(y))))
:2*4n_(4n_3n)

- 3"+ 4" models

A = Vx,y, (ParentOf(x,y) A Female(x) = MotherOf(x,y)) D = {n people}

> (3" + 4”)n models
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o If we know that there are k smokers?



Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =0

I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \
-

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models



Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =0

I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \
-

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models

o Intotal...



Atom Counting: Example

A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =

0 I
Smokes(Charlie) =0 k k
Smokes(Dave) = 1
Smokes(Eve) =0 \

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
. If we know that there are k smokers? S (k) on”—k(n—k) models

mn
« Intotal... > Z( )2“ ("=k)  models
k=0



Augment Rules with Logical Rewritings



Augment Rules with Logical Rewritings

1. Remove constants (shattering)

A = vx (Friend(Alice, x) v Friend(x, Bob))

[Suciu’11]



Augment Rules with Logical Rewritings

1. Remove constants (shattering)

A = vx (Friend(Alice, x) v Friend(x, Bob))

F,(X) = Friend(Alice,x)
F,(X) = Friend(x,Bob)
F; = Friend(Alice, Alice)
F, = Friend(Alice,Bob)
F: = Friend(Bob,Bob)

|:> A= VX (Fl(X)V Fz()‘()z_/\ (Fs v F4‘)_'/\ (F4_V Fs)

[Suciu’11]



Augment Rules with Logical Rewritings

F,(X) = Friend(Alice,x)

1. Remove constants (shattering) F,(x) = Friend(x,Bob)
F; = Friend(Alice, Alice)
— - - - F, = Friend(Alice,Bob)
A = VX (I_:rlend(,‘Allce, x)'v Frlend(>‘<, Bob)z' F: — Friend(Bob, Bob)

|:> A= VX (Fl(X)V Fo(x)) A (F3 v F42'/\ ('_:4_V Fs)

2. “Rank” variables (= occur in the same order in each atom)

A = (Friend(x,y) VvV Enemy(x,y)) A (Friend(x,y) v Enemy(y,x)) °oo

[Suciu’11]



Augment Rules with Logical Rewritings

F,(X) = Friend(Alice,x)

1. Remove constants (shattering) F,(x) = Friend(x,Bob)
F; = Friend(Alice, Alice)
— - - - F, = Friend(Alice,Bob)
A = VX (I‘:rlend(,‘Allce, x).v Frlend(>‘<, Bob)g' F: — Friend(Bob, Bob)

|:> A= VX (Fl(X)V Fz()‘()z_/\ (Fs v F4‘)_'/\ (F4_V Fs)

2. “Rank” variables (= occur in the same order in each atom)

A = (Friend(x,y) VvV Enemy(x,y)) A (Friend(x,y) v Enemy(y,x)) °oo

—

F,(u,v) = Friend(u,v),u<v  E,;(u,v) = Friend(u,v),u<v | A = (F{(X,y) V E{(X,y)) A (FL(Xy) V E5(X,y))
F,(u) = Friend(u,u) E,(u) = Friend(u,u) A (FZ(X) V EZ(X))

i) = Flenduul s Exu) = Fend)vss |y (£ () v Ey(xy)) A (Faxy) V Es(xy))

[Suciu’11]



Augment Rules with Logical Rewritings

3. Perform Resolution [Gribkoff'14]

A= VXVy'(I‘?(g)'\/—lS(g,y')}_/\ VXVy (‘S(>‘<,y')'\/ TQ/’))' Rules stuck...

Resolution on S(x,y): | VxVy (R(X) V T(y))

Y

Add resolvent: | A = vxvy (R(X) V-aS(x,y)) A Vxvy (S(x,y) V T(y))
A vxvy (R(x) V T(y))

Now apply I/E!



Augment Rules with Logical Rewritings

4. Skolemization [VdB’14]

Mix V/3 in encodings of MLNs with quantifiers and probabilistic

Datalog | smokes(X) :- friends(X,Y), smokes(Y).

A =Vp, 3c, Card(p,c) Inference rules assume one type of quantifier!

programs

FOL A = VX, Smokes(x) < 3y, Friends(x,y), Smokes(y).
Skolemization Input: Mix v/3 Output: Only v

BUT: cannot introduce Skolem constants or functions!

vp, Card(p,S(p))




Skolemization: Example

A =Vp, 3c, Card(p,c)

[VdB'14]



Skolemization: Example

A =Vp, 3c, Card(p,c) —\ Skolemization

A’ = Vp, V¢, Card(p,c) = S(p)

[VdB'14]



Skolemization: Example

A =Vp, 3c, Card(p,c) —\ Skolemization

A’ =Vp, vc, Card(p,c) = S(p) w(S)=1 and w(=S)=-1

o
®)

Skolem predicate

[VdB'14]



Skolemization: Example

A =Vp, 3c, Card(p,c)

Consider one position p:

[VdB'14]

3c, Card(p,c) = true

3¢, Card(p,c) = false

’\ Skolemization

A’ = Vp, V¢, Card(p,c) = S(p)

w(S)=1 and w(=S)=-1

o
®)

Skolem predicate



Skolemization: Example

A =Vp, 3c, Card(p,c) —\ Skolemization

A’ =Vp, vc, Card(p,c) = S(p) w(S)=1 and w(=S)=-1

o
®)

Consider one position p:

3c, Card(p,c) = true

I—» S(p) =true  Also model of A, weight * 1

3¢, Card(p,c) = false

[VdB'14]



Skolemization: Example

A =Vp, 3c, Card(p,c) ‘\ Skolemization

A= Vp,vVC,'Card(p,(v:) = S(p) w(S)=1 and w(=S)=-1

o
®)

Consider one position p:

3c, Card(p,c) = true

I—» S(p) =true  Also model of A, weight * 1

3¢, Card(p,c) = false

—— S(p) =true No model of A, weight * 1

— S(p) =false  No model of A, weight' * -1

O (@)



First-Order Knowledge Compilation

Markov Logic

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

[Vdb’'11,'13]



First-Order Knowledge Compilation

Markov Logic

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

—

Weight Function

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(-Friends )=1
w(F)=exp(3.14)
w(-F)=1

N

FOL Sentence

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]

[Vdb’'11,'13]



First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— W

Weight Function FOL Sentence
w(Smokes)=1 Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
w(-Smokes )=1 i ’
w(Friends )=1 l Compile?
w(-Friends )=1
w(F)=exp(3.14) First-Order d-DNNF Circuit
w(-F)=1 3

[Vdb’'11,'13]



First-Order Knowledge Compilation

Markov Logic

—

Weight Function

3.14 Smokes(x) A Friends(x,y) = Smokes(y)

N

FOL Sentence

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(-Friends )=1
w(F)=exp(3.14)
w(-F)=1

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]

Domain

Alice
Bob
Charlie

!
v v (V.
A Y. & ‘ o €D o
vy v, v,
v v P wED veD 5 ‘
Friends(r, y F(z,y Friends(z,y Flz.y)

Z=WFOMC = 1479.85

l Compile?
First-Order d-DNNF Circuit

Jo

[Vdb’'11,'13]



First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ] '

l Compile?

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(=Friends )=1
w(F)=exp(3.14)

First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size

[Vdb’11,'13]



First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence

w(Smokes)=1
w(-Smokes )=1
w(Friends )=1
w(=Friends )=1
w(F)=exp(3.14)

Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ] '

l Compile?
First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size Domain-lifted!

[Vdb’11,'13]



Negation Normal Form

rainbow —rainbow

sun — Sun rain

[Darwiche’01]



Decomposable NNF

SRR

rainbow

Sun

(V)
o

- sun

— rairl/%

—rainbow

O &

rain

[Darwiche’01]



Deterministic Decomposable NNF

—rainbow

rainbow ) o

(V) ﬂfaiﬂ/@\

sun - Sun rain

[Darwiche’01]



Deterministic Decomposable NNF

Weighted Model Counting
525.4

54 520

[Darwiche’01]



Deterministic Decomposable NNF

Weighted Model Counting and much more!
525.4

54 520

[Darwiche’01]



First-Order NNF

VX, X € People : belgian(X) = likes(X, chocolate)

XePeople

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



First-Order Decomposabillity

VX, X € People : belgian(X) = likes(X, chocolate)

>’
XePeople

©)

AN

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



First-Order Decomposabillity

VX, X € People : belgian(X) = likes(X, chocolate)

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



First-Order Determinism

VX, X € People : belgian(X) = likes(X, chocolate)

belgian(X)

S
XePeople

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



First-Order NNF = Query Plan

VX, X € People : belgian(X) = likes(X, chocolate)

Vx
XePeople

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

belgian(X) likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

Pr(belgian) x Pr(likes)

+ Pr(-belgian)

N

belgian(X)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Deterministic Decomposable FO NNF

VX, X € People : belgian(X) = likes(X, chocolate)

Weighted Model Counting

XePeople

+ Pr(=belgian)

N

belgian(X)

|People]

(Pr(belgian) X Pr(likes)

likes(X, chocolate)

-~ belgian(X)

[VdB'13]



Symmetric WFOMC on FO NNF

Uler) = 4

0 when o = false

1 when o = true

0.5 when o s a literal

U(ly) x---xU(ly) when o =1 N --- Ny

Ully)+---+U(ly) when o = (L V-V [,

[T, U(B{X/x:}) when o =YX € 7.0 and x1.....x, are the objects in T.
S U(B{X/z:}) when o = dX € 7,3 and x4, ..., x, are the objects in T.

