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Graphical Model Learning

Medical Records

_Name | Cough | Asthma | Smokes.
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Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Intuition Markov Logic

Asthma Smokes 2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

f

Logical variables refer to entities

+ Friends have similar
smoking habits

+ Asthma can be hereditary



Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Intuition

Asthma Smokes

+ Friends have similar
smoking habits

+ Asthma can be hereditary

Markov Logic

2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)

= Asthma (y)



Equivalent Graphical Model

o Statistical relational model (e.g., MLN)

1.9 Smokes(x) A Friends(x,y) = Smokes(y)

o Ground atom/tuple = random variable in {true,false}
e.g., Smokes(Alice), Friends(Alice,Bob), etc.

o Ground formula = factor in propositional factor graph

Smokes(Alice) I
Friends(Alice,Alice)

f;

Friends(Alice,Bob) Friends(Bob,Alice)
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Probabilistic Databases

* Tuple-independent probabilistic databases

<":" Brando 0.9 E Brando Coppola 0.9
Cruise 0.8 o Coppola Brando 0.2
Coppola 0.1 = Cruise Coppola 0.1

 Query: SQL or First-order logic

SELECT Actor.name Q(x) = 3y Actor(x) A WorkedFor(x,y) .

FROM Actor, WorkedFor
WHERE Actor.name = WorkedFor.actor

* Learned from the web, large text corpora, ontologies,
etc., using statistical machine learning.



Google Knowledge Graph

GO. »SIL’ Larry Page

Web mages Mere ~ Se

[

Larry Page - Wikipedia. the free encyclopedia
en.wikipedia.org/wikv/Larry_Page

Lawrence “Larry” Page (bormn March 26, 1973) is an American computer scientist
and Internet enfreprenaur who is the co-founder of Google, alongside Sergey ...
Marissa Mayer - Carrie Southworth - PageRank - Forbes 400

News for Lar
Larry P ts A Literal Android KitKat
Ubergizmo - 3 days ago
* Android 4.4 KitKat marks a3 milestone for Google as they have named
their mobile cperating system after a branded chocolate — although ...

Larry Page - Forbes
www forbes com/profile/larry-page/ ~
Larry Page on Fordes - #20 Billionaires, #20 Poweriul People. #13 Forbes 400

Larry Page - Googles
/+LarryPage ~

https://plus_google com
by Larmry Page-in 6 2 Google+ circles
Dear Google users— You may be aware of press reports alleging that

Internat companies have joined 3 secret U S, government program calied
PRISHM to give ...

Management team — Company — Googie

www.google com/about/company/facts/management/ ~

Larry Page and Sergey Brin founded gle in September 1998 Since then, the
company has grown to more than 20,000 employees worldwide, with a ...

Larry Page Biography - Facts Birthday_Life Story - Biography com
www.biography.com People ~

rch tools

You dont need a search engine to find out all there is te know about Larry Page, co-

founder of Google. Just come to Biography.com!

Larry Page | CrunchBase Profile

www crunchbase com » People ~

Larry Page was Google's founding CEO and grew the company to more than 200
employees and profitability before moving into

Mle MoTe images
Larry Page

Lawrence “Larry” Page is an American computer scientist and Internet
entrepreneur who is the co-founder of Google, alongside Sergey Brin.

On April 4, 2011, Page succeeded Eric Schmidt as the chief executive

officer of Google

Born: March 26, 1973 (age 40), East Lansing, MI

Height: 5° 117 (1.80m)

Spouse: Lucinda Southworth (m. 2007)

Siblings: Carl Victor Page. Jr

Education: East Lansing High School (1987-1991), More
Awards: Marconi Prize, TR100

Recent posts
Just opened the new Android release. KitKat!

People also search for




Google Knowledge Graph

GO‘\ »gle Larry Page

Web Images Maps Shopping News Mere - Search tools

> 570 million entities

> 18 billion tuples

Ubergizmo - 3 days ago
Android 4 4 KitKat marks a3 milestone for Google as they have named
their mobile cperating system after a branded chocolate — although ...

Larry Page - Forbes
www forbes com/profile/larry-page/ ~
Larry Page on Fordes - #20 Billionaires, #20 Poweriul People. #13 Forbes 400

- le+

https//plus google com/+LarryPage ~
by Lamy Page - in 6,606,272 Google+ circles
Dear Google users— You may be aware of press reports alleging that

Internet companies have joined 3 secret U.S, government program called
PRISM to give ...

