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Rows are independent 
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Statistical Relational Representations 

Augment graphical model with relations between entities (rows). 

Asthma Smokes 

Cough 

+ Asthma can be hereditary 

+ Friends have similar  
   smoking habits 

Intuition Markov Logic 



Statistical Relational Representations 

Augment graphical model with relations between entities (rows). 

Asthma Smokes 

Cough 

+ Asthma can be hereditary 

+ Friends have similar  
   smoking habits 

Intuition Markov Logic 

2.1  Asthma ⇒ Cough  
 
3.5  Smokes ⇒ Cough 



Statistical Relational Representations 

Augment graphical model with relations between entities (rows). 

Asthma Smokes 

Cough 

+ Asthma can be hereditary 

+ Friends have similar  
   smoking habits 

Intuition Markov Logic 

2.1  Asthma(x) ⇒ Cough(x)  
 
3.5  Smokes(x) ⇒ Cough(x) 

Logical variables refer to entities 



Statistical Relational Representations 

Augment graphical model with relations between entities (rows). 

Asthma Smokes 

Cough 

2.1  Asthma(x) ⇒ Cough(x)  
 
3.5  Smokes(x) ⇒ Cough(x)  
 
 
1.9  Smokes(x) ∧ Friends(x,y)  
  ⇒ Smokes(y)  
1.5  Asthma (x) ∧ Family(x,y)  
  ⇒ Asthma (y) 

+ Asthma can be hereditary 

+ Friends have similar  
   smoking habits 

Intuition Markov Logic 



Equivalent Graphical Model 

 Statistical relational model (e.g., MLN) 

  
 Ground atom/tuple = random variable in {true,false} 

 e.g., Smokes(Alice), Friends(Alice,Bob), etc. 

 Ground formula = factor in propositional factor graph 

 

Friends(Alice,Bob)     

Smokes(Alice)    Smokes(Bob)    

Friends(Bob,Alice)    

f1 f2 
Friends(Alice,Alice)    Friends(Bob,Bob)    

f3 f4 

1.9   Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) 
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Probabilistic Databases 

• Tuple-independent probabilistic databases 
 
 
 
 

• Query: SQL or First-order logic 

 

 

 
• Learned from the web, large text corpora, ontologies, 

etc., using statistical machine learning. 

 

Name Prob 

Brando 0.9 

Cruise 0.8 

Coppola 0.1 

Actor Director Prob 

Brando Coppola 0.9 

Coppola Brando 0.2 

Cruise Coppola 0.1 

Q(x) = ∃y Actor(x)∧WorkedFor(x,y) SELECT Actor.name 
FROM Actor, WorkedFor 
WHERE Actor.name = WorkedFor.actor 

A
ct

o
r 
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Google Knowledge Graph 

 > 570 million entities 
 > 18 billion tuples 
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Probabilistic Programming 

• Programming language + random variables 

• Reason about distribution over executions 

As going from hardware circuits to programming languages 

• ProbLog: Probabilistic logic programming/datalog 

• Example: Gene/protein interaction networks 

Edges (interactions) have probability 

“Does there exist a path connecting two proteins?” 

 

Cannot be expressed in first-order logic 
Need a full-fledged programming language! 
 

path(X,Y) :- edge(X,Y). 
path(X,Y) :- edge(X,Z), path(Z,Y). 
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Not about: [VdB, et al.; AAAI’10, AAAI’15, ACML’15, DMLG’11+, *Gribkoff, Suciu, Vdb; Data Eng.’14+, 
[Gribkoff, VdB, Suciu; UAI’14, BUDA’14+ , [Kisa, VdB, et al.; KR’14 ], [Kimmig, VdB, De Raedt; AAAI’11+, 
[Fierens, VdB, et al., PP’12, UAI’11, TPLP’15+ , [Renkens, Kimmig, VdB, De Raedt; AAAI’14+, [Nitti, VdB, et 
al.; ILP’11+, *Renkens, VdB, Nijssen; ILP’11, MLJ’12+, [VHaaren, VdB; ILP’11+, [Vlasselaer, VdB, et al.; 
PLP’14+ , [Choi, VdB, Darwiche; KRR’15+, [De Raedt et al.;’15+, *Kimmig et al.;’15+, *VdB, Mohan, et al.;’15+ 
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A Simple Reasoning Problem 

 52 playing cards 

 Let us ask some simple questions 

... 