Hl:jo U(,-'S’{X/Xi})(lzl) when o = VX C 7, 3, and X; is any subset of T such that |x;| = 1.

hZ:L’;IO (I';I) CU(B{X/x;}) when o =3X C 7,3, and X; is any subset of 7 such that |X;| = i.

Complexity polynomial in domain size!

Polynomial in NNF size for bounded depth.

[VdB'13]



How to do first-order
knowledge compilation?



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

KV/X\3 Vx \|
Xe[y }{epeopm,mxgg_/
smokes(X) — smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

KV/X\/<\\V/X \|
XE[y Xe People:\X{éE_/
smokes(X) — smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople

Vx
XePeopleNX£D

smokes(X) — smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople . o)

<

Vx

XePeopleNX£D

Y

smokes(X) —smokes(X)

[VdB'13]



Deterministic Decomposable FO NNF

A =Vx,y € People, (Smokes(x) A Friends(x,y) = Smokes(y))

b
DCPeople

Vx
XePeopleNX£D
Yy
YePeople Y D
hJ

smokes(X) —smokes(X) - friends(X,Y)

[VdB'13]



Compilation Rules

« Standard rules
— Shannon decomposition (DPLL)
— Detect decomposabillity
D
— Etc. DCPeople

 FO Shannon
decomposition:

A

Vx
XePeoplen XD

smokes(X) — smokes(X)

[VdB'13]




Playing Cards Revisited
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Let us automate this

| model

Relationa

, Card(p,c)

vp, 3c
ve, 3p

,C)

Card(p
c) A Card(p

)

)

C

Card(p,

, VC

, VC

vp

- Lifted probabillistic inference algorithm



Why not do propositional WMC?

Reduce to propositional model counting:

[VdB'15]



Why not do propositional WMC?

Reduce to propositional model counting:

A= Card(Av,p,) v ... v Card(2#,p,)
Card(Av,p,) v ... v Card(2#,p,)

Card(AY,p,) v ... v Card(Av,p:,)
Card(Kv,p,) v ... v Card(K®,ps,)

~Card(Av,p,) v ~Card(Av,p.)
-Card(Av,p,) v ~Card(Av,p,)

[VdB'15]



Why not do propositional WMC?

Reduce to propositional model counting:

A= Card(Av,p,) v ... v Card(2#,p,)
Card(Av,p,) v ... v Card(2#,p,)

Card(AY,p,) v ... v Card(Av,p:,)
Card(Kv,p,) v ... v Card(K®,ps,)

~Card(Av,p,) v ~Card(Av,p.)
-Card(Av,p,) v ~Card(Av,p,)

What will
happen?

[VdB'15]



Deck of Cards Graphically

[VdB'15]



Deck of Cards Graphically

Card(Kv,ps,

[VdB'15]



Deck of Cards Graphically

g><

One model/perfect matching

[VdB'15]



Deck of Cards Graphically

[VdB'15]



Deck of Cards Graphically

Card(Kv,ps,

[VdB'15]



Deck of Cards Graphically
O

\

Card(Kv,p:,)

Model counting: How many perfect matchings?

[VdB'15]



Deck of Cards Graphically

What if | set
w(Card(Kv,ps,)) = 0?

[VdB'15]



Deck of Cards Graphically

What if | set
w(Card(Kv,ps,)) = 0?

[VdB'15]



Deck of Cards Graphically
O

What if | set can set any
asymmetric weight function?

[VdB'15]



Observations

* Asymmetric weight function can remove edge
Encode any bigraph

« Counting models = perfect matchings
* Problem is #P-complete! ®

 All non-lifted WMC solvers efficiently handle
asymmetric weights

* NoO solver does cards problem efficiently!

Later: Power of lifted vs. ground inference and complexities

[VdB'15]



Playing Cards Revisited
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Let us automate this

| model

Relationa

, Card(p,c)

vp, 3c
ve, 3p

,C)

Card(p
c) A Card(p

)

)

C

Card(p,

, VC

, VC

vp

- Lifted probabillistic inference algorithm



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = S;(p)
vc, vp, Card(p,c) = S,(c)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

Vp, Vc, Card(p,c) = S;(p) w(S,) = 1 and w(=S,) = -1
vc, vp, Card(p,c) = S,(c)

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=C w(S,) = 1 and w(=S,) =-1

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, v, Card(p,c) = Sy(p) W(S) = 1and w(-S,) = -1
vc, vp, Card(p,c) = 4(¥)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c = w(S,) = 1 and w(=S,) =-1

l s 0 O Atom counting

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = (%)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

w(S,) = 1and w(=S,) =-1

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = (%)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

oo e )2

w(S,) = 1and w(=S,) =-1

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)
vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = 4(¥)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

| o e 2

vc, vc', Card(c) A Card(c’) = c =’

w(S,) = 1and w(=S,) =-1

[VdB'15]



Playing Cards Revisited

vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

vp, V¢, vc', Card(p,c) A Card(p,c’) = c=C

l s 0 O Skolemization

vp, vc, Card(p,c) = )
vc, vp, Card(p,c) = 4(¥)
vp, Ve, vc', Card(p,c) A Card(p,c’)=>c=cC

l s 0 O Atom counting

vp, V¢, vc', Card(p,c) A Card(p,c’)=c=¢

| o e 2

vc, vc', Card(c) A Card(c’) = c =’

| ..

w(S,) = 1and w(=S,) =-1

[VdB'15]



Playing Cards Revisited
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Let us automate this

ference algorithm
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L

) (L+ Dk (=1)2nk-1 =
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[
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n
k

>

Computed in time polynomial in n

HSAT =

[VdB'15]



Summary Lifted Inference

By definition: PTIME data complexity
Also: 3 FO compilation = 3 Query Plan

However: only works for “liftable” queries
Preprocessing based on logical rewriting

The rules: Deceptively simple: the only
surprising rules are I/E and atom counting

Rules are captured by a query plan
or first-order NNF circuit
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Lifted Inference on Asymmetric DB

Preprocess Q (omitted from this talk; see [Suciu'11]),
then apply these rules (some have preconditions)

P(TQ)': 1-— P(Q)_ negation

P(Q1 A Q2) = P(Q1)P(Q2) Independent
P(Ql v QZ)':]- — (1 — P(Ql))(l — P(QZ)) join / union

P(3z Q) = epomain (1= P(Q[A/Z]) -
P(‘_V’Z Q) _ DOAma[I)n P(Q[A/Z] Independent project
P(Q1 A Q2) = P(Q1) + P(Q2) - P(QLvV Q2) |  Inclusion

P(Ql V QZ)': P(‘Ql)'+ P(‘QZ)'- P(Ql A QZ). exclusion




Example: Liftable Clause

Q = Vxvy S(x,y) = R(y) =vy @x S(xy) = R(y))




Example: Liftable Clause

Q = vxvy S(x.y) = R(y) =vy @x S(xy) = R(y))

P(Q) = I_IB eDomain P( 3X S(X1B) = R(B)) Indep. v



Example: Liftable Clause

Q = vxvy S(x.y) = R(y) =vy @x S(xy) = R(y))

P(Q) = I_IB eDomain P( 3X S(X1B) = R(B))

P(Q) = Ng epomain [1 = P(3X S(x,B))x(1-P(R(b)))]

Indep. V

Indep. or:
P(X=Y) =
=P(=XVY)

= P(X) (1-P(Y))



Example: Liftable Clause

Q = Vxvy S(x,y) = R(y) =Vy (3x S(xy) = R(y))

P(Q) = I_IB eDomain P( 3X S(X1B) = R(B)) Indep. v

P(Q) = M cooman [1 = P(AX S(%,B)X(1-P(R(b)] ner, o
=P(=XVY)

= P(X) (1-P(Y))
P(Q) = I_IB eDomain [1 _ (1_ I_IA €Domain (1'P(S(A!B)))) X(l _ P(R(B)))]

Indep. 3



Example: Liftable Clause

Q = vxvy S(x,y) = R(y) =vy @x S(xy) = R(y))

P(Q) = I_IB eDomain P( 3X S(X1B) = R(B)) Indep. v

P(Q) = M cooman [1 = P(AX S(%,B)X(1-P(R(b)] ner, o
=P(=XVY)

= P(X) (1-P(Y))

P(Q) = I_IB eDomain [1 _ (1_ I_IA €Domain (1'P(S(A!B)))) X(l _ P(R(B)))]

Indep. 3
[Lookupthernobabmﬂesin[)




Example: Liftable Clause

Q = vxvy S(x,y) = R(y) =vy @x S(xy) = R(y))

P(Q) = I_IB eDomain P( 3X S(X1B) = R(B)) Indep. v

P(Q) = M cooman [1 = P(AX S(%,B)X(1-P(R(b)] ner, o
=P(=XVY)

= P(X) (1-P(Y))

P(Q) = I_IB eDomain [1 _ (1_ I_IA €Domain (1'P(S(A!B)))) X(l _ P(R(B)))]

Indep. 3
[Lookupthernobabmﬂesin[)

Runtime = O(n?).