Management team — Company — Google

www_google com/about/companyifacts/management/ ~

Larry Page and Sergey Brin founded Google in September 1998. Since then, the
company has grown 1o more than 20,000 employees worldwide, with a ...

Larry Page Biography - Facts Birthday. Life Story - Biography com
www.biography.com» People ~

You dont need a search engine to find out all there is te know about Larry Page, co-
founder of Google. Just come to Biography.com!

Larry Page | CrunchBase Profile

www crunchbase com » People ~

Larry Page was Google's founding CEO and grew the company to more than 200
employees and profitability before moving Into

(=

Knowledge Graph
4 N

I3 MoTe images

Lawrence “Larry” Page is an American computer scientist and Internet
entrepreneur who is the co-founder of Google, alongside Sergey Brin.

On April 4, 2011, Page succeeded Eric Schmidt as the chief executive

officer of Google

Born: March 26, 1973 (age 40), EastLansing, MI

Height: 5° 117 (1.80m)

Spouse: Lucinda Southworth (m. 2007)

Siblings: Carl Victor Page. Jr

Education: East Lansing High School (1987-1991), More
Awards: Marconi Prize, TR100

Recent posts

Just opened the new Android release. KitKat!

People also search for




Research Overview

>

Generality

Probabilistic
Databases

Graphical

Statistical
Relational Models

Networks

Knowledge
Representation



Research Overview

A o
é‘ Probabilistic
© Programming
S
Q
q:_, Statistical
O Relational Models

Probabilistic
Databases
Graphical
Models Bayesian
Networks

Knowledge
Representation




Probabilistic Programming

Programming language + random variables

Reason about distribution over executions
As going from hardware circuits to programming languages

ProblLog: Probabilistic logic programming/datalog

Example: Gene/protein interaction networks
Edges (interactions) have probability

“Does there exist a path connecting two proteins?”

path(X Y) :- edge(XY).
path(X Y) :- edge(X 2), path(ZY).

Cannot be expressed in first-order logic
Need a full-fledged programming language!
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Automated Reasoning
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Classical Reasoning

Sparse Graph Dense Graph

—

* Higher treewidth
* Fewer conditional independencies
* Slower inference
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Is There Conditional Independence?
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Automated Reasoning

Let us automate this:

1. Probabilistic graphical model (e.g., factor graph)
is fully connected!

(artist's impression)

2. Probabilistic inference algorithm
(e.g., variable elimination or junction tree)
builds a table with 52°2 rows

[Van den Broeck; AAAI-KRR’15]



What's Going On Here?

RGBS D NOE S NS NS N
ﬁ%ﬁ%%‘%‘ﬁ%ﬁ%:c

LS NS

'
R RIE RIS N N R NS IR
utctcf’ftfcfcffﬁ}%ﬂ%ﬁﬁ

N R I R R R IR

o a N
ﬂﬂﬁ??’fffétfﬂrc &
055

LT a T e N

* 8 *
O RIS NS ORI

R SIS S M)

RN N
I RN RSB

S R I R I R BRI

c:
..‘.'...'..’.."'.'..‘."".
e S S S S S R S0

Spades

IS

ility that Card52

that Card1

Probab

QH?

IS

given

AAAI-KRR’15]

.
I

[Van den Broeck



What's Going On Here?

I I NS N8 )
R e ey,

LSS S S M IS I S R

n '
R RIE RIS N N R NS IR
utctcf’ftfcfcffﬂ}%ﬂ%ﬁﬁ

D N R I R BRI BN

* oy
%%%%ﬁ%%%'cfva;f’%

CR 8 N
ala;afﬁbu

D N R I R B RN RI BN

h I )
O NS IEI B NI

* RIE I

3 0 W K Ky Ky R Ry R N »,
£ R R I B S SO NN M N N )
Cti&.ﬂ\ﬂ?faala;ff?kﬁuﬂ

.nc»..c’urrnr:f.rnctcfc.
S, c«n'cc..tcunwccnt"-ttc *

Spades

IS

ility that Card52

that Card1

Probab

QH?