[Van den Broeck; AAAI-KRR’15+ 
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A Simple Reasoning Problem 
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... 

? 

Probability that Card52 is Spades 
given that Card1 is QH? 13/51 

[Van den Broeck; AAAI-KRR’15+ 



Automated Reasoning 

Let us automate this: 

1. Probabilistic graphical model (e.g., factor graph) 
 
 
 
 
 
 

2. Probabilistic inference algorithm 
 (e.g., variable elimination or junction tree)  



Classical Reasoning 

A 

B C 

D E 

F 

A 

B C 

D E 

F 

A 

B C 

D E 

F 

Tree Sparse Graph Dense Graph 

• Higher treewidth 
• Fewer conditional independencies 
• Slower inference 
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Is There Conditional Independence? 

... 

? 

13/51 ≠ 12/50 

P(Card52 | Card1) ≟ P(Card52 | Card1, Card2) P(Card52 | Card1) ≠ P(Card52 | Card1, Card2) 

P(Card52 | Card1, Card2) ≟ P(Card52 | Card1, Card2, Card3) 



Is There Conditional Independence? 

... 

? 

13/51 ≠ 12/50 

12/50 ≠ 12/49 

P(Card52 | Card1) ≟ P(Card52 | Card1, Card2) P(Card52 | Card1) ≠ P(Card52 | Card1, Card2) 

P(Card52 | Card1, Card2) ≟ P(Card52 | Card1, Card2, Card3) P(Card52 | Card1, Card2) ≠ P(Card52 | Card1, Card2, Card3) 



Automated Reasoning 

(artist's impression) 

Let us automate this: 
1.  Probabilistic graphical model (e.g., factor graph) 

  is fully connected! 
 
 
 
 
 
 
 

2.  Probabilistic inference algorithm 
 (e.g., variable elimination or junction tree) 
 builds a table with 5252 rows 

[Van den Broeck; AAAI-KRR’15+ 
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What's Going On Here? 

? 

... 
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Probability that Card52 is Spades 
given that Card2 is QH? 13/51 
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What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card3 is QH? 
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Probability that Card52 is Spades 
given that Card3 is QH? 13/51 
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... 

Tractable Probabilistic Inference 

Which property makes inference tractable? 

Traditional belief: Independence 

What's going on here? 

 

[Niepert, Van den Broeck; AAAI’14+, *Van den Broeck; AAAI-KRR’15+ 



... 

Tractable Probabilistic Inference 

Which property makes inference tractable? 

Traditional belief: Independence 

What's going on here? 

 ⇒ Lifted Inference  High-level reasoning 
 Symmetry 
 Exchangeability 

[Niepert, Van den Broeck; AAAI’14+, *Van den Broeck; AAAI-KRR’15+ 



Other Examples of Lifted Inference 

 Syllogisms & First-order resolution 

 Reasoning about populations 
 We are investigating a rare disease. The disease is more rare in 

women, presenting only in one in every two billion women and one 
in every billion men. Then, assuming there are 3.4 billion men and 
3.6 billion women in the world, the probability that more than five 
people have the disease is 

 

 

 

[Van den Broeck; AAAI-KRR’15+, *Van den Broeck; PhD‘13+ 



Equivalent Graphical Model 

 Statistical relational model (e.g., MLN) 
 
 

 As a probabilistic graphical model: 
 26 pages; 728 variables;  

676 factors 
 1000 pages; 1,002,000 variables;  

1,000,000 factors 
 

 Highly intractable? 
– Lifted inference in milliseconds! 