Two Questions

* Question 1: Are the lifted rules complete?
— We know that they get stuck on some gueries
— Should we add more rules?

* Question 2: Are lifted rules stronger than
grounded?

— Lifted rules can also be grounded
— Any advantage over grounded inference?
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Two Questions

* Question 1: Are the lifted rules complete?
— We know that they get stuck on some gueries
— Should we add more rules?

Complete for “unate YFO" and for “unate 3FQO”

* Question 2: Are lifted rules stronger than
grounded?
— Lifted rules can also be grounded
— Any advantage over grounded inference?

Strictly stronger than DPLL-based algorithms



FOu" = Unate FO

An FO sentence Is unate If:
* Negations occur only on atoms

* Every relational symbol R either occurs
only positively, or only negatively

VFOU" (3FQOU") = restrict quantifiers too

Q = VxVvy (Smoker(x) v-Friend(x,y))

Not unate
AVXVY (=Friend(X,y) v Drinker(y)) )

Q = VxVvy (Smoker(x) v-Friend(x,y))

Unate AVXVY (Friend(x,y) vV -=Drinker(y))



1. Are the Lifted Rules Complete?

We use complexity classes
 Inference rules: PTIME data complexity
« Some queries: #P-hard data complexity

Dichotomy Theorem for YFOU" (or 3FOU")
* |f lifted rules succeed, then query in PTIME
« |f lifted rules fail, then query is #P-hard

Implies lifted rules are complete for YFOU" , 3FQUN

Will show in two steps: Small and Big Dichotomy Theorem



NP v.s. #P

Decision Problems:
« SAT = Satisfiability Problem
* SAT Is NP-complete [Cook’71]

Counting Problems:
« #SAT = model counting
o #SAT Is #P-complete [Valiant’79]

Note: it would be wrong to say “#SAT is NP-complete”




Positive Partitioned 2CNF

A PP2CNF Is:

F=Aipee V)
where E = the edg_e set of a bipartite g_raph

F=XVvy) A Kvy) A Xvys) A (X vys) A (X vY,)
E: D
@
e

&,

Theorem [Provan’83]_ #PP2CNF Is #P-hard




Unliftable Clause

Independent Project
not possible:

~

Ho= VXVy (R(X) vV S(x,y) V T(y)) E?{AAJXT i oA

are dependent!
g Y,




Unliftable Clause

Independent Project
not possible:

~

Ho.: VXVX (R(X)V S(?(&{)_V T(){)) Ilfli[rAAl\}xT o Ho[A,/X]

are dependent!
g J

Theorem. Computing Py(H,) is #P-hard in the size of D

[Dalvi&S.2004]



Unliftable Clause

Independent Project
not possible:

~

Ho.: VXVX (R(X)V S(?(&{)_V T(){)) Ilfli[rAAl\}xT o Ho[A,/X]

are dependent!
g J

Theorem. Computing Py(H,) is #P-hard in the size of D

[Dalvi&S.2004]
Proof: PP2CNF: F = (X;; VYj) A (X V Yj,) A ... reduce #F to computing Pp(H,)

By example:



Unliftable Clause

Independent Project
not possible:
Ho= Vxvy (R(X) VS(X,y) VT A

o= VXVy (R(X) (X,y) (¥)) H,[A,/x] and Hy[A,/x]
. T e 0 are dependent! y

~

Theorem. Computing Py(H,) is #P-hard in the size of D

[Dalvi&S.2004]
Proof: PP2CNF: F = (X;; VYj) A (X V Yj,) A ... reduce #F to computing Pp(H,)

By example:

F= (XVY)A(X] VY, )A( X,VYS)



Unliftable Clause

~

Independent Project
not possible:

Ho_: VXVX (R(X)V SQ(&{)'V T(){)) E?{AAJXT o Ho[A,/X]

are dependent!
g Y,

Theorem. Computing Py(H,) is #P-hard in the size of D

[Dalvi&S.2004]
Proof: PP2CNF: F = (X;; VYj) A (X V Yj,) A ... reduce #F to computing Pp(H,)

By example:
F= (X;VY )A(X; VY, A(XVY,) D (tuples not shown have P=1)
R S T
X P X|Y|P Y =
X, | 0.5 X; 1Yy, ] 0 V, 05
X 0.5 XY, O
7 % ¥, 1 0 Y | 05




Unliftable Clause

~

Independent Project
not possible:

Ho_: VXVX (R(X)V SQ(&{)'V T(){)) E?{AAJXT o Ho[A,/X]

are dependent!
g Y,

Theorem. Computing Py(H,) is #P-hard in the size of D

[Dalvi&S.2004]
Proof: PP2CNF: F = (X;; VYj) A (X V Yj,) A ... reduce #F to computing Pp(H,)

By example:
F= (X;VY )A(X; VY, A(XVY,) D (tuples not shown have P=1)
R S T
_ X | P X| Y|P Y =
Po(Hpy) = P(F); hence P(H,) is #P-hard X, | 05| |x,|y,| 0 Vi 05
X5 | 0.5 X |y, O
X, [¥>10 Y2 0-5




Hierarchical Queries

Fix Q; at(x) = set of atoms (=literals) containing the variable x

Definition Q is hierarchical if forall variables X, y:
at(x) Cat(y) or at(x) 2 at(y) or at(x) N at(y) =0

Hierarchical Non-hierarchical

Q = VxWyVa(S(uVT(x2) | [Hy = vxvy ROVSOVT()

5f




The Small Dichotomy Theorem

[Dalvi&S.04]

Theorem Let Q be one clause, with no repeated symbols
* If Q is hierarchical, then P,(Q) is in PTIME.
« If Q is not hierarchical then P,(Q) is #P-hard.

Checking “Q is hierarchical” is in AC° (expression complexity)



The Small Dichotomy Theorem

[Dalvi&S.04]

Theorem Let Q be one clause, with no repeated symbols
* If Q is hierarchical, then P,(Q) is in PTIME.
« If Q is not hierarchical then P,(Q) is #P-hard.

Checking “Q is hierarchical” is in AC° (expression complexity)

[Dalvi,S.’12]

Fact: Any non-hierarchical Q in YFOU" (IFOU") is #P-hard

Next: consider only hierarchical queries in YFQOU" (3FQOUM)



Clause with Repeated Symbols

QJ': Vxlyy'lyxzyy_z‘ (S(X1’Y_1)V R(}’_l?_v S(de’z) VT(Yz)}_




Clause with Repeated Symbols

QJ_: VX1‘_V'Y_1:V'X2:V'YT2_ (_SQ(1:Y1) v R(YQ'V S(3<z;yr22_VT(y_21)}_

= [V&(1VY1S(X1’Y1)VR(V1)] JV [VX,VYLS(X0,Y2)VT(Y,)]
¥ %
1 Q,

/




Clause with Repeated Symbols

QJ_: VX1‘_V'y'1__VX2VY2 (S(Xp,yp) vV R(YQ_V 5(2(2’Y2) VT(Yz)?.

= [V51VY1S(X1’Y1)VR(V1)] JV [VX,VYLS(X0,Y2)VT(Y,)]
¥ %

Q>
PQ) = F@@ P(Q,) - P(Q1/A Q)

PTIME (have seen before) ]_]

J




Clause with Repeated Symbols

QJ_: VX1‘_V'y'1__VX2VY2 (S(Xp,yp) vV R(YQ_V 5(2(2’Y2) VT(Yz)?.
= [V51VY1S(X1’Y1)VR(V1)] JV [VX,VYLS(X0,Y2)VT(Y,)]
¥ %

Q>
PQ) = F@@ P(Q,) - P(Q1/A Q)

PTIME (have seen before) ]_]

J

y=yl=y2

QA Q, = VY [(VXS(X1,Y)VR(Y)) A (VX2S(X5,Y))VT(Y)]
= VY [VXS(X,Y)V(R(Y)AT(Y))]



Clause with Repeated Symbols

QJ_: VX1‘_V'y'1__VX2VY2 (S(Xp,yp) vV R(YQ_V 5(2(2’Y2) VT(Yz)?.
= [V51VY1S(X1’Y1)VR(V1)] JV [VX,VYLS(X0,Y2)VT(Y,)]
¥ %

Q>
PQ) = F@@ P(Q,) - P(Q1/A Q)

PTIME (have seen before) ]_]

J

y=yl=y2
QA Q, = VY [(VXS(X1,Y)VR(Y)) A (VX2S(X5,Y))VT(Y)]
= VY [VXS(X,Y)V(R(Y)AT(Y))]

P(Ql A QZ) = I_IB eDomain P[VX-S(X’B) V(R(B) A T(B))] =...etc

Runtime = O(n?).