IS

given

AAAI-KRR’15]

.
I

[Van den Broeck



What's Going On Here?

RSB INE I

S e el
%ﬁ%ﬁ%ﬁ%%ﬁ%‘ﬁ%t
hJEBIE SIS IE M)

c.cnc t
RIS I I N LS
'tt ¥, A tQC!Q.CCt t.dt"lt

LT a T g S RN

* y *
RIS NS BRI

R SIS S M)

RPN A
I RN RSB

SRR
S s y
i), R
Wﬁiﬁ\:

&

A
e

0]

"
e,

NN B SN I E I
RN S N I
(RN SIE DI SIS

R PRI S IE SIS
Ho Ay Ry R Ky K N K
N RN e O K RO R oy e o
utctcf’ftfcfcffﬁ}%ﬂ%ﬁ%

Spades

IS

ility that Card52

that Card2

Probab

?

QH

IS

given

AAAI-KRR’15]

.
I

[Van den Broeck



What's Going On Here?

RSB INE I

S e el
%ﬁ%ﬁ%ﬁ%%ﬁ%‘ﬁ%t
hJEBIE SIS IE M)

c.cnc t
RIS I I N LS
'tt ¥, A tQC!Q.CCt t.dt"lt

LT a T g S RN

* y *
RIS NS BRI

R SIS S M)

RPN A
I RN RSB

SRR
S s y
i), R
Wﬁiﬁ\:

&

A
e

0]

"
e,

NN B SN I E I
RN S N I
(RN SIE DI SIS

R PRI S IE SIS
Ho Ay Ry R Ky K N K
N RN e O K RO R oy e o
utctcf’ftfcfcffﬁ}%ﬂ%ﬁ%

Spades

IS

ility that Card52

that Card2

Probab

13/51

?

QH

IS

given

AAAI-KRR’15]

.
I

[Van den Broeck



What's Going On Here?

N B I RIS

Spades

ility that Card52 is

that Card3

Probab

QH?

IS

given

AAAI-KRR’15]

.
I

[Van den Broeck



What's Going On Here?

N B I RIS

Spades

ility that Card52 is

that Card3

Probab

13/51

QH?

IS

given

AAAI-KRR’15]

.
I

[Van den Broeck



Tractable Probabilistic Inference
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Other Examples of Lifted Inference

o Syllogisms & First-order resolution
o Reasoning about populations

We are investigating a rare disease. The disease is more rare in
women, presenting only in one in every two billion women and one
in every billion men. Then, assuming there are 3.4 billion men and
3.6 billion women in the world, the probability that more than five
people have the disease is

5 n 109 3 6.10°% —
1-%2 % (3'6f10 ) (1-05- 10—9)%( o (05 10—9)f

4-.10° 3.4-10°—(n—f) (n—f
< (54 (1-107) " (10-0)""
(n—f)

[Van den Broeck; AAAI-KRR’15], [Van den Broeck; PhD13]



Equivalent Graphical Model

o Statistical relational model (e.g., MLN)

3.14 FacultyPage(x) A Linked(x,y) = CoursePage(y)

o As a probabilistic graphical model:
— 26 pages; 728 variables; /‘\
676 factors
— 1000 pages; 1,002,000 variables;
1,000,000 factors

o Highly intractable?
— Lifted inference in milliseconds!



Outline

Motivation

— Why high-level representations?

— Why high-level reasoning?

Intuition: Inference rules

Liftability theory: Strengths and limitations
Lifting in practice

— Approximate symmetries

— Lifted learning



Weighted Model Counting

 Model = solution to a propositional logic formula A
* Model counting = #SAT

Model?

A = (Rain = Cloudy) ' Rain | Cloudy
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* Model counting = #SAT
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— Weights for assignments to variables
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Weighted Model Counting

 Model = solution to a propositional logic formula A
* Model counting = #SAT
* Weighted model counting (WMC)

— Weights for assignments to variables
— Model weight is product of variable weights w(.)