3.14  FacultyPage(x) ∧ Linked(x,y) ⇒ CoursePage(y) 
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Weighted Model Counting 

• Model = solution to a propositional logic formula Δ 

• Model counting = #SAT 

Rain Cloudy Model? 
T T Yes 

T F No 

F T Yes 

F F Yes 

#SAT = 3 

Weight 
1 * 3 =   3  

              0 

2 * 3 =   6 

2 * 5 = 10 

WMC = 19 

• Weighted model counting (WMC) 
– Weights for assignments to variables 
– Model weight is product of variable weights w(.) 

+ + 

  Δ = (Rain ⇒ Cloudy) 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 
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Model = solution to first-order logic formula Δ 
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Days = {Monday} 
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F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 



Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 

 
Weight 

 1 * 1 * 3 * 3 =    9 

                          0 

2 * 1* 3 * 3 =   18 

2 * 1 * 5 * 3 =   30 

                          0 

                          0 

                          0 

                          0 

 1 * 2 * 3 * 3 =  18 

                          0 

 2 * 2 * 3 * 3 =  36 

 2 * 2 * 5 * 3 =  60 

 1 * 2 * 3 * 5 =   30  

                         0 

 2 * 2 * 3 * 5 =  60 

 2 * 2 * 5 * 5 = 100 
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Weighted First-Order Model Counting 
Model = solution to first-order logic formula Δ 

 
Weight 

 1 * 1 * 3 * 3 =    9 

                          0 

2 * 1* 3 * 3 =   18 

2 * 1 * 5 * 3 =   30 

                          0 

                          0 

                          0 

                          0 

 1 * 2 * 3 * 3 =  18 

                          0 

 2 * 2 * 3 * 3 =  36 

 2 * 2 * 5 * 3 =  60 

 1 * 2 * 3 * 5 =   30  

                         0 

 2 * 2 * 3 * 5 =  60 

 2 * 2 * 5 * 5 = 100 

WFOMC = 361 
+ 

Rain(M) Cloudy(M) Rain(T) Cloudy(T) Model? 

T T T T Yes 

T F T T No 

F T T T Yes 

F F T T Yes 

T T T F No 

T F T F No 

F T T F No 

F F T F No 

T T F T Yes 

T F F T No 

F T F T Yes 

F F F T Yes 

T T F F Yes 

T F F F No 

F T F F Yes 

F F F F Yes 

#SAT = 9 
+ 

Δ = ∀d (Rain(d)  
            ⇒ Cloudy(d)) 

Days = {Monday 
              Tuesday} 

w( R)=1 
 w(¬R)=2 
   w( C)=3 
 w(¬C)=5 



Assembly language for  
high-level probabilistic reasoning 

Parfactor graphs 

Probabilistic 
databases 

Relational Bayesian 
networks 

Probabilistic 
logic programs 

Markov Logic 

Weighted First-Order 
Model Counting 

[VdB et al.; IJCAI’11, PhD’13, KR’14, UAI’14] 
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WFOMC Inference: Example 

→ 3n models 

3.  Δ = ∀x, (Stress(x) ⇒ Smokes(x)) Domain = {n people} 

2.  Δ = ∀y, (ParentOf(y) ∧ Female ⇒ MotherOf(y)) D = {n people} 

If Female = true?   Δ = ∀y, (ParentOf(y) ⇒ MotherOf(y)) → 3n models 
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3.14    Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) 

First-Order Knowledge Compilation 
Markov Logic 

[Van den Broeck et al.; IJCAI’11, NIPS’11, PhD’13, KR’14] 
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Weight Function 

w(Smokes)=1 
 w(¬Smokes )=1 
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 w(F)=3.14 
 w(¬F)=1 

FOL Sentence 

First-Order d-DNNF Circuit 

   Compile 

First-Order Knowledge Compilation 

Domain 

Alice 
Bob 

Charlie 

Z = WFOMC = 1479.85 

Markov Logic 

[Van den Broeck et al.; IJCAI’11, NIPS’11, PhD’13, KR’14] 



Let us automate this: 

 Relational model 
 
 
 

 

 Lifted probabilistic inference algorithm 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c) 

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

... 



... 
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∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

[Van den Broeck.; AAAI-KR’15] 
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... 

