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Skill matching system

B Each player has a certain skill

B Players can form teams

B Each team’s skill is bounded
by its players' skills

B Good teams form a squad
discrete variables

Minka et al., “Trueskill 2: An improved bayesian skill rating system”, 2018 5120



Skill matching system

“What is the probability
of team T to outperform
team Ty, if T1 is a squad
but T is not?”

Minka et al., “Trueskill 2: An improved bayesian skill rating system”, 2018 5120
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Generative adversarial networks (GANS) [Goodfellow et al. 2014]
Variational Autoencoders (VAES) [kingma et al. 2013]
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SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

) limited inference capabilities, no constraints
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SR e PRS- SRS [Goodfellow et al. 2014]
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Hybrid Bayesian Netowrks (HBNS) jHeckerman et al. 1995; Shenoy et al. 2011]
Mixed Probabilistic Graphical Models (MPGMS) [vang et al. 2014
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SR e PRS- SRS [Goodfellow et al. 2014]
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FH =B RS AL OWHKSHBING [Heckerman et al. 1995; Shenoy et al. 2011]
Mixed-RiobabHste-raplhicat-tiodels-MReMs) Vang et al. 2014]

) strong distributional assumptions

6/20



SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

FH =B RS AL OWHKSHBING [Heckerman et al. 1995; Shenoy et al. 2011]
Mixed-RiobabHste-raplhicat-tiodels-MReMs) Vang et al. 2014]

Tractable Probabilistic Circuits (PCS) /Molina et al. 2018; Vergari et al. 2019]
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SR e PRS- SRS [Goodfellow et al. 2014]
Moo O RaAr O REOeerS-(ARS) Kingma et al. 2013]

FH =B RS AL OWHKSHBING [Heckerman et al. 1995; Shenoy et al. 2011]
Mixed-RiobabHste-raplhicat-tiodels-MReMs) Vang et al. 2014]

¥ el HiStie=aHeete=tRESY 1//0/ina et al. 2018; Vergari et al. 2019]

) cannot deal with complex constraints
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Satisfiability Modulo Theories

of the linear arithmetic over the reals
(SMT(LRA)) delivers all these
ingredients by design!

Widely used as a representation
language for robotics, verification
and planning [Barrett et al. 2010]
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B Each team's skill is bounded
by its players’ skills
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M B, D Xy, >2
forj=1;::1;M;i=1

7
Barrett et al., “Satisfiability modulo theories”, 2018 0
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i j 2T j

a single CNF SMT(LRA) formula

Barrett et al., “Satisfiability modulo theories”, 2018 710



Continuous P m M constraints B m
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a single CNF SMT(LRA) formula ...and its primal graph

Barrett et al., “Satisfiability modulo theories”, 2018 710



SMT Bg weights

~ 8
wW(Xp;);

0 Xe 10 0 Xp, 10
A A~

X1 Xpyj<1 WX 5 Xp;);
i i2Tj + if ] XT Xp j<1
Pas
; (Bs; > X1; =2) g w(Bs;: XT;);

ifBs; D Xt; >2

SMT formula A\ weight functions \/

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015
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m + m =] Weighted Model Integration

8
-~ w(Xp;);
0 Xp; 10 % if0 Xp, 10

i

iXy Xpyi<1 W(XT1;; Xp;); —
j i2Tj ! + |ijJT Xp; j<1 —
Pas
_ (st D XTj >2) % W(BSJ )(TJ
] Tif st D) XT =>2
complex support densities (unnormalized)

Pr (X;B)

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 8120



m + m = Weighted Model Integration

Given an SMT(LRA\) formula  over continuous vars X and discrete ones B, and
weight function W, the weighted model integral (WM) is

> Z
WMI( ;W; X;B) , w(X; b) dx:
pogiBi  (XOIF

i.e., computing the partition function of the unnormalized distribution Pr
i.e., integrating the weighted volumes of the feasible regions of !

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 9120



Advanced probabilistic reasoning

“What is the probability of team T to outperform team To,
if T1 is a squad but T, is not?”

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1020



Advanced probabilistic reasoning

s:(Bs, =1"Bs, =0) =) Tiisasquad; T isnot
T (X7, > Xv1,) =) T1 outperforms T»
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Advanced probabilistic reasoning

S - (le =1/ 532 = O) :) T isasquad; Ty isnot
T (X7, > X1,) =) T; outperforms T»

CWMI(C A 1A W) 4206

= 290
WMI( N 5, W) 7,225 58:22%

Pr ( t] s)

) conditional probabilities as a ratio of two weighted model integrals

Belle et al., “Probabilistic inference in hybrid domains by weighted model integration”, 2015 1020



Tractable WMI

#P-hard in general
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8
3 wW(Xp;) = Xp,
+ W(XTj ; XPi) = ij XPi
~ w(Bs;; Xt;) = X%J_
tree-shaped constrained
primal graph monomials \\/

Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019

treeMl|
[Zeng et al. 2019]

polytime
WMI inference
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Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019 1320



Tractable WMI

#P-hard in general

largest tractable class
known so far

still #P-hard!

Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019 1320



Tractable WMI

WMI

Zeng et al., “Efficient Search-Based Weighted Model Integration”, 2019

#P-hard in general

largest tractable class
known so far

still #P-hard!

can we do better?
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We frame tractable WMl inference at scale as a message passing scheme...

...on primal graphs...
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Y
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We frame tractable WMl inference at scale as a message passing scheme...

...on primal graphs turned into factor graphs

B comprising an upward and a downward pass
exchanging messages from node to factors

and from factors to nodes
YA

Me; 1 (X)) = Fij(Xi; X)) My, o g, (X5) dXj

14,20



Tractable Weight Conditions

Which parametric family  for weights to guarantee tractable WMI inference?
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Tractable Weight Conditions

Which parametric family  for weights to guarantee tractable WMI inference?

D G Y IxsFEK

mfij L] (Xi) = Xs = K W (XS) "o ij ¥ fij (Xj) de
v 2 s ‘2L

My, v £ (xi) = fso2neigh(xi)nfs Mg 1 x; (i)

Weights W 2 should be closed under product...
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Tractable Weight Conditions

Which parametric family  for weights to guarantee tractable WMI inference?

. Y ; Y IXsFK
Mg, 1 x; xi) = IXs E K We(Xg)™s My; 1 f; (Xj) dx;
2 ‘2L
Y S
My fs (Xi) = fs02neigh(xi)nfs mfso L% (Xi)

Weights W 2 should be closed under product, closed under integration, and
tractable for symbolic integration

e.g., arbitrary polynomials, exponentiated linear polynomials, etc. 5
/20



An SMT formulation induces a piecewise weight representation
strikingly different from message passing for classical PGMs!

Z v Y .
Me; 0 (i) = Xs F K W (Xs)™F My; 1 ;5 (Xj) dx;
‘2L
My, s (Xi) = Meux (xi)

fso2neigh(xi)nfs
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