Model? Weight

A = (Rain = Cloudy) ' Rain | Cloudy

No

|
]

Yes
Yes

2*5=10
+ +

#SAT =3 WMC=19




Assembly language for
probabilistic reasoning

Factor graphs Probabilistic

logic programs

Bayesian networks

Relational Bayesian
networks

Probabilistic
databases

Markov Logic

Weighted Model
Counting




Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)

= Cloudy(d))

Days = {Monday}




Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d) Rain(M) | Cloudy(M)
= Cloudy(d))

T

F
Days = {Monday} I =
F

Model?
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-l

|
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

A = vd (Rain(d)
= Cloudy(d))

Days = {Monday
Tuesday}
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|
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

Rain(M) | Cloudy(M)

A =vd (Rain(d) Rain(T) | Cloudy(T) Model?
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Zf
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

Rain(M) | Cloudy(M)

Rain(T) | Cloudy(T) Model? Weight
1*1*3*3= 9
0
2*1*3*3= 18
2*1*5*3= 30
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Weighted First-Order Model Counting

Model = solution to first-order logic formula A

Rain(M) | Cloudy(M) | | Rain(T) | Cloudy(T) Model? Weight

A = vd (Rain(d)
= Cloudy(d))
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Assembly language for
high-level probabilistic reasoning

Probabilistic

Parfactor graphs :
logic programs

Relational Bayesian
networks

Probabilistic
databases

Markov Logic

Weighted First-Order
Model Counting

[VdB et al.; [JCAI'11, PhD'13, KR’14, UAI'14]
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WFOMC Inference: Example

A = Vx, (Stress(x) = Smokes(x)) Domain = {n p_eople}
- 3" models
A= ‘v’y,v (ParentOf(y) A Female = MotherOf(y)) D = {n people}
If Female = true? A = Vy, (ParentOf(y) = MotherOf(y)) - 3" models
If Female = false? A = true > 4" models

- 3"+ 4" models

A = Vx,y, (ParentOf(x,y) A Female(x) = MotherOf(x,y)) D = {n people}

> (3" + 4”)n models
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A =Vx,y, (Smokes(x) A Friends(x,y) = Smokes(y)) ' Domain = {n people} '

o If we know precisely who smokes, and there are k smokers?

Database:
Smokes(Alice) =1
Smokes(Bob) =0

I
Smokes(Charlie) =0 k k
Smokes(Dave) =1
Smokes(Eve) =0 \
>

-> Q”Z_k(”_k) models

Smokes Friends Smokes

n 2
o If we know that there are k smokers? N (k)Qn —k(n—k) models
< /n
2
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First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

[Van den Broeck et al.; [JCAI'11, NIPS’11, PhD’13, KR’14]



First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— N\

Weight Function FOL Sentence

w(Smokes)=1 vx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
w(-Smokes )=1 i i ’ i o
w(Friends )=1
w(-Friends )=1
w(F)=3.14
w(-F)=1

[Van den Broeck et al.; [JCAI'11, NIPS’11, PhD’13, KR’14]



First-Order Knowledge Compilation
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First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— N\

Weight Function FOL Sentence
w(Smokes)=1 vx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
w(-Smokes )=1 _
w(Friends )=1 l Compile
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w(F)=3.14 —
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[Van den Broeck et al.; [JCAI'11, NIPS’11, PhD’13, KR’14]



First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— N\

Weight Function FOL Sentence
w(Smokes)=1 vx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
w(-Smokes )=1 _
w(Friends )=1 l Compile
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w(-F)=1 o
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Alice .\'rm::»sw:‘ *Smn;asu‘j J - T
Bob \ ey
Charlie [Frisadetz, )| sy SSTRAE

Z=WFOMC = 1479.85

[Van den Broeck et al.; [JCAI'11, NIPS’11, PhD’13, KR’14]



R R RN
RIC SN IS NS N NS S NS IE BN RN
fﬂfflttt.tttl¢ff’tfﬁét’

I R
RO
S S S S SRR RIS
ke T Ky, R

fcfc?’fffffffﬁ » N
S IR

£ BRI
LRSS N
tcfiftfc“’fff{{dﬁq

R RIS NN
I'lfea;fff;aﬁ

R RIS
'.C '.I "I 'ﬁ.”""

f!tit.t.ttt’titlﬂﬁflt
NI SN BN

R =,
RS IE S LIS NS S I S SN BN
R IR IR IS IR IS N BN RN S
\tl'.?‘f’fl“ﬁ{qﬁquﬁ

[ Tk gt S

SOy R O Ny R K O Ry Ly N
ERICR IS I8 ICE IR NI NSNS I RN
ctltc$§%‘ﬁﬂ%\%%ﬁcnc o

RIS
IR R R K K N e KN
R IR A I S o ]