Unliftable Queries H,

Ho= R(X)VS(X,y)VT(y)

Hy1= [R(X0)VS(Xo.Yo)l A [S(X.y1)VT(yy)]

Will drop V to reduce clutter

Every H,, k=1
IS hierarchical
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Unliftable Queries H,

Ho= ROOVSCYVT) ' Will drop V to reduce clutter

Hy= [R(X)VS(X0:Yo)] A [S(X1,y)VT(Y,)] '

Hy= [R(X0)VS1(X0:Yo)] A [S1(X1,Y1)VS(X1,¥1)] V [Sa(X5,Y2) VT (¥,)] '

Hs= [R(X0)VS1(X0:Yo)IALS1(X1,Y1)V S (X1, Y1)IALS (X5 Y2)V S3(X2:Y2)IA[S5(X5Y3) VT (¥5)] ’

Every H,, k=1
IS hierarchical




Unliftable Queries H,

Ho= ROOVS(YVT) ' Will drop V to reduce clutter

Hy= [R(X)VS(X0:Yo)] A [S(Xp.Y1)VT(Yy)] i

Hy= [R(X0)VS1(X0:Yo)] A [S1(X1,Y1)VS(X1,¥1)] V [Sa(X5,Y2) VT (¥5)] i

Ha= [R(X0)V'S1(X0:Yo)ALS1(X1,Y1)VSo(X1,Y1)IALS (X5 Y2)V S3(Xa:Y2)ALS5(X5Y3) VT (¥3)] '

Every H,, k=1
IS hierarchical

Theorem. [Dalvi&S'12] Every query H, Iis #P-hard




A Closer Look at H,

If we drop any one clause = in PTIME

Hz= [R(X0)VS1(X0,Y0)] A [Sl(xliyéwéz:l A [So(X2,Y2)VS3(X2,Y2)IN[S3(X3,Y2) VT (Y3)]

(. \{ J & — /

Independent join




A Closer Look at H,

If we drop any one clause = in PTIME

Hz= [R(X0)VS1(X0,Y0)] A [Sl(xliyéwéz:l A [So(X2,Y2)VS3(X2,Y2)IN[S3(X3,Y2) VT (Y3)]

. \{ J & — /

Independent join

If we replace T(y;) with T(x3) then in PTIME

[R(X)AS1(X0:Yo)] A[S1(X1,Y1)VSa(X1,Y1)] AlS2(X2,Y2)VS3(Xa,Y2)] AlS3(X3,Y3)VT(X3)] '

Independent project on X, = X; = X, = X3




Cancellations

Qs = a Boolean expression
over the clauses in H; Yet, in PTIME

Qw = _:(R(XO)Vsl(XO’yO)) A (Sa(X0,Y2)VS3(Xa, Y )V ¥ Qy ™
(R(X)VS1(Xo:Yo)) A (Sa(X3,¥3)VT(Y3))] v FQy*
(S1(X1,Y1)VS,a(X1,Y1) A (Sa(X3,Y3)VT(Y3))] [* Qg */




Cancellations

Qs = a Boolean expression
over the clauses in H; Yet, in PTIME

Qw = _:(R(XO)Vsl(XO’yO)) A (Sa(X0,Y2)VS3(Xa, Y )V ¥ Qy ™
(R(X)VS1(Xa:Yo)) A (Sa(X3,Y3)VT(Y3))] v [FQy*
(S1(X1,Y1)VS,(X1,Y1)) A (Sa(X3,Y3)VT(Y3))] [* Qg */

P(Qw) = P(Q,) + P(Q,) + P(Q53) +
- P(Q1 A Qy) -P(Q, A Q3) — P(Q A Q)

+ P(Q1 A QA Q) .@



Cancellations

Qs = a Boolean expression
over the clauses in H; Yet, in PTIME

Qw = [(RXp)VSi(Xo,Yo)) A (SalX2Y2)VSs(X: Y2 )1V 1% Qq */
(RX)VS1(X0:Y0)) A (Sa(X3:Y3)VT(Ya))] v [FQy*
(S1(X1,YD)VS(X1,Y1)) A (Sa(X3,Y3)VT(Y3))] [* Qs_*/

P(Qw) = P(Qq) + P(Q,) + P(Q3) +
- P(Q1 A Qy) -P(Q; A Q) — PIOTAE3)

+ PO A QA Q) —

Need to cancel terms to compute the query in PTIME
Using Mobius’ function in the the lattice of Q’s minterms [Suciu’'11]




The Big Dichotomy Theorem

Call Q liftable if the rules don’t get stuck.

Dichotomy Theorem [Dalvi'12] Fix a VFO!" query Q.
1. If Qs liftable, then P(Q) is in PTIME
2. If Q is not liftable, then P(Q) is #P-complete

Note Original formulation for UCQ);
Immediate extension to YFOU" and for 3FQun




Discussion

* This answers Question 1: lifted inference

rules are complete for YFOU" (and for
JFQOU)

* Notice: we did not use any symmetries!

* Beyond unate FO? Conjectures:

— Rules+resolution* complete for CNF-FO

— No complete set of rules for FO
* Q= Vxvy (R(X)VS(Xy)) AVXVY (=S(X,y) VT(y))
= A VXYY (R(X) VT(Y))
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Question 2. Are lifted rules stronger
than grounded?

Alternative to lifting:
1. Ground the FO sentence
2. Do WMC on the propositional formula

* There Is no reason why grounded inference
should be weaker than lifted inference

* However, existing grounded algorithms are
strictly weaker than lifted inference




Algorithms for Model Counting

[Gomes’08] Based on full search DPLL.:

« Shannon expansion.
#F = #F[X=0] + #F[X=1]

» Caching.
Store #F, look it up later

 Components. If Vars(F1) N Vars(F2) = @:
#(F1 A F2) = #F1 * #F2



Knowledge Compilation

Definition (Informal): represent the Boolean
formula F in a circuit where WMC(F) is In
PTIME In the size of the representation

Why we care:

* The trace of any inference algorithm is a
knowledge compilation

* Lower bounds on size(KC) give lower
bounds on the algorithm’s runtime



Knowledge Compilation Targe

Children of A
have disjoint
sets of

variables

Decision-, sink-nodes

Decision-DNNF
add: A-nodes

OBDD: fixed variable order



[Huang&Darwiche’2005]

DPLL and Knowledge Compilation

Fact: Trace of full-search DPLL -2 KC:

 Basic DPLL
- decision trees

 DPLL + caching
- OBDD (fixed variable order)
- FBDD

 DPLL + caching + components
-> decision-DNNF



Hard Queries

H, = VxVvy (R(X) v S(x,y) V T(y)) = non-hierarchical
H, = hierarchical, has inversion, fork =1

Grounded Boolean formulas:
F.(Ho) = Ny i (Ri V S5 V T))

Th. [Beame’'14] Any FBDD for F.(H,) has size = 2"/n.
Same holds for any non-hierarchical query.

What about Decision-DNNFs?




Decision-DNNF to FBDw

Theorem If F has a Decision-DNNF with N nodes,
then F has an FBDD with at most N1*loa(N) nhodes.

Proof idea




Decision-DNNF to FBDw

Theorem If F has a Decision-DNNF with N nodes,
then F has an FBDD with at most N1*loa(N) nhodes.

Proof idea




Decision-DNNF to FBDD| ortima

[Razgon]

Theorem If F has a Decision-DNNF with N nodes,
then F has an FBDD with at most N1*loa(N) nhodes.

Proof idea

Solution:
copy the
smaller
child




Hard Queries

Corollary Any Decision-DNNF for F,(H,) has size 22(/)
Same holds for any non-hierarchical query.

Proof. N-node Decision-DNNF to N1+o9(N) hodes FBDD.

N1+Iog(N) > 2n-1/n ,

og(N) + log?(N) > n -1 — log(n)
0g?(N) = Q(n)

og(N) = Q(n)




Lifted v.s. Grounded Inference

Non-hierarchical Q

(e.g. Hy)
Lifted P(Q) #P-hard
Grounded P(F.(Q)) 20(3n)

What about hierarchical queries ?