Playing Cards Revisited 

Let us automate this: 

∀p, ∃c, Card(p,c) 
∀c, ∃p, Card(p,c)  

∀p, ∀c, ∀c’, Card(p,c) ∧ Card(p,c’) ⇒ c = c’ 

Computed in time polynomial in n 

[Van den Broeck.; AAAI-KR’15] 



Outline 

• Motivation 

– Why high-level representations? 

– Why high-level reasoning? 

• Intuition: Inference rules 

• Liftability theory: Strengths and limitations 

• Lifting in practice 

– Approximate symmetries 

– Lifted learning 



Theory of Inference 

• Low-level graph-based concepts (treewidth) 

 ⇒ inadequate to describe high-level reasoning 

• Need to develop “liftability theory” 

• Deep connections to  

– database theory, finite model theory, 0-1 laws, 

– counting complexity 

Goal:  
Understand complexity of probabilistic reasoning 

[Van den Broeck.; NIPS’11], [Van den Broeck, Jaeger.; StarAI’12] 
 



 Informal *Poole’03, etc.+ 

Exploit symmetries, Reason at first-order level, Reason about groups of objects,  
Scalable inference, High-level probabilistic reasoning, etc. 

 A formal definition: Domain-lifted inference 
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in the number of entities in the domain. 
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 A formal definition: Domain-lifted inference 

 

 

 
 

 

Lifted Inference: Definition 

 Polynomial in #rows, #entities, #people, #webpages, #cards 
 ~ data complexity in databases 

Big data 

Inference runs in time polynomial 
in the number of entities in the domain. 

Name Cough Asthma Smokes 

Alice 1 1 0 

Bob 0 0 0 

Charlie 0 1 0 

[Van den Broeck.; NIPS’11] 
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First-Order Knowledge Compilation 

Evaluation in time polynomial in domain size Domain-lifted! 
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Weight Function 
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What Can Be Lifted? 

Theorem: WFOMC for FO2 is liftable 

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR’14] 
 



What Can Be Lifted? 

Theorem: WFOMC for FO2 is liftable 

Corollary: Markov logic with two logical 
variables per formula is liftable. 

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR’14] 
 



What Can Be Lifted? 

Theorem: WFOMC for FO2 is liftable 

Corollary: Markov logic with two logical 
variables per formula is liftable. 

Corollary: Tight probabilistic logic programs 
with two logical variables are liftable. 

… 

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR’14] 
 



X Y 

Smokes(x) 

Gender(x) 

Young(x) 

Tall(x) 

Smokes(y) 

Gender(y) 

Young(y) 

Tall(y) 

Properties Properties 

FO2 is liftable! 
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Young(x) 
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Properties Properties 
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X Y 

Smokes(x) 

Gender(x) 

Young(x) 

Tall(x) 

Smokes(y) 

Gender(y) 

Young(y) 

Tall(y) 

Properties Properties 

Friends(x,y) 

Colleagues(x,y) 

Family(x,y) 

Classmates(x,y) 

Relations 

FO2 is liftable! 

“Smokers are more likely to be friends with other smokers.” 
“Colleagues of the same age are more likely to be friends.” 

“People are either family or friends, but never both.” 
“If X is family of Y, then Y is also family of X.” 

“If X is a parent of Y, then Y cannot be a parent of X.” 



Name Cough Asthma Smokes 

Alice 1 1 0 

Bob 0 0 0 

Charlie 0 1 0 

Dave 1 0 1 

Eve 1 0 0 

Medical Records 

FO2 is liftable! 

Frank 1 ? ? 

Frien
d

s 

B
ro

th
ers 

Frank 1 0.2 0.6 

2.1  Asthma(x) ⇒ Cough(x)  
3.5  Smokes(x) ⇒ Cough(x)  
1.9  Smokes(x) ∧ Friends(x,y)  
  ⇒ Smokes(y)  
1.5  Asthma (x) ∧ Family(x,y)  
  ⇒ Asthma (y) 

Statistical Relational Model in FO2 

[Van den Broeck.; NIPS’11+, *Van den Broeck et al.; KR’14+ 
 



Name Cough Asthma Smokes 

Alice 1 1 0 

Bob 0 0 0 

Charlie 0 1 0 

Dave 1 0 1 

Eve 1 0 0 

Medical Records 

FO2 is liftable! 