Let us automate this

— Relational model

Vp, 3c, Card(p,c)
vc, 3p, Card(p,c)

Card(p,

)=>Cc=cC

C

c) A Card(p

H
J

VC, VC

vp

ilistic inference algorithm

— Lifted probab



Playing Cards Revisited

Let us automate this:

Vp, Ic, Card(p,c)
V¢, 3p, Card(p,c)
Vp, V¢, Vc’, Card(p,c) A Card(p,c’) =>c=C’

[Van den Broeck.; AAAI-KR’15]



Playing Cards Revisited

Let us automate this:

Vp, Ic, Card(p,c)
V¢, 3p, Card(p,c)
Vp, V¢, Vc’, Card(p,c) A Card(p,c’) =>c=C’

#sAT= » (1) > () @+ DE 7t =
k
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[Van den Broeck.; AAAI-KR’15]



Playing Cards Revisited

Let us automate this:

Vp, Ic, Card(p,c)
V¢, 3p, Card(p,c)
Vp, V¢, Vc’, Card(p,c) A Card(p,c’) =>c=C’

#sAT= » (1) > () @+ DE 7t =
k=0 0

l=

Computed in time polynomial in n

[Van den Broeck.; AAAI-KR’15]
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Theory of Inference

Goal:

Understand complexity of probabilistic reasoning

* Low-level graph-based concepts (treewidth)
= inadequate to describe high-level reasoning

* Need to develop “liftability theory”
* Deep connections to

— database theory, finite model theory, 0-1 laws,
— counting complexity

[Van den Broeck.; NIPS’11], [Van den Broeck, Jaeger.; StarAl'12]



Lifted Inference: Definition

o Informal [Poole’03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc.

o A formal definition: Domain-lifted inference

Inference runs in time polynomial

in the number of entities in the domain.

[Van den Broeck.; NIPS’11]
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Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc.

o A formal definition: Domain-lifted inference

Inference runs in time polynomial

in the number of entities in the domain.

— Polynomial in #rows, #entities, #people, #webpages, #cards
— ~data complexity in databases

Run Time

Domain Size

[Van den Broeck.; NIPS’11]



Lifted Inference: Definition

o Informal [Poole’03, etc.]

Exploit symmetries, Reason at first-order level, Reason about groups of objects,
Scalable inference, High-level probabilistic reasoning, etc.

o A formal definition: Domain-lifted inference

Inference runs in time polynomial

in the number of entities in the domain.

— Polynomial in #rows, #entities, #people, #webpages, #cards
— ~data complexity in databases

>

2 Alice
5
- Bob 0 0 0
(=4
Charlie 0 1 0
Domain Size
l, Big data

[Van den Broeck.; NIPS’11]



First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y)

— N\

Weight Function FOL Sentence
w(Smokes)=1 Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ]
w(-Smokes )=1
w(Friends )=1 1 Compile?
w(-Friends )=1
w(F)=3.14 First-Order d-DNNF Circuit
w(-F)=1 £
Domain /
Alice w5
Bob \ oo\,
Charlie Z = WFOMC = 1479.85 ‘ —

[Van den Broeck.; NIPS’11]
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First-Order Knowledge Compilation

Markov Logic | 3.14 Smokes(x) A Friends(x,y) = Smokes(y) '

Weight Function FOL Sentence
w(Smokes)=1 Vvx,y, F(x,y) © [ Smokes(x) A Friends(x,y) = Smokes(y) ] '
w(-Smokes )=1
w(Friends )=1 l Compile?
w(=Friends )=1
w(F)=3.14 First-Order d-DNNF Circuit

Charlie

Z = WFOMC = 1479.85 '
Evaluation in time polynomial in domain size Domain-lifted!

[Van den Broeck.; NIPS’11]



What Can Be Lifted?

Theorem: WFOMC for FOZ is liftable

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR'14]
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Theorem: WFOMC for FOZ is liftable

Corollary: Markov logic with two logical
variables per formula is liftable.
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What Can Be Lifted?

