

Theoretical Limits and Practical Approximations

Zhe Zeng*
University of California. Los Angeles

Antonio Vergari University of California, Los Angeles Paolo Morettin* University of Trento, Italy

Guy Van den Broeck University of California, Los Angeles

Fanqi Yan* University of Texas at Austin

Theoretical Limits and Practical Approximations

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari University of California, Los Angeles Paolo Morettin* University of Trento, Italy

Guy Van den Broeck University of California, Los Angeles

Fanqi Yan* University of Texas at Austin

Theoretical Limits and Practical Approximations

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari University of California, Los Angeles Paolo Morettin* University of Trento, Italy

Guy Van den Broeck University of California, Los Angeles

Fanqi Yan* University of Texas at Austin

Theoretical Limits and Practical Approximations

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari University of California, Los Angeles Paolo Morettin* University of Trento, Italy

Guy Van den Broeck University of California, Los Angeles

Fanqi Yan* University of Texas at Austin

Example: Skill matching system

Each *player* has a certain skill continuous variables

$$0 \le X_{P_i} \le 10$$
for $i = 1, \dots, N$

- $0 \le X_{P_i} \le 10$ for $i = 1, \dots, N$
- Players can form **teams**⇒ complex constraints

$$0 \le X_{P_i} \le 10$$
 for $i = 1, \dots, N$

$$\mid X_{T_j} - X_{P_i} \mid < 1$$
 for $j = 1, \ldots, M, i = 1, \ldots, |T_j|$

- $0 \le X_{P_i} \le 10$ for $i = 1, \dots, N$
- $\mid X_{T_j} X_{P_i} \mid < 1$ for $j = 1, \dots, M, i = 1, \dots, |T_j|$
- Good teams form a **squad**⇒ discrete variables

- $0 \le X_{P_i} \le 10$ for $i = 1, \dots, N$
- $\mid X_{T_j} X_{P_i} \mid < 1$ for $j = 1, \ldots, M, i = 1, \ldots, |T_j|$
- $B_{S_j} \Rightarrow X_{T_j} > 2$ for $j = 1, \dots, M, i = 1$

Continuous + discrete + constraints = SMT

Satisfiability Modulo Theories of linear arithmetic over the reals (SMT(\mathcal{LRA})) delivers all the ingredients by design!

Widely used as a representation language for *robotics*, *verification* and *planning* [Barrett et al. 2010]

Continuous + discrete + constraints = ?

Continuous + discrete + constraints = ?

Generative adversarial networks (GANs) [Goodfellow et al. 2014] Variational Autoencoders (VAEs) [Kingma et al. 2013]

Hybrid Bayesian Netowrks (HBNs) [Heckerman et al. 1995; Shenoy et al. 2011] Mixed Probabilistic Graphical Models (MPGMs) [Yang et al. 2014]

Tractable Probabilistic Circuits (PCs) [Molina et al. 2018; Vergari et al. 2019]

Continuous + discrete + constraints = ?

Generative adversarial networks (GANs) [Goodfellow et al. 2014]

Variational Autoencoders (VAEs) [Kingma et al. 2013]

Hybrid Bayesian Netowrks (HBNs) [Heckerman et al. 1995; Shenoy et al. 2011] Mixed Probabilistic Graphical Models (MPGMs) [Yang et al. 2014]

Tractable Probabilistic Circuits (PCs) [Molina et al. 2018; Vergari et al. 2019]

Continuous + discrete + constraints = SMT

$$0 \le X_{P_i} \le 10$$
 for $i = 1, \dots, N$

$$\mid X_{T_j} - X_{P_i} \mid < 1$$
 for $j = 1, \ldots, M, i = 1, \ldots, |T_j|$

$$B_{S_j} \Rightarrow X_{T_j} > 2$$
 for $j = 1, \dots, M, i = 1$

$$\Delta = \bigwedge_{i} 0 \le X_{P_i} \le 10 \bigwedge_{j} \bigwedge_{i \in T_j} |X_{T_j} - X_{P_i}| < 1 \bigwedge_{j} (B_{S_j} \Rightarrow X_{T_j} > 2)$$

a single CNF SMT(\mathcal{LRA}) formula Δ ...

Continuous + discrete + constraints = SMT

"What is the probability of team T_1 outperforming team T_2 , if T_1 is a squad but T_2 is not?"

