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Example: Skill matching system

Minka et al., “Trueskill 2: An improved bayesian skill rating system”, 2018 5120



Example: Skill matching system

Each player has a certain skill
—> continuous variables
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Example: Skill matching system

0<Xp <10
... fort=1,...,N

aule
- Players can form teams
i —> complex constraints
Pl ¢ . Ss
Phe 4 A Ss
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Example: Skill matching system

W0<Xp<10

.z. fort=1,...,N
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Example: Skill matching system

.-. .~. fort=1,...,N
.’ [ ) |XT].—XP1.|<1

24 % . .
Se e 4 v fOr]:].,...,M,'L:].,...,|Tj|

B Good teams form a squad
g z z g g g —> discrete variables

Minka et al., “Trueskill 2: An improved bayesian skill rating system”, 2018 5120



Example: Skill matching system

... .~. fort=1,...,N
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Barrett et al., “Satisfiability modulo theories”, 2018

Satisfiability Modulo Theories

of linear arithmetic over the reals
(SMT(LR.A)) delivers all the
ingredients by design!

Widely used as a representation
language for robotics, verification
and planning [Barrett et al. 2010]
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Generative adversarial networks (GANS) [Goodfellow et al. 2014]
Variational Autoencoders (VAES) [kingma et al. 2013]

Hybrid Bayesian Netowrks (HBNS) jHeckerman et al. 1995; Shenoy et al. 2011]
Mixed Probabilistic Graphical Models (MPGMS) [vang et al. 2014

Tractable Probabilistic Circuits (PCS) /Molina et al. 2018; Vergari et al. 2019]
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SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

FH =B RS AL OWHKSHBING [Heckerman et al. 1995; Shenoy et al. 2011]
Mixed-RiobabHste-raplhicat-tiodels-MReMs) Vang et al. 2014]

¥ el HiStie=aHeete=tRESY 1//0/ina et al. 2018; Vergari et al. 2019]
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oRe o= WOsXn <10

alse «0» fori=1,....N
I AN IO AA N WX, —Xp <1
A 4 AY 9 4 A ~ . .
Ph L4 LIRS SN 4 . Ss forj=1,...,M,Z=1,...,|Tj|

W Bs, = X, >2
fory=1,...,M,1 =1

8
Barrett et al., “Satisfiability modulo theories”, 2018 0



A= /\0<Xp<10/\/\ | X7, — Xp, [< 1 \(Bs, = X1, > 2)
j €T J

a single CNF SMT(LR.A) formula A...

Barrett et al., “Satisfiability modulo theories”, 2018 8120



3 I\

“What is the probability
of team I’} outperforming
team 15, if T is a squad
but T5 is not?”

9120



SMT R weights

if0< Xp, <10

3

AN | X, —Xp <1 w(Xr;, Xp,),

J €Ty + if | X7, — Xp, [<1
/\(st = XTJ- > 2)

i w(Bs;, XT;),

ifBSj = XT]- > 2

SMT formula A\ weight functions )V

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 10720



m + m -] Weighted Model Integration

U)(Xpi),
/\0 < Xp, <10 f0< Xp, <10
/\ /\ | XTJ' - XP7_ |< 1 w(XTjaXPi)’ fa—
J €Ty + if|XTj—Xpi |<1 —
/_\(st = X1; >2) w(Bs;, XT;),
7 if Bs; = Xr; > 2
complex support densities (unnormalized)

PI’A (X7 B)

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 10720



| smMT B densities B Weighted Model Integration

Given an SMT(LR.A) formula A over continuous vars X and discrete ones B, and
weight function WV, the weighted model integral (WM) is

WMI(A, W; X, B) & >~ / w(x, b) dx.
(x.b)EA

beB!BI

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 11720



| smMT B densities B Weighted Model Integration

Given an SMT(LR.A) formula A over continuous vars X and discrete ones B, and
weight function WV, the weighted model integral (WM) is

WMI(A, W; X, B) & Z/ u'x b) dx.

beBIB (x,b)=

—> integrating the densities of the feasible regions of Al

i.e., computing the partition function of the unnormalized distribution Pra

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 11720



Advanced probabilistic reasoning

“What is the probability of team T outperforming team T5,
if Ty is a squad but T5 is not?”