Theorem: WFOMC for FOZ is liftable

Corollary: Markov logic with two logical

variables per formula is liftable.

Corollary: Tight probabilistic logic programs
with two logical variables are liftable.

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR'14]



FOZ is liftable!

Properties Properties
Smokes(x) Smokes(y)
Gender(x) Gender(y)
Young(x) n Young(y)

Tall(x) % Tall(y)




FOZ is liftable!

Properties Relations Properties
Smokes(x) Friends(x,y) Smokes(y)
Gender(x) Colleagues(x,y) Gender(y)

Young(x) Family(x,y) n Young(y)
Tall(x) Classmates(x,y) % Tall(y)




FOZ is liftable!

Properties Relations Properties
Smokes(x) Friends(x,y) Smokes(y)
Gender(x) Colleagues(x,y) Gender(y)
Young(x) - Family(x,y) H Young(y)
Tall(x) | Classmates(x,y) Tall(y)

“Smokers are more likely to be friends with other smokers.”
“Colleagues of the same age are more likely to be friends.”
“People are either family or friends, but never both.”

“If X'is family of Y, then Y is also family of X.”

“If Xis a parent of Y, then Y cannot be a parent of X.”




FOZ is liftable!
S

Medical Records Statistical Relational Model in FO?2

2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

Bob @
Charlie 0 1 2 1.5 Asthma (x) A Family(x,y)
Dave 1 0 5 | = = Asthma (y)
D )
Eve 1 0 =
wn
Frank 1 ? ? Frank 1 0.2 0.6

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR'14]



FOZ is liftable!
S

Medical Records Statistical Relational Model in FO?2

2.1 Asthma(x) = Cough(x)

3.5 Smokes(x) = Cough(x)

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

Bob @
Charlie 0 1 2 1.5 Asthma (x) A Family(x,y)
Dave 1 0 5 | = = Asthma (y)
D )
Eve 1 0 =
wn
Frank 1 ? ? Frank 1 0.2 0.6

l Big data

[Van den Broeck.; NIPS’11], [Van den Broeck et al.; KR'14]



Can Everything Be Lifted?

[Beame, Van den Broeck, Gribkoff, Suciu; PODS’15]



Can Everything Be Lifted?

Theorem: There exists an FO? sentence 0,

for which first-order model counting is
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Can Everything Be Lifted?

Theorem: There exists an FO? sentence O,

for which first-order model counting is
#P,-complete in the domain size.

A counting Turing machine is a nondeterministic TM that
prints the number of its accepting computations.

The class #P, consists of all functions computed by a
polynomial-time counting TM with unary input alphabet.

Proof: Encode a universal #P,-TM in FO3

[Beame, Van den Broeck, Gribkoff, Suciu; PODS’15]



Fertile Ground

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’'15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc.



Fertile Ground

FO3

A =Vx,y,z, Friends(x,y) A Friends(y,z) = Friends(x,z)

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’'15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc.



Statistical Properties

1. Independence

mmm )

Alice

P( Bob 0 0 0 )= X P( Bb 0 0 0 )

Charlie 0 1 0
X P( Charlie 0 1 0 )

2. Partial Exchangeability

mmm mmm
Alice Charlie 1
P ( Bob 0 0 0 ) =P ( Alice 0 0 0 )
Charlie 0 1 0 Bob 0 1 0

3. Independent and identically distributed (i.i.d.)
= Independence + Partial Exchangeability



Statistical Properties for Tractability

* Tractable classes independent of representation

e Traditionally:
— Tractable learning from i.i.d. data
— Tractable inference when cond. independence

* New understanding:
— Tractable learning from exchangeable data

— Tractable inference when
* Conditional independence
* Conditional exchangeability
* A combination

[Niepert, Van den Broeck; AAAI’'14]
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Approximate Symmetries

 What if not liftable? Asymmetric graph?
* Exploit approximate symmetries:

O—O—0O—
— Exact symmetry g: Pr(x) = Pr(x8) O—O— 5
E.g. Ising model
| | O—F—0—0
without external field j:
H—O—0—=0

— Approximate symmetry g: Pr(x) = Pr(xé)

®
O
@
O

E.g. Ising model with external field

()
/
@
()
Ny
O

®
)
Ny
@
)
/

o—e—0—70

[Van den Broeck, Darwiche; NIPS’13], [Van den Broeck, Niepert; AAAI'15]



Example: Statistical Relational Model

 WebKB: Classify pages given links and words
* Very large Markov logic network

1.3 Page(x, Faculty) = HasWord(x, Hours)
1.5 Page(x, Faculty) A Link(x,y) = Page(y, Course)

and 5000 more ...