SMT + weights

$$\bigwedge_{i} 0 \leq X_{P_{i}} \leq 10$$

$$\bigwedge_{j} \bigwedge_{i \in T_{j}} |X_{T_{j}} - X_{P_{i}}| < 1$$

$$\bigwedge_{j} (B_{S_{j}} \Rightarrow X_{T_{j}} > 2)$$

$$\downarrow^{w(X_{P_{i}}), \text{ if } 0 \leq X_{P_{i}} \leq 10$$

$$w(X_{T_{j}}, X_{P_{i}}), \text{ if } |X_{T_{j}} - X_{P_{i}}| < 1$$

$$w(B_{S_{j}}, X_{T_{j}}), \text{ if } B_{S_{j}} \Rightarrow X_{T_{j}} > 2$$

SMT formula Δ

weight functions $\,\mathcal{W}\,$

SMT + weights = Weighted Model Integration

$$\bigwedge_{i} 0 \le X_{P_{i}} \le 10$$

$$\bigwedge_{j} \bigwedge_{i \in T_{j}} |X_{T_{j}} - X_{P_{i}}| < 1$$

$$\bigwedge_{j} (B_{S_{j}} \Rightarrow X_{T_{j}} > 2)$$

complex support

densities

(unnormalized)

 $\mathsf{Pr}_{\Delta}(\mathbf{X}, \mathbf{B})$

SMT + densities = Weighted Model Integration

Given an SMT(\mathcal{LRA}) formula Δ over continuous vars $\mathbf X$ and discrete ones $\mathbf B$, and weight function $\mathcal W$, the **weighted model integral** (WMI) is

$$\mathsf{WMI}(\Delta, \mathcal{W}; \mathbf{X}, \mathbf{B}) \triangleq \sum_{\boldsymbol{b} \in \mathbb{R}^{|\mathbf{B}|}} \int_{(\mathbf{x}, \boldsymbol{b}) \models \Delta} w(\mathbf{x}, \boldsymbol{b}) \, d\mathbf{x}.$$

Given an SMT(\mathcal{LRA}) formula Δ over continuous vars $\mathbf X$ and discrete ones $\mathbf B$, and weight function $\mathcal W$, the **weighted model integral** (WMI) is

$$\mathsf{WMI}(\Delta, \mathcal{W}; \mathbf{X}, \mathbf{B}) \triangleq \sum_{\boldsymbol{b} \in \mathbb{B}^{|\mathbf{B}|}} \int_{(\mathbf{x}, \boldsymbol{b}) \models \Delta} w(\mathbf{x}, \boldsymbol{b}) \, d\mathbf{x}.$$

 \implies integrating the **densities** of the **feasible regions** of Δ !

i.e., computing the *partition function* of the unnormalized distribution Pr_{Δ}

"What is the probability of team T_1 outperforming team T_2 , if T_1 is a squad but T_2 is not?"

Advanced probabilistic reasoning

$$\Phi_S: (B_{S_1}=1 \wedge B_{S_2}=0) \implies T_1 \text{ is a squad}, \ T_2 \text{ is not}$$
 $\Phi_T: (X_{T_1}>X_{T_2}) \implies T_1 \text{ outperforms } T_2$

Advanced probabilistic reasoning

$$\Phi_S: (B_{S_1}=1 \wedge B_{S_2}=0) \implies T_1 \text{ is a squad}, \ T_2 \text{ is not}$$

$$\Phi_T: (X_{T_1}>X_{T_2}) \implies T_1 \text{ outperforms } T_2$$

$$\mathsf{Pr}_{\Delta}(\Phi_T \mid \Phi_S) = \frac{\mathsf{WMI}(\Delta \land \Phi_T \land \Phi_S, \mathcal{W})}{\mathsf{WMI}(\Delta \land \Phi_S, \mathcal{W})} = \frac{4,206}{7,225} \approx 58.22\%$$

conditional probabilities as a ratio of two weighted model integrals

12/20

Why is building inference algorithms for hybrid domains difficult?

#**P-hard** in general

Primal Graph

Discrete Graphical Models

$$\bigwedge_{i=1,2} (X_i \Rightarrow X_{i+1})$$

WMI models

$$\bigwedge_{i=1,2} (X_i \Rightarrow X_{i+1}) \qquad \bigwedge_{i=1,2} \{ (X_i - 0.1 \le X_{i+1} \le X_i + 0.1) \\ \vee (X_i + 0.9 \le X_{i+1} \le X_i + 1.1) \}$$

Primal Graph

Tree Primal Graph

Discrete Graphical Models

WMI models

?

Primal Graph

Tree Primal Graph

Discrete Graphical Models

WMI models

Primal Graph

WMI Inference on tree-shaped primal graphs with unbounded-diameter is #P-hard!

- #**P-hard** in general
- tree WMI problem class X
- logarithmic diameter and treewidth two?

WMI inference on primal graphs with bounded-diameter but treewidth two is #P-hard!