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1220



Advanced probabilistic reasoning

$g: (Bs, = 1A Bg,=0) = 7 isasquad, T5 isnot
O (X, > Xp) — T outperforms 15

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1220



Advanced probabilistic reasoning

by : (BS1 = 1A Bg, = 0) = ] isasquad, 1% isnot
O (X, > Xp) — T outperforms 15
WMI(A A D A Pg, W) 4,206

Pra(®r | &g) = = ~ 58.22
"a(@r | 2s) WMI(A A Bg, W) 7005 0822

=> conditional probabilities as a ratio of two weighted model integrals

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1220



Tractability of WMI

Why is building inference algorithms for hybrid domains difficult?

Ve
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Tractability of WMI

#P-hard in general



Tractability of WMI

WMI

#P-hard in general

what would be tractable?
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Primal Graph

Discrete Graphical Models

N (Xi= Xi)
i=1,2

WMI models

A {(Xi—0.1 < Xit1 < Xi+0.1)
i=1,2
\/(Xi—l—O.Q < Xip1 < Xi—f-l.l)}

Primal Graph

7
7

Q)
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Tree Primal Graph

Discrete Graphical Models WMI models Primal Graph
true false
X1 o o - @
e ®
X3 0 ®

tractability ¢
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Tree Primal Graph

Discrete Graphical Models WMI models Primal Graph
true false Reals
X1 e @ ® X1 y 4 (%)
Y. o ®
tractability ¢/ tractability X @
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Tractability of WMI

WMI

#P-hard in general
tree WMI problem class X

WMI Inference on tree-shaped primal graphs with unbounded-diameter is #P-hard!
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Tractability of WMI

#P-hard in general
tree WMI problem class X

treewidth = 2 logarithmic diameter and

log diameter

treewidth two?
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Tractability of WMI

#P-hard in general
tree WMI problem class X

treewidth =2 logarithmic diameter and

log diameter

X treewidth two X

WMI inference on primal graphs with bounded-diameter but treewidth two is #P-hard!
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Tractability of WMI

#P-hard in general
tree WMI problem class X

treewidth =2 logarithmic diameter and

log diameter

X treewidth two X

intersection ¢ [zeng et al. 2020]

...but how can we perform inference on general WMI problems?

16/20



Approximate WMI Inference
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Approximate WMI Inference

Given a WMI problem with loopy primal graph
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Approximate WMI Inference

Given a WMI problem with loopy primal graph
B Relax it by adding copies of literals
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Approximate WMI Inference

@ Given a WMI problem with loopy primal graph
X B Relax it by adding copies of literals, then
o removing equality constraints
@ —> removing dependencies, breaking loops
Xps

1820



Approximate WMI Inference

Xpy)  {(we(zp,))}e
B Given a WMI problem with loopy primal graph

B Relax it by adding copies of literals, then
removing equality constraints

. Compensate for the removed dependencies,
Xpy) A6 wi(zpy))te by introducing certain literals and weights

1820



Approximate WMI Inference

we = f(Pra(f);w’)

wy < f(Pra(f);w)

Given a WMI problem with loopy primal graph

B Relax it by adding copies of literals, then
removing equality constraints

B Compensate for the removed dependencies,
by introducing certain literals and weights

optimize compensating weights iteratively by
solving a series of exact Integration problems

1820



ReColn (K=2) — ReColn (K =2)
0.751 ReColn (K= 4) 8 2000 + ReColn (K=4)
® RE (100k) 9 ® REJ (100k)
w 0.50 XSDD (100k) - XSDD (100k)
= é 1000
N A P
3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 1011
n (# vars) n (# vars)

=—> ReColn scales better to larger WMI problems
while still delivering accurate approximations

1920



Conclusions

Real-world data is noisy...
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Conclusions

Real-world data is noisy, complex and mixed continuous-discrete...
The WMI framework is very appealing for probabilistic inference in the real-world!

Efficient approximations are not only useful, but needed
=> ReColn delivers fast approximate inference

Application to program verification, probabilistic (logic) programming, ...

Code

github.com/UCLA-StarAI/recoin

20120
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