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Skill matching system

omQ Each player has a certain skill
.g. B Players can form teams
vrin —> intricate dependencies
e 0 v
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Skill matching system

o ® Each player has a certain skill
1T T P~ T B Players can form teams
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Skill matching system

.z ° ‘: ° “What is the probability
.:- .z. of team T to outperform
’,,«","'\}\_,«"{"C‘\\ team T5, if 11 is a squad
." . . . . . but Ts is not?”
o oo

Minka et al., “Trueskill 2: An improved bayesian skill rating system”, 2018 5120
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Generative adversarial networks (GANS) [Goodfellow et al. 2014]
Variational Autoencoders (VAES) [kingma et al. 2013]

6/20



SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

—> limited inference capabilities, no constraints

6/20



SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

Hybrid Bayesian Netowrks (HBNS) jHeckerman et al. 1995; Shenoy et al. 2011]
Mixed Probabilistic Graphical Models (MPGMS) [vang et al. 2014
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—> strong distributional assumptions
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SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

FH =B RS AL OWHKSHBING [Heckerman et al. 1995; Shenoy et al. 2011]
Mixed-RiobabHste-raplhicat-tiodels-MReMs) Vang et al. 2014]

Tractable Probabilistic Circuits (PCS) /Molina et al. 2018; Vergari et al. 2019]
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SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

FH =B RS AL OWHKSHBING [Heckerman et al. 1995; Shenoy et al. 2011]
Mixed-RiobabHste-raplhicat-tiodels-MReMs) Vang et al. 2014]

¥ el HiStie=aHeete=tRESY 1//0/ina et al. 2018; Vergari et al. 2019]

—> cannot deal with complex constraints
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Satisfiability Modulo Theories

of the linear arithmetic over the reals
(SMT(LR.A)) delivers all these
ingredients by design!

Widely used as a representation
language for robotics, verification
and planning [Barrett et al. 2010]
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Barrett et al., “Satisfiability modulo theories”, 2018 710
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Barrett et al., “Satisfiability modulo theories”, 2018

W0<Xp<10
fort=1,...,N

B Each team's skill is bounded
by its players' skills
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B Good teams form a squad
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oRe o= WOsXn <10
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A= /\0<Xp<10/\/\ | X7, — Xp, [< 1 \(Bs, = X1, > 2)
j €T J

a single CNF SMT(LR.A) formula A...

Barrett et al., “Satisfiability modulo theories”, 2018 710



Continuous g m 2l constraints & m

Nl

a single CNF SMT(LR.A) formula A...and its primal graph

Barrett et al., “Satisfiability modulo theories”, 2018 710



SMT R weights

if0< Xp, <10

3

AN | X, —Xp <1 w(Xr;, Xp,),

J €Ty + if | X7, — Xp, [<1
/\(st = XTJ- > 2)

i w(Bs;, XT;),

ifBSj = XT]- > 2

SMT formula A\ weight functions )V

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 8120



m + m -] Weighted Model Integration

U)(Xpi),
/\0 < Xp, <10 f0< Xp, <10
/\ /\ | XTJ' - XP7_ |< 1 w(XTjaXPi)’ fa—
J €Ty + if|XTj—Xpi |<1 —
/_\(st = X1; >2) w(Bs;, XT;),
7 if Bs; = Xr; > 2
complex support densities (unnormalized)

PI’A (X7 B)

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 8120



| smMT B densities B Weighted Model Integration

Given an SMT(LR.A) formula A over continuous vars X and discrete ones B, and
weight function WV, the weighted model integral (WM) is

WMI(A, W; X, B) & >~ / w(x, b) dx.
beBIBI (va)':A

i.e., computing the partition function of the unnormalized distribution Pra
=> e, integrating the weighted volumes of the feasible regions of !

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 9120



Advanced probabilistic reasoning

“What is the probability of team T to outperform team T5,
if Ty is a squad but T% is not?”

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1020



Advanced probabilistic reasoning

$g: (Bs, = 1A Bg,=0) = 7 isasquad, T5 isnot
O (X, > Xp) — T outperforms 15

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 10720



Advanced probabilistic reasoning

by : (BS1 = 1A Bg, = 0) = ] isasquad, 1% isnot
O (X, > Xp) — T outperforms 15
WMI(A A D A Pg, W) 4,206

Pra(®r | &g) = = ~ 58.22
"a(@r | 2s) WMI(A A Bg, W) 7005 0822

=> conditional probabilities as a ratio of two weighted model integrals

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1020



Tractable WMI

#P-hard in general

1120



treeMl
w(Xr,, Xp,) = X1, Xp,

@ @ = == [Zengetal 2019]

w(Bs,, Xr,) = X3,

w(XPz) = XPq',

tree-shaped constrained polytime
primal graph monomials VV WMI inference

Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019 1220
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known so far
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Tractable WMI

WMI

Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019

#P-hard in general

largest tractable class
known so far

still #P-hard!

can we do better?