Inversion-Free Queries

Definition An inversion in Q is a sequence of co-occurring vars:

(X0:Yo)s (X1.Y1)s -5 (X Yid such that:

* at(Xy) & at(yp), at(xy)=at(y,),..., at(x,.q)=at(yy.1), at(x,) 2 at(y,)
 Foralli=1,..,k-1 there exists two atoms in Q of the form:

Si(_---,Xi-_1g---,¥i-_1g---) and Si(...,xi,' s Yis ...)

Inversion-free implies hierarchical, but converse fails

Q=[R(Xo) VS(Xo0:Yo)] A [S(X1,y1) VT(Xy)]

Inversion-free Inversion

H;=[R(X0) V S(X0,Yo)l A [S(X1,y1) VT(y)]



Easy Queries

[Jha&S.11], [Beame'15]

Theorem Let Q In YFOUn
1. If Q has inversion then OBDD for F,(Q) has size = 2"1/n
2. Else, F.(Q) has OBDD of width 2#atoms(Q) (size O(n))

Proof (part 2 only — next slide)
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Theorem Let Q In YFOUn
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2. Else, F.(Q) has OBDD of width 2#atoms(Q) (size O(n))

Proof (part 2 only — next slide)



Easy Queries

[Bova’16] SDD more succint than OBDD (HWB)

)

[Beame&Liew’'15] Extended to SDD.
Thus, over YFO'", OBDD = SDD

[Jha&S.11], [Beame'15]

Theorem Let Q In YFOUn
1. If Q has inversion then OBDD for F,(Q) has size = 2"1/n
2. Else, F.(Q) has OBDD of width 2#atoms(Q) (size O(n))

Proof (part 2 only — next slide)



Q = [RIJVS(XVIA [T(X)VS(X',y")] '



Q = [RIJVS(XVIA [T(X)VS(X',y")] '

n=2
= R1-|_1511312R2-|_2821822
N J Y,
Y Y
x=1 X =2




C, = RX)VS(x,y) ' A Cy = T(X) AS(XY) ' = Q = [ROJVSXWIA [T(X)VS(X,y')] '

n=2
= R1-|_1511512R2-|_2521822
N J Y,
Y Y
x=1 X =2




C, = RX)VS(x,y) ' A Cy = T(X) AS(XY) ' = Q = [ROJVSXWIA [T(X)VS(X,y')] '

F2(C1) = (RiVS1IARLVSA(R, VS AR,V Sy) n=2
M=R;T;S;;S1,R,T55,,S,,
_ VRN J
Y Y
x=1 X =2




C, = RX)VS(x,y) ' A Cy = T(X) AS(XY) ' = Q = [ROJVSXWIA [T(X)VS(X,y')] '

F2(C1) = (RiVS1IARLVSA(R, VS AR,V Sy) n=2
M=R;T;S;;S1,R,T55,,S,,
_ VRN J
Y Y
x=1 X =2




C, = RX)VS(x,y) ' A Cy = T(X) AS(XY) ' = Q = [ROJVSXWIA [T(X)VS(X,y')] '

F2(C1) = (RiVS1IARLVSA(R, VS AR,V Sy) n=2

= R1-|_1511312R2-|_2821822

N J Y,
Y Y

x=1 X =2

Same
variable

order I'1 in both

OBDD for

Q =C,AC,
has width =
widthl x width2




Lifted v.s. Grounded Inference

Non-

hierarchical Q Inversion

(e.g. Hy) -free Q
Lifted P(Q) #P-hard PTIME

Grounded P(F.(Q)) 20(¥n) PTIME




Easy/Hard Queries

Main result: a class of queries Q such that:
* Lifted inference: P((Q)) in PTIME

» Grounded inference: P(F,(Q)) exponential
time

Significance: limitation of DPLL-based
algorithms for model counting



Clauses of H,

HkO
Hkl
Hk2

Hkk

vxvy R(X)V S,(X,y)
VXYY S;(XY) V S,(X,y)
VXYY S,(X,Y) V S;3(x,y)

VXYY Sy(X.y) VT(Y)




Clauses of H,

HkO
Hkl
Hk2

Hkk

vxvy R(X)V S,(X,y)
VXYY S;(XY) V S,(X,y)
VXYY Sy(X,y) V S;(X,y)

VXYY Sy(X.y) VT(Y)

Z,) = a Boolean

function




Clauses of H,

Ho= VXVy R(X)V S,(x,y) f(Zy, Z,, ..., Z,) = a Boolean
Hip = VXYY Si(X,Y) V S,(X,y) function
sz VXYY S,(X,Y) V S;(X,Y)

H = VXYY S,(x.y) VT(¥) Q= (o Hy . Hu) |




Clauses of H,

Ho= VXYY R(X)V S,(x.y) f(Zy, Z4, ..., Z,) = a Boolean
Hi = VXYY S1(X.y) V Sy(x.y) function
sz VXYY Sy(X,Y) V S3(X,Y)

Hkk VXYY Sy(xy)V T(y) Q = f(Hho, Ha . -, Hu |
Examples:

f: ZO /\Zl AN... N\ Zk then f(HkO’ Hkl y vy Hkk) — Hk

f = ZO/\Z2 V ZO/\Z3 VZlAZS then f(Hgo, H31; H31’ H33) = QW



Easy/Hard Queries

[Beame'14]

Theorem For any Boolean function f(Z,, Z,, ..., Z,),
denoting Q = f(H,y, Hyq 5 --., Hy):

« Any FBDD for F,(Q) has size 29"

» Any Decision-DNNF has size 220,

Consequence:

 Lifted inference computes compute P(Q,,) in PTIME
» Any DPLL-based algorithm takes time 220

Many other queries are like Q,,



Lifted v.s. Grounded Inference

Non- Q=
hierarchical Q Inversion f(H,g,...,Hy)
(e.g. Hy) -free Q
Lifted P(Q) #P-hard PTIME |PTIME
or
#P-hard
Grounded 200In) PTIME |29()

P(F.(Q))




Two Questions

* Question 1: Are the lifted rules complete?
— We know that they get stuck on some gueries
— Should we add more rules?

Complete for “unate YFO" and for “unate 3FQO”

* Question 2: Are lifted rules stronger than
grounded?
— Lifted rules can also be grounded
— Any advantage over grounded inference?

Strictly stronger than DPLL-based algorithms



Mobius Uber Alles

VFOUn, JFQUn

#P-hard



Mobius Uber Alles

VFOUn, JFQUn

#P-hard



Mobius Uber Alles

VFOUn, JFQUn

#P-hard

Qu

Read Once



Mobius Uber Alles

VFOUn, JFQUn

#P-hard

Poly-size OBDD,SDD
= Inversion-free

Q;
Qu

Read Once



Mobius Uber Alles

VFOUn, JFQUn

#P-hard

Poly-size OBDD,SDD
= Inversion-free



Mobius Uber Alles

VFOUn, JFQUn

Non-hierarchical g

Poly-size OBDD,SDD
= Inversion-free

Q;
Qu\/. ( Open

Read Once
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Complexity over Symmetric DBs

Recall: in a symmetric DB all ground facts
have the same probability

* We can apply new rules that exploit
symmetries

* Dichotomy into PTIME / #P-hard no longer
applies

* Lower bounds on query compilation no
loner apply



Symmetric WFOMC

No database!

Def. A weighted vocabulary is (R, w), where
-R =(R{, R,, ..., R,) = relational vocabulary
—W = (W, Wy, ..., W) = weights

Fix domain of size n;

— Implicit weights:  w(t) = w;, Vit g[n]laty(RDl

Complexity of symmetric WFOMC(Q,n): fixed Q, input n



Examples

Q =vxay R(x,y)

Computable in PTIME in n



Examples

Q = vx3y R(x,y)
FOMC(Q,n) = (2"-1)"  WOMC(Q,n) = ((1+wg)"-1)"

Computable in PTIME in n



Examples

Q = vx3y R(x,y)
FOMC(Q,n) = (2"-1)"  WOMC(Q,n) = ((1+wg)"-1)"

Q =3x3y [R(x) A S(Xy) AT(y)]

FOMC(Q.n) = » > ( >< )2” ~i (24 1)

1=0,n 7=0,n

Computable in PTIME in n



Examples

Q = vx3y R(x,y)
FOMC(Q,n) = (2"-1)"  WOMC(Q,n) = ((1+wg)"-1)"

Q =3x3y [R(x) A S(Xy) AT(y)]

FOMC(Q.n) = » > ( >< )2” ~i (24 1)

1=0,n 7=0,n
WFOMC(Q, n) =
Z Z ( ) >wR wrd (1 4+ wg)" ™ ((1 + wg) — 1)

Computable in PTIME in n



Hardness Is Hard

Triangle = Ix3y3az [R(X,y) A S(y,z2) AT(z,X)]

Complexity of FOMC(Triangle, n) = open problem



Hardness Is Hard

Triangle = Ix3y3az [R(X,y) A S(y,z2) AT(z,X)]

It is hard to prove that Triangle is hard!