...but how can we perform inference on general WMI problems?

Approximate WMI Inference

Given a WMI problem with *loopy primal graph*

ReColn

- Given a WMI problem with *loopy primal graph*
- **Re**lax it by adding **copies** of literals

ReColn

- Given a WMI problem with *loopy primal graph*
- Relax it by adding copies of literals, then removing equality constraints
 - removing dependencies, breaking loops

- Given a WMI problem with *loopy primal graph*
- **Re**lax it by adding **copies** of literals, then removing equality constraints
- **Compensate for the removed dependencies,** by introducing certain literals and weights

$$w_{\ell} \leftarrow f(\mathsf{Pr}_{\Delta}(\ell); w')$$

$$w'_{\ell} \leftarrow f(\mathsf{Pr}_{\Delta}(\ell); w)$$

- Given a WMI problem with *loopy primal graph*
- Relax it by adding copies of literals, then removing equality constraints
- **Co**mpensate for the removed dependencies, by introducing certain literals and weights
- optimize compensating weights iteratively by solving a series of **exact In**tegration problems

Experiments

⇒ ReColn scales better to larger WMI problems while still delivering accurate approximations

Real-world data is *noisy*...

Real-world data is *noisy*, *complex*...

Real-world data is *noisy*, *complex* and *mixed continuous-discrete*...

Real-world data is **noisy**, **complex** and **mixed continuous-discrete**... **The WMI framework** is very appealing for probabilistic inference in the real-world!

Real-world data is *noisy*, *complex* and *mixed continuous-discrete*... *The WMI framework* is very appealing for probabilistic inference in the real-world! Efficient approximations are not only useful, but *needed*

Real-world data is *noisy*, *complex* and *mixed continuous-discrete*...

The WMI framework is very appealing for probabilistic inference in the real-world! Efficient approximations are not only useful, but needed

⇒ ReCoIn delivers fast approximate inference

Real-world data is **noisy**, **complex** and **mixed continuous-discrete**...

The WMI framework is very appealing for probabilistic inference in the real-world! Efficient approximations are not only useful, but **needed**

⇒ ReCoIn delivers fast approximate inference

Next

Application to program verification, probabilistic (logic) programming, ...

Real-world data is **noisy**, **complex** and **mixed continuous-discrete**...

The WMI framework is very appealing for probabilistic inference in the real-world! Efficient approximations are not only useful, but **needed**

⇒ ReCoIn delivers fast approximate inference

Next

Application to program verification, probabilistic (logic) programming, ...

Code

github.com/UCLA-StarAI/recoin

References I

- Heckerman, David and Dan Geiger (1995). "Learning Bayesian networks: a unification for discrete and Gaussian domains". In: Proceedings of the Eleventh conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 274–284.
- Barrett, Clark et al. (2010). "The SMT-LIB initiative and the rise of SMT (HVC 2010 award talk)". In: Proceedings of the 6th international conference on Hardware and software: verification and testing. Springer-Verlag, pp. 3–3.
- Shenoy, Prakash P and James C West (2011). "Inference in hybrid Bayesian networks using mixtures of polynomials". In: International Journal of Approximate Reasoning 52.5, pp. 641–657.
- Kingma, Diederik P and Max Welling (2013). "Auto-encoding variational bayes". In: arXiv preprint arXiv:1312.6114.
- Goodfellow, Ian et al. (2014). "Generative adversarial nets". In: Advances in neural information processing systems, pp. 2672–2680.
- Yang, Eunho et al. (2014), "Mixed graphical models via exponential families", In: Artificial Intelligence and Statistics, pp. 1042–1050.
- Belle, Vaishak, Andrea Passerini, and Guy Van den Broeck (2015). "Probabilistic inference in hybrid domains by weighted model integration". In: Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). pp. 2770–2776.
- Barrett, Clark and Cesare Tinelli (2018). "Satisfiability modulo theories". In: Handbook of Model Checking. Springer, pp. 305–343.
- Minka, Tom, Ryan Cleven, and Yordan Zaykov (2018). "Trueskill 2: An improved bayesian skill rating system". In:
- Molina, Alejandro et al. (2018), "Mixed sum-product networks: A deep architecture for hybrid domains". In: Thirty-second AAAI conference on artificial intelligence.
- Wergari, Antonio et al. (2019). "Automatic Bayesian density analysis". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 5207–5215.

References II

Zeng, Zhe et al. (2020). "Scaling up Hybrid Probabilistic Inference with Logical and Arithmetic Constraints via Message Passing". In: Proceedings of the 37th International Conference on Machine Learning (ICML). url: http://starai.cs.ucla.edu/papers/ZengICML20.pdf.