* No symmetries with evidence on Link or Word
* Where do approx. symmetries come from?

[Van den Broeck, Darwiche; NIPS’13], [Van den Broeck, Niepert; AAAI'15]



Over-Symmetric Approximations

* OSA makes model more symmetric
E.g., low-rank Boolean matrix factorization

Link (“aaai.org”, “google.com”) Link (“aaai.org”, “google.com”)
Link (“google.com”, “aaai.org”) > Link (“google.com”, “aaai.org”)
Link (“google.com”, “gmail.com”) e ; S ax =
Link (“ibm.com”, “aaai.org”) + Link (“aaai.org”, “ibm.com”)

Link (“ibm.com”, “aaai.org”)

google.com and ibm.com become symmetric!

Ayt —

[Van den Broeck, Darwiche; NIPS’13]



KL Divergence

0.1

0.01

Experiments: WebKB

200 400 600 800 1000

[Van den Broeck, Niepert; AAAI'15]
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e Given:

e Learn:

* |dea:

Lifted Weight Learning

A set of first-order logic formulas

w FacultyPage(x) A Linked(x,y) = CoursePage(y)

A set of training databases
The associated maximum-likelihood weights

5 | | |
¢ log Pry(db) = nj(db) — Ew[n;]

dw
/ Expected counts

Count in databases Requires inference
Efficient Ew[nr] =Pr(F01)+ -« + Pr(£0m)

Lift the computation of E.,[n;]

[Van den Broeck et al.; StarAl’13]



Learning Time

w Smokes(x) A Friends(x,y) = Smokes(y) '

14

Run Time [s]

0 5000 10000 15000 20000 250004 30000
Domain Size (Number of People)

Learns a model over
900,030,000 random variables

[Van den Broeck et al.; StarAl’13]



Learning Time

w Smokes(x) A Friends(x,y) = Smokes(y) I

=

—
(S

Run Time [s]

o 4= O 0 O

0 5000 10000 15000 20000 25000 30000
Domain Size (Number of People)

m Learns a model over
900,030,000 random variables
[Van den Broeck et al.; StarAl’13]




Lifted Structure Learning

e Given: A set of training databases

* Learn: A set of first-order logic formulas

The associated maximum likelihood weights

* ldea: Learn liftable models (regularize with symmetry)
IMDb UWCSE
Lifted Lifted Lifted Lifted
Baseline | Weight |Structure | Baseline | Weight |Structure
Learning | Learning Learning | Learning
Fold 1 -548 -378 -306 -1,860 -1,524 -1,477
Fold 2 -689 -390 -309 -594 -535 -511
Fold 3 -1,157 -851 -733 -1,462 -1,245 -1,167
Fold 4 -415 -285 -224 -2,820 -2,510 -2,442
Fold 5 -413 -267 -216 -2,763 -2,357 -2,227

[VHaaren, Van den Broeck, et al.;’15]
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Conclusions

A radically new reasoning paradigm

Lifted inference is frontier and integration
of Al, KR, ML, DBs, theory, etc.

We need

— relational databases and logic
— probabilistic models and statistical learning
— algorithms that scale

Many theoretical open problems
It works in practice



Long-Term Outlook

Probabilistic inference and learning exploit
~ 1988: conditional independence
~ 2000: contextual independence (local structure)



Long-Term Outlook

Probabilistic inference and learning exploit
~ 1988: conditional independence
~ 2000: contextual independence (local structure)
~ 201?: symmetry & exchangeability
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Prototype Implementation

2

WMC
MLN e FO-d-DNNF
= |

Pr{Friends{Guy, Wannes)) = 0.70
Pr(Friends(Jesse, Guy)) =0.75

Learn weights 2.2 Smokes(x) A Friends(x,y) = Smokes(y)

4| 08

http://dtai.cs.kuleuven.be/wfomc



http://dtai.cs.kuleuven.be/wfomc

Thanks