The input = just one number n, runtime = f(n)
In unary: n = 111...11, runtime = f(size of input)
FOMC(Q, n) in #P,

Unlikely #P-hard [Valiant' 79]

Complexity of FOMC(Triangle, n) = open problem



The Class #P,

#P, = functions in #P over a unary input alphabet
Also called tally problems

Valiant [1979]: there exists #P, complete problems

Bertoni, Goldwurm, Sabadini [1991]:
there exists a CFG s.t. counting # strings of a given
length is #P, complete

What about a natural problem?

— Goldsmith: “no natural combinatorial problems known to
be #P, complete”



The Logic FOX

FOk = FO restricted to k variables
* Note: may reuse variables!
* “The graph has a path of length 10":

Ix3y(R(x,y) A3Ix (R(y,x) A3y (R(x,y) A3Ix (R(y,X) ...

What is known about FOX
« Satisfiability is decidable for FO?
« Satisfiability is undecidable for FOk: k = 3



Results for Symmetric Inference

[Van den Broeck’14 ,Beame’15]



Results for Symmetric Inference

Theorem
There exists Q in FO3 s.t. FOMC(Q, n) is #P, hard
There exists CQ Q s.t. WFOMC(Q, n) Is #P, hard

[Van den Broeck’14 ,Beame’15]



Results for Symmetric Inference

neorem

nere exists Q in FO* s.t. FOMC(Q, n) is #P, hard
nere exists CQ Q s.t. WFOMC(Q, n) is #P, hard

Theorem WFOMC(Q, n) isin PTIME
« ForanyQ in FO?
* For any gamma-acyclic Q

[Van den Broeck’14 ,Beame’15]



Results for Symmetric Inference

neorem

nere exists Q in FO* s.t. FOMC(Q, n) is #P, hard
nere exists CQ Q s.t. WFOMC(Q, n) is #P, hard

Theorem WFOMC(Q, n) isin PTIME
« ForanyQ in FO?
* For any gamma-acyclic Q

Corresponding decision problem = the spectrum problem
Data complexity: { Spec(Q) | Q in FO} = NP, [Fagin'74]
Combined complexity: NP-complete for FO?, PSPACE-complete for FO

[Van den Broeck’14 ,Beame’15]



(Non-)Application: O/1 Laws

Def. u,(Q) = fraction of structures over a domain of
Size n that are models of Q

u.(Q) = FOMC(Q, n) / FOMC(TRUE, n)

Theorem. [Fagin'76]
For all Q in FO (w/o constants) Iim_, 5., u,(Q) =0or 1

Example: Q = vx3ay R(X,y);
FOMC(Q,n) = (2"-1)"
1,(Q) = (21-1)/ 272 > 1



(Non-)Application: O/1 Laws
How does one proof the 0/1 law?
« Attempt: find explicit formula p,(Q), compute limit.

 Falls! because p,(Q) Is #P,-hard in general! Very
unlikely to admit a simple closed form formula

* Fagin’s proof: beautiful argument involving infinite
models, the compactness theorem, and
completeness of a theory with a categorical model



Discussion

Fagin 1974

THEOREM 6. Assume that A C Fin(S), and that A is closed under iso-
morphism,

1. If S+, then A isan S-spectrum iff E(A) € NF.

2. If S=@, then A isa spectrum iff E(A) € NP,.

Here: S is a vocabulary, S-spectrum of Q = set of structures that satisfy Q

#P, corresponds to {FOMC(Q,n) | Q in FO }




Discussion

Fagin 1974
THEOREM 6. Assume that A C Fin(S), and that A is closed under iso-

morphism,
1. If S+, then A isan S-spectrum iff E(A) € NF.
2. If S=4, then A isa spectrum iff E(A) € NF,.

Here: S is a vocabulary, S-spectrum of Q = set of structures that satisfy Q

Restated:
1. NP =3S0O Fagin’s classic result

2. NP, = 3SO(empty-vocabulary) less well known

#P, corresponds to {FOMC(Q,n) | Q in FO }




Summary

Exploiting symmetries gives us more power:

* Some gueries that are hard over
asymmetric databases become easy over
symmetric ones: e.g. FO? is in PTIME

Limitations:
* Proving hardness is very hard
* Real data i1s never completely symmetric
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What we'd like to do...

Has anyone published a paper with both Erdos and Einstein

All News Images Videos Shopping More ~ Search tools

About 82,400 results (0.73 seconds)

Erddés number - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Erdés _number v Wikipedia ~

He published more papers during his lifetime (at least 1,525) than any other ...
Anybody else's Erdés number is k + 1 where kK is the lowest Erdds number of any

coauthor. ... Albert Einstein and Sheldon Lee Glashow have an Erdés number of 2. ...

and mathematician Ruth Williams, both of whom have an Erdés number of 2.

Erdés—Bacon number - Wikipedia, the free encyclopedia
https://fen.wikipedia.org/wiki/Erdés—Bacon_number » Wikipedia ~

This article possibly contains previously unpublished synthesis of published ... Her
paper gives her an Erdés number of 4, and a Bacon number of 2, both of ...

=



What we'd like to do...

3Ix Coauthor(Einstein,x) A Coauthor(Erdos,x)

All News Images Videos Shopping More ~ Search tools

About 82,400 results (0.73 seconds)

Erddés number - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Erddés number » Wikipedia ~

He published more papers during his lifetime (at least 1,525) than any other ...
Anybody else's Erdés number is k + 1 where kK is the lowest Erdds number of any

coauthor. ... Albert Einstein and Sheldon Lee Glashow have an Erdés number of 2. ...

and mathematician Ruth Williams, both of whom have an Erdés number of 2.

Erdés—Bacon number - Wikipedia, the free encyclopedia
https://en.wikipedia.org/wiki/Erdés—Bacon_number » Wikipedia ~

This article possibly contains previously unpublished synthesis of published ... Her
paper gives her an Erdés number of 4, and a Bacon number of 2, both of ...

=



What we'd like to do...

3Ix Coauthor(Einstein,x) A Coauthor(Erdos,x) U n

TCICICTCIY
Ernst Straus

FORVEVETT
Kristian Kersting, ...

). pkokakeke
Justin Bieber, ...



Coauthor

Problem: Queries 2

Y P
Einstein Straus 0.7
« What If fact missing? Einstein | Padli | 09
Erdos Renyi 0.7
Kersting | Natarajan 0.8
Paol 0.1

 Probability O for: Luc

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x)




Coauthor

Problem: Queries 2

Y P
Einstein Straus 0.7
« What If fact missing? Einstein | Paull | 00
Erdos Renyi 0.7
Kersting | Natarajan 0.8
Paol 0.1

 Probability O for: Luc

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x)

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)




Coauthor

Problem: Queries T
Einstein Straus 0.7

_ o Erdos Straus 0.6

« What If fact missing? Ensen | Pauli | 09
Erdos Renyi 0.7

Kersting | Natarajan 0.8

* Probability O for: buc | Paol | 01

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x)

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)

Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,KerstinglJ




Coauthor

Problem: Queries T
Einstein Straus 0.7

_ o Erdos Straus 0.6

« What If fact missing? Einstein | Padi | 0.9
Erdos Renyi 0.7

Kersting | Natarajan 0.8

* Probability O for: buc | Paol | 01

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x)

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)

Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,KerstinglJ

Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber)



Coauthor

Problem: Queries T
Einstein Straus 0.7

_ o Erdos Straus 0.6

« What If fact missing? Einstein | Padi | 0.9
Erdos Renyi 0.7

Kersting | Natarajan 0.8

* Probability O for: buc | Paol | 01

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x)

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)

Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,KerstinglJ

Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber)

Q5 = Coauthor(Einstein,Bieber) A —Coauthor(Einstein,Bieber)




X Y =

Einstein Straus 0.7

I Y B Erdos Straus | 06
n t u I tl O n Einstein Pauli 0.9
Erdos Renyi 0.7

Kersting Natarajan 0.8

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x) . = =

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus) '
Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,Kersting) '
Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber) '
Q5 = Coauthor(Einstein,Bieber) A —Coauthor(Einstein,Bieber) '

[Ceylan’16]



X Y =

Einstein Straus 0.7

I Y B Erdos Straus | 06
n t u I tl O n Einstein Pauli 0.9
Erdos Renyi 0.7

Kersting Natarajan 0.8

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x) ' = =

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus) '
Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,Kersting) '
Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber) '
Q5 = Coauthor(Einstein,Bieber) A —Coauthor(Einstein,Bieber) '

We know for sure that P(Q1) = P(Q2), P(Q1) = P(Q3), P(Q1) = P(Q4)

[Ceylan’16]



X Y =

Einstein Straus 0.7

Intuition e

Erdos Renyi 0.7

Kersting Natarajan 0.8

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x) ' = =

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus) '
Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,Kersting) '
Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber) '
Q5 = Coauthor(Einstein,Bieber) A —Coauthor(Einstein,Bieber) '

We know for sure that P(Q1) = P(Q2), P(Q1) = P(Q3), P(Q1) = P(Q4)
and P(Q2) 2 P(Q5), P(Q3) 2 P(Q5), P(Q4) 2 P(Q5)

[Ceylan’16]



X Y =

Einstein Straus 0.7

Intuition e

Erdos Renyi 0.7

Kersting Natarajan 0.8

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x) ' = =

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus) .
Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,Kersting) '
Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber) '
Q5 = Coauthor(Einstein,Bieber) A —Coauthor(Einstein,Bieber) '

We know for sure that P(Q1) = P(Q2), P(Q1) = P(Q3), P(Q1) = P(Q4)
and P(Q2) 2 P(Q5), P(Q3) 2 P(Q5), P(Q4) = P(Q5) and P(Q5) = 0.