1320



We frame tractable WMl inference at scale as a message passing scheme...

...on primal graphs...
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...on primal graphs turned into factor graphs
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exchanging messages from node to factors
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We frame tractable WMl inference at scale as a message passing scheme...
...on primal graphs turned into factor graphs
B comprising an upward and a downward pass

exchanging messages from node to factors
and from factors to nodes

My, (2i) = /fij(xi,xj) "My g, (25) da

14,20



Tractable Weight Conditions

Which parametric family €2 for weights to guarantee tractable WMI inference?
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Tractable Weight Conditions

Which parametric family €2 for weights to guarantee tractable WMI inference?

My (1) = / T txs =10 TT welxs)5sE0 - m, g (o) do

I'eAs LeLr

My, s (@ Hfs/EHe'gh(fvz)\fs Mo —a; ()

Weights W € €2 should be closed under product...
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Tractable Weight Conditions

Which parametric family €2 for weights to guarantee tractable WMI inference?

o) = [ TT s b= 11 T welos)F0 e m, L G0)

I'eAs Lelyr

mxi%fs (xl) = Hfsl €neigh(z;)\ fs mfsl—>l‘2‘ (.fl]'z)

Weights YW € €2 should be closed under product, closed under integration, and
tractable for symbolic integration

=> eg., arbitrary polynomials, exponentiated linear polynomials, etc. 5
/20



An SMT formulation induces a piecewise weight representation
=—> strikingly different from message passing for classical PGMs!

My e, () = / | s =0T ] wlxs) oo my L (2g) day

FeAs velr

mzi—>f3 (xz) - H mfsl —T; (xz)

fsr€neigh(zi)\fs
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An SMT formulation induces a piecewise weight representation
—> strikingly different from message passing for classical PGMs!

m ' m ' ' m
Nﬂ/\ Xz, .ﬂTl/\ii Xz, T Xr,
I [l ! 1 ! ] — 1
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An SMT formulation induces a piecewise weight representation
—> strikingly different from message passing for classical PGMs!

m ] m g m
N:ﬁ/\ X7 le/\ X1y il X1y
I 1 ! 1 I 1 ! 1 I 1

The number of all pieces in MP-WMI is O(4nc)??*2, where d is the graph diameter
=> the primal graph should have a bounded diameter!

16/20



Tractable WMI

#P-hard in general

the largest tractable
class known before

still #P-hard

new largest class!

Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019 1720



Scaling-up inference

Large set of synthetic benchmarks up to N = 100 vars, 5 trials, different primal graphs
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MP-WMI takes a fraction of the time of other exact WMI solvers like PA [Morettin et al. 2017]
and F-XSDD [Zuidberg Dos Martires et al. 2019]
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Scaling-up inference

Large set of synthetic benchmarks up to N = 100 vars, 5 trials, different primal graphs
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Query amortization

A single message exchange allows to amortize univariate and bivariate queries
=—> also all marginals and all moments!

STAR (univ.) SNOW (univ.) PATH (univ.)

m
X SMI (10) D 1 na ,ﬁ“"’
+  MP-MI(10) 2 I N
. > (20) GEJ ZEXX X iix%ﬂ!
+ MP-MI(20) 5 102/% * ) y ;gix i
< SMI(30) E X iith 4 TXWWW AR
+  MP-MI(30) > i g R R

© 1007 70T 710200 T 1010400 10102

MP-WMI answers 100 WMI queries faster than competitors solving 10 [Zeng et al. 2019]
19120
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Conclusions

Real-world data is noisy, complex and mixed continuous-discrete...
The WMI framework is very appealing for probabilistic inference in the real-world!
MP-WMI delivers fast inference and defines the largest class of tractable WMI models

However, MP-WMI requires tree-shaped bounded diameter primal graphs
=> we can build approximate inference schemes on it!

Code github.com/UCLA-StarAl/mpwmi

20120


github.com/UCLA-StarAI/mpwmi
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