Frank 1 ? ? 

Frien
d

s 

B
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th
ers 

Frank 1 0.2 0.6 

Big data 

2.1  Asthma(x) ⇒ Cough(x)  
3.5  Smokes(x) ⇒ Cough(x)  
1.9  Smokes(x) ∧ Friends(x,y)  
  ⇒ Smokes(y)  
1.5  Asthma (x) ∧ Family(x,y)  
  ⇒ Asthma (y) 

Statistical Relational Model in FO2 

[Van den Broeck.; NIPS’11+, *Van den Broeck et al.; KR’14+ 
 



Can Everything Be Lifted? 

[Beame, Van den Broeck, Gribkoff, Suciu; PODS’15+ 
 



Can Everything Be Lifted? 

Theorem: There exists an FO3 sentence Θ1  
for which first-order model counting is  
#P1-complete in the domain size. 

[Beame, Van den Broeck, Gribkoff, Suciu; PODS’15+ 
 



Can Everything Be Lifted? 

Theorem: There exists an FO3 sentence Θ1  
for which first-order model counting is  
#P1-complete in the domain size. 

A counting Turing machine is a nondeterministic TM that  
prints the number of its accepting computations. 
 
The class #P1 consists of all functions computed by a 
polynomial-time counting TM with unary input alphabet. 
 
Proof: Encode a universal #P1-TM in FO3 

[Beame, Van den Broeck, Gribkoff, Suciu; PODS’15+ 
 



Fertile Ground 

FO2 

CNF 

FO2 

 

Safe 
monotone 
CNF 
 
 Safe type-1 CNF 

 
 

Θ1 

FO3 

 

Υ1 

CQs 

 

 S 

[VdB; NIPS’11+, [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15+, [Beame, VdB, Gribkoff, Suciu; PODS’15+, etc. 
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CNF 

FO2 

 

Safe 
monotone 
CNF 
 
 Safe type-1 CNF 

 
 

? Θ1 

FO3 

 

Υ1 

CQs 

 

Δ = ∀x,y,z, Friends(x,y) ∧ Friends(y,z) ⇒ Friends(x,z) 

 S 

[VdB; NIPS’11+, [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15+, [Beame, VdB, Gribkoff, Suciu; PODS’15+, etc. 
 
 



Statistical Properties 

Name Cough Asthma Smokes 

Alice 1 1 0 

Bob 0 0 0 

Charlie 0 1 0 

P( 
Alice 1 1 0 P( ) 

) = Bob 0 0 0 P( ) x 

Charlie 0 1 0 P( ) x 

1. Independence 

3. Independent and identically distributed (i.i.d.)  
 = Independence + Partial Exchangeability 

Name Cough Asthma Smokes 

Alice 1 1 0 

Bob 0 0 0 

Charlie 0 1 0 

P( ) = 

Name Cough Asthma Smokes 

Charlie 1 1 0 

Alice 0 0 0 

Bob 0 1 0 

P( ) 

2. Partial Exchangeability 



• Tractable classes independent of representation 

• Traditionally:  

– Tractable learning from i.i.d. data 

– Tractable inference when cond. independence 

• New understanding: 

– Tractable learning from exchangeable data 

– Tractable inference when 

• Conditional independence 

• Conditional exchangeability 

• A combination 

Statistical Properties for Tractability 

[Niepert, Van den Broeck; AAAI’14+ 
 



Outline 

• Motivation 

– Why high-level representations? 

– Why high-level reasoning? 

• Intuition: Inference rules 

• Liftability theory: Strengths and limitations 

• Lifting in practice 

– Approximate symmetries 

– Lifted learning 



Approximate Symmetries 

• What if not liftable? Asymmetric graph? 