[Ceylan’16]



X Y =

Einstein Straus 0.7

Intuition e

Erdos Renyi 0.7

Kersting Natarajan 0.8

Q1 = 3x Coauthor(Einstein,x) A Coauthor(Erdos,x) ' LC P_é_m 01

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus) '
Q3 = Coauthor(Einstein,Kersting) A Coauthor(Erdos,Kersting) '
Q4 = Coauthor(Einstein,Bieber) A Coauthor(Erdos,Bieber) '
Q5 = Coauthor(Einstein,Bieber) A —Coauthor(Einstein,Bieber) '

We know for sure that P(Q1) = P(Q2), P(Q1) = P(Q3), P(Q1) = P(Q4)
and P(Q2) 2 P(Q5), P(Q3) 2 P(Q5), P(Q4) = P(Q5) and P(Q5) = 0.

We have strong evidence that P(Q2) = P(Q3) = P(Q4).
[Ceylan’16]



Problem: Broken Learning Loop

Bayesian view on learning:

— Prior belief:
Pr(HasStudent(Luc,Paol)) =0.01

— Observe page
Pr(HasStudent(Luc,Paol) |

— Observe page

)=0.2

Pr(HasStudent(Luc,Paol) [=

Principled and sound reasoning!

) =0.3



Problem: Broken Learning Loop

Current view on Knowledge Base Completion:

— Prior belief:
Pr(HasStudent(Luc,Paol)) =0

— Observe page
Pr(HasStudent(Luc,Paol) | )=0.2

— Observe page
Pr(HasStudent(Luc,Paol) |Fg — , = )=0.3




Problem: Broken Learning Loop

Current view on Knowledge Base Completion:

— Prior belief:
Pr(HasStudent(Luc,Paol)) =0

— Observe page
Pr(HasStudent(Luc,Paol) |

— Observe page
Pr(HasStudent(Luc,Paol) |m _ -

1., |)=03




Problem: Broken Learning Loop

Current view on Knowledge Base Completion:

— Prior belief:
Pr(HasStudent(Luc,Paol)) =0

— Observe page
Pr(HasStudent(Luc,Paol) |

— Observe page
Pr(HasStudent(Luc,Paol) |m _ -

o

This Is mathematical nonsense!



Knowledge Base Completion

Given:
Livesin
X Y
Luc Belgium
Guy USA
Kristian | Germany
Learn:

LocatedIn
X Y
Siemens Germany
Siemens Belgium
UCLA USA
TUDortmund | Germany
KU Leuven | Belgium

WorksFor
X Y
Luc KU Leuven
Guy UCLA
Kristian | TUDortmund
Ingo Siemens

0.8::LivesIn(x,y) :- WorksFor(x,z) A LocatedIn(z,x).




How toO measure success?

WorksFor
X Y P
Luc KU Leuven 0.7
Guy UCLA 0.6
Kristian TUDortmund | 0.3
Ingo Siemens 0.3

LocatedIn
X Y P
Siemens Germany | 0.7
Siemens Belgium | 0.5
UCLA USA 0.8
TUDortmund | Germany | 0.6
KU Leuven Belgium | 0.7

0.8::LivesIn(x,y) :- WorksFor(x,z) A LocatedIn(z,x).

or

0.5::LivesIn(x,y) :- Bornin(x,y).

What is the likelihood, precision, accuracy, ...7




Problem: Curse of Superlinearity

* Reality is worse!

* Tuples are
iIntentionally
missing!

* Every tuple
has 99% pr.

1.0

0.6}

=]

0.2}

0.0

4l

— \—v—‘
1
|
[
|
|
|
|
|
[
|
PR —
NELL(Movie) NELL PaleoDeepDive YAGO
(61939 tuples] (2467442 tuples] [44346078 tuples] [14723181 tuples]
1.2MB 3.22GB 8 GB no data




Problem: Curse of Superlinearity

“This is all true, Guy,
but it’'s just a temporary issue”

“No it’s not!”



Problem: Curse of Superlinearity

Sibling
* Asingle table X Y P

» At the scale of facebook (billions of people)

* Real Bayesian belief about everyone
l.e., all non-zero probabilities

= 200 Exabytes of data



Problem: Curse of Superlinearity

FOUR BOXES OF PUNCH
CARDS OUGHT To BE
ENOUGH FOR ANYONE.

All Google storage is
a couple exabytes...

ing. In Proc. of AAAI'15. AAAI Press, 2015.

Randall Munroe. Google’s datacenters on punch cards,
2015.

James D Park and Adnan Darwiche. Complexity Results and

—

—— ———

PUNCH CARDS

ICE SHEET

Bom'oul I




Problem: Curse of Superlinearity

1.0

T I
R —
0.8}
I
|
I
0.6 :
I
L
04t
We should be herel,|
\ 0.0 — ' ' , '
NELL(Movie) NELL PaleoDeepDive YAGO
(61939 tuples] (2467442 tuples] [44346078 tuples] [14723181 tuples]

1.2MB 3.22 GB 8 GB no data



Closed-World Prob. Databases

A PDB P induces a unique probability distribution over worlds w:

Pp(w) = []Pp(t) [ [(1-Pp(2)),

tew téw
where for every tuple ¢, it holds that

(pif(t:p)eP
Pp(t) = { otherwise. [Probabilistic CWA]



Open-World Prob. Databases

An OpenPDB is a pair G = (P, ), where P is a PDB
if (t:p)eP

otherwise.

Pg(t)={ "

A A-completion of G contains a tuple (t:p) for some p € [0, A] for every
t ¢ P. G induces a set of probability distributions Kg =

= IF}E%%;P(Q) and = %%EP(Q).

[Ceylan’16]



Open-World Prob. Databases

Intuition: tuples can be added with prob < A

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)

Coauthor
X Y P
Einstein Straus 0.7
Einstein Pauli 0.9
Erdos Renyi 0.7

Kersting | Natarajan 0.8
Luc Paol 0.1




Open-World Prob. Databases

Intuition: tuples can be added with prob < A

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)

Coauthor Coauthor
X Y P X Y P
Einstein Straus 0.7 Einstein Straus 0.7
Einstein Pauli 0.9 Einstein Pauli 0.9
Erdos Renyi 0.7 Erdos Renyi 0.7
Kersting | Natarajan 0.8 Kersting | Natarajan 0.8
Luc Paol 0.1 Luc Paol 0.1
Erdos Straus A




Open-World Prob. Databases

Intuition: tuples can be added with prob < A

Q2 = Coauthor(Einstein,Straus) A Coauthor(Erdos,Straus)

Coauthor Coauthor
X Y P X Y P
Einstein Straus 0.7 Einstein Straus 0.7
Einstein Pauli 0.9 Einstein Pauli 0.9
Erdos Renyi 0.7 Erdos Renyi 0.7
Kersting | Natarajan 0.8 Kersting | Natarajan 0.8
Luc Paol 0.1 Luc Paol 0.1
Erdos Straus A

0.7*A = P(Q2) 20



Monotone Queries

E.g., Unions of Conjunctive Queries (UCQ)

Lower bound = closed world probabllity

Upper bound = probabillity after adding all
tuples with probability A

Quadratic blow-up ®
Lifted inference to the rescue!
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Q = VxVvy (‘Smoker(>_<)'v Friend(>_<,y))'

[Ceylan’16]
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Q = VxVvy (‘Smoker(>‘<)'v Friend(x,y))
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P(Q) = M ¢ pomain P(SMOker(A) v vy Friend(Ay)) - ek iiependence

Smoker(Alice) V vy Friend(Alice,y)
Smoker(Bob) V Vy Friend(Bob,y)

= P(Smoker(A) v Yy Friend(A,y))
X P(Smoker(B) v vy Friend(B,y))
X P(Smoker(C) v vy Friend(C,y))
x P(Smoker(D) v vy Friend(D,y))
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x P(Smoker(F) v vy Friend(F,y))

Complexity PTIME?
[Ceylan’16]
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No supporting facts
in database!

Probability O in closed world

Ignore these queries!
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X P(Smoker(E) v vy Friend(E,y)) -

x P(Smoker(F) v vy Friend(F.y)) > Probability 0 in closed world

:> Ignore these queries!

Complexity linear time!
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—
—
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Summary

Open-world semantics make sense
Matches how systems are employed
Open-world reasoning is FREE for UCQs
Beyond UCQs, can pay a hefty price

Future work:
More refined models of the open world
E.g., (types, MLNs, additional statistics)
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Part 5: Completeness of Lifted Inference
Part 6: Query Compilation
Part 7. Symmetric Lifted Inference Complexity

Part 8: Open-World Probabilistic Databases

Part 9: Discussion & Conclusions




Summary

Relational models = the vast majority of
data today, plus probablilistic Databases

Weighted Model Counting = Uniform
approach to Probabilistic Inference

Lifted Inference = really simple rules

The Power of Lifted Inference = we can
prove that lifted inference Is better
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Challenges for the Future

Dealing with uncertainty

* probability theory
* graphical models

Reasoning with
high-level structure

* |ogic
* databases
® programming

Learning

®* parameters
® structure

Statistical relational learning, probabilistic logic
learning, probabilistic programming, probabilistic
databases, ...



Datalog

Edge

O (T |2 (X
OO0 |T|0 |

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

path(a,d) =Yes '




Probabilistic Datalog

d
Edge O.Sf
X y P
a c | 0.3 0.3 C
a b | 0.9 /
b | ¢ | 0.4 a 0.4
C d | 05 0.9 b

path(X,Y) :- edge(X,Y).
path(X,Y) :- edge(X,Z), path(Z,Y).

P(path(a,d)) ="??

[De Raedt’07, Fierens’'15]



Probabilistic Programming

* Programming language + random variables

« Reason about distribution over executions
As going from hardware circuits to programming languages

sample (L,N,S) :- permutation(S,T), sample ordered(L,N,T).

sample ordered( , 0, []).
sample ordered([X|L], N, [X]|S]) :-
N > 0, sample now([X|L],N), N2 is N-1,
sample ordered(L,N2,S).
sample ordered([H|L], N, S) :-
N > 0, \+ sample now([H|L],N), sample ordered(L,N,S).

P::sample now(L,N) :- length(L, M), M >= N, P is N/M.

P (sample([c,a,c,t,u,s],3,[c,a,t])) = 0.1
[De Raedt’07, Fierens’'15]



Approximate Symmetries

 What if not liftable? Asymmetric graph?
* Exploit approximate symmetries:

— Exact symmetry g: Pr(x) = Pr(x8)

E.g. Ising model
without external field

O—
O 4

O—0O—0
O—L—O0—0O
O—O—

-
)
Q
‘\
‘\
‘\
‘t

— Approximate symmetry g: Pr(x) = Pr(xé)

E.g. Ising model with external field —C0—9—7C
O—O0—C—@
P = P —O0—0—O
O——0——-O

[VdB’13,’15,Gogate’14]



Example: Statistical Relational Model

 WebKB: Classify pages given links and words
* Very large Markov logic network

1.3 Page(x, Faculty) = HasWord(x, Hours)
1.5 Page(x, Faculty) A Link(x,y) = Page(y, Course)

and 5000 more ...

* No symmetries with evidence on Link or Word
* Where do approx. symmetries come from?

[VdB’13,'15]



Over-Symmetric Approximations

* OSA makes model more symmetric
E.g., low-rank Boolean matrix factorization

Link (“aaai.org”, “google.com”) Link (“aaai.org”, “google.com”)
Link (“google.com”, “aaai.org”) > Link (“google.com”, “aaai.org”)
Link (“google.com”, “gmail.com”) e ; S ax =
Link (“ibm.com”, “aaai.org”) + Link (“aaai.org”, “ibm.com”)

Link (“ibm.com”, “aaai.org”)

google.com and ibm.com become symmetric!

Ayt —

[VdB’13,'15]



KL Divergence

0.1

0.01

Experiments: WebKB

200 400 600

800

1000

[VdB’13,'15]



e Given:

e Learn:

* |dea:

Lifted Weight Learning

A set of first-order logic formulas

w FacultyPage(x) A Linked(x,y) = CoursePage(y)

A set of training databases
The associated maximum-likelihood weights

5 |
s log Pry(db) = nj(db) — Ew[nj]

Jw
/ Expected counts

Count in databases R(?quires inference ‘
Efficient Ew[nr] =Pr (F61) + - -+ + Pr(Fom)

Lift the computation of E,[n;]

[Van Haaren’16]



Learning Time

w Smokes(x) A Friends(x,y) = Smokes(y) '

=

<

[

Run Time [s]

o &~ O 0 O

0 5000 10000 15000 20000 250004 30000
Domain Size (Number of People)

Big data Learns a model over
900,030,000 random variables

[Van Haaren’16]




Learning Time

w Smokes(x) A Friends(x,y) = Smokes(y) I

=

<

[

Run Time [s]

o &~ O 0 O

0 5000 10000 15000 20000 250004 30000
Domain Size (Number of People)

m Learns a model over
900,030,000 random variables

Big models

[Van Haaren’16]



More Lifted Algorithms

« Exact Inference (Al)

— First-Order Variable Elimination
[Poole’03, deSalvoBraz’05, Milch’08,
Taghipour’13]

- First-Order Knowledge Compilation

V.d.Broeck'11,'12,'13]

- Probabillistic Theorem Proving

‘Gogate’11]

- MPE/MAP Inference
[deSalvoBraz'06,Apsel’12,Sarkhel’14,Kopp’19]




More Lifted Algorithms

« Approximate Inference (Al)

_ifted Belief Propagation
Jaimovich’07, Singla’08, Kersting'09]

_ifted Bisimulation/Mini-buckets [Sen’08,'09]
_ifted Importance Sampling [Gogate'11,'12]

_Ifted Relax, Compensate & Recover
V.d.Broeck’12]

_Ifted MCMC [Niepert'13,Venugopal’12,VdB’15]
_ifted Variational Inference [Choi’12, Bui’12]

_Ifted MAP-LP [Mladenov'14, Apsel’ 14]



More Lifted Algorithms

« Other Tasks (Al)
- Lifted Kalman Filter [Ahmadi'1
- Lifted Linear Programming [M
« Surveys [Kersting'12,Kimmig'19]

1, Choi’11]
adenov'12]

« Approximate Query Evaluation (

DB)

—Dissociation [Gatterbauer’13,'14,'15]
— Collapsed Sampling [Gribkoff'15]

— Approximate Compilation
[Olteanu’10, Dylla’13]



Conclusions

A radically new reasoning paradigm

Lifted inference is frontier and integration
of Al, KR, ML, DBs, theory, etc.

We need

— relational databases and logic
— probabilistic models and statistical learning
— algorithms that scale

Many theoretical open problems
Recently cool practical applications



Symmetric Open Problems

Rules are complete beyond FO?2?

Lifted approximations
— Over-symmetric approx. with guarantees
— Combined with Learning

Mixed symmetric and asymmetric

Theoretical computer science connections
— Understanding #P1

More SRL applications
More expressive logics and programs
Continuous random variables + Logic



Asymmetric Open Problems

Extensions of the Dichotomy theorem
— For 0, %, 1 probabilities

— FDs, Deterministic tables

— Negations: VFO, 3FO, or full FO

Lifted approximation algorithms

Characterize queries with tractable compilation
to: FBDD, SDD, d-DNNF

Circuit language supporting dichotomy

Characterize queries with tractable most likely
world (MAP = maximum a posterior)



Long-Term Outlook

Probabilistic inference and learning exploit
~ 1988: conditional independence
~ 2000: contextual independence (local structure)



Long-Term Outlook

Probabilistic inference and learning exploit
~ 1988: conditional independence
~ 2000: contextual independence (local structure)
~ 2017?: symmetry & exchangeability & first-order



If you want more...

& AORGAN &CLAYPOOL PUBLISH ‘-]:t WORGAANG LAWY KA e
L B O O kS Probabilistic Databases Seatistical Refational
Artificial Intelligence
TP i o
— Probabilistic Databases s o
: ettt Kot
n Stirwwrs Nararge
Diannl Ponde

— Statistical Relational Al
— (Lifted Inference Book)

[Suciu’11] [DeRaedt’16]

« StarAl workshop on Monday
http://www.staral.org

* Main conference papers



http://www.starai.org/

Thank You!

Questions?
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