• Exploit approximate symmetries: 

– Exact symmetry g: Pr(x) = Pr(xg) 

 E.g. Ising model  
 without external field 

– Approximate symmetry g: Pr(x) ≈ Pr(xg) 

 E.g. Ising model with external field 

[Van den Broeck, Darwiche; NIPS’13+, *Van den Broeck, Niepert; AAAI’15+ 
 

P ≈ P 



Example: Statistical Relational Model 

• WebKB: Classify pages given links and words 

• Very large Markov logic network 

 

 

 

• No symmetries with evidence on Link or Word  

• Where do approx. symmetries come from? 

and 5000 more … 

[Van den Broeck, Darwiche; NIPS’13+, *Van den Broeck, Niepert; AAAI’15+ 
 



Over-Symmetric Approximations 

• OSA makes model more symmetric 

• E.g., low-rank Boolean matrix factorization 

Link (“aaai.org”, “google.com”) 
Link (“google.com”, “aaai.org”) 
Link (“google.com”, “gmail.com”) 
Link (“ibm.com”, “aaai.org”) 
 

  Link (“aaai.org”, “google.com”) 
  Link (“google.com”, “aaai.org”) 
- Link (“google.com”, “gmail.com”) 
+ Link (“aaai.org”, “ibm.com”) 
  Link (“ibm.com”, “aaai.org”) 
 

[Van den Broeck, Darwiche; NIPS’13+ 

google.com and ibm.com become symmetric!  



Experiments: WebKB 

[Van den Broeck, Niepert; AAAI’15+ 
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• Intuition: Inference rules 

• Liftability theory: Strengths and limitations 

• Lifting in practice 

– Approximate symmetries 

– Lifted learning 



Lifted Weight Learning 

•  Given:  A set of first-order logic formulas 
 
 
    A set of training databases 

•  Learn:  The associated maximum-likelihood weights 
 
 
 
 
 

•  Idea:   Lift the computation of  

 

w  FacultyPage(x) ∧ Linked(x,y) ⇒ CoursePage(y) 

Count in databases 
Efficient 

Expected counts 
Requires inference 

 

*Van den Broeck et al.; StarAI’13+ 
 



Learning Time 

Learns a model over  
900,030,000 random variables 

w  Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) 

Big data 

*Van den Broeck et al.; StarAI’13+ 
 



Learning Time 

Learns a model over  
900,030,000 random variables 

w  Smokes(x) ∧ Friends(x,y) ⇒ Smokes(y) 

Big models 

Big data 

*Van den Broeck et al.; StarAI’13+ 
 



Lifted Structure Learning 

•  Given:  A set of training databases 

•  Learn:  A set of first-order logic formulas 
    The associated maximum likelihood weights 

•  Idea:  Learn liftable models (regularize with symmetry) 

IMDb UWCSE 

Baseline 
Lifted 

Weight 
Learning 

Lifted 
Structure 
Learning 

Baseline 
Lifted 

Weight 
Learning 

Lifted 
Structure 
Learning 

Fold 1 -548 -378 -306 -1,860 -1,524 -1,477 

Fold 2 -689 -390 -309 -594 -535 -511 

Fold 3 -1,157 -851 -733 -1,462 -1,245 -1,167 

Fold 4 -415 -285 -224 -2,820 -2,510 -2,442 

Fold 5 -413 -267 -216 -2,763 -2,357 -2,227 

[VHaaren, Van den Broeck, et al.;’15+ 
 



Outline 

• Motivation 

– Why high-level representations? 

– Why high-level reasoning? 

• Intuition: Inference rules 

• Liftability theory: Strengths and limitations 

• Lifting in practice 

– Lifted learning 

– Approximate symmetries 



Conclusions 

 A radically new reasoning paradigm 

 Lifted inference is frontier and integration 
of AI, KR, ML, DBs, theory, etc. 

 We need 

 relational databases and logic 

 probabilistic models and statistical learning 

 algorithms that scale 

 Many theoretical open problems 

 It works in practice 



Long-Term Outlook 

Probabilistic inference and learning exploit 

~ 1988: conditional independence 

~ 2000: contextual independence (local structure) 

                                    



Long-Term Outlook 

Probabilistic inference and learning exploit 

~ 1988: conditional independence 

~ 2000: contextual independence (local structure) 

~ 201?: symmetry & exchangeability 
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Prototype Implementation 
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Thanks 


