Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li* Zhe Zeng*

Tsinghua University University of California, Los Angeles

Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar

Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li* Zhe Zeng*

Tsinghua University University of California, Los Angeles

Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar

Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li* Zhe Zeng*

Tsinghua University University of California, Los Angeles

Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar

Tractable Computation
of Expected Kernels
by Circuits

Wenzhe Li* Zhe Zeng*

Tsinghua University University of California, Los Angeles

Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

IE:vap,x’wq [k(Xa X/)]

5/40

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

IE:vap,x’qu [k(Xa X/)]

—> In kernel-based frameworks, expected kernels are omnipresent!

5/40

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Esepnqlk(x, X)]

—> In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD)

Expacrplk(, X)] + Exqumqll(%,3)] — 2Expxglk(x, x')

5/40

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute
the expected kernel

Esepnqlk(x, X)]

—> In kernel-based frameworks, expected kernels are omnipresent!

Discrete Kernelized Stein Discrepancy (KDSD)
Ex,X’Nq[kp(Xa x')]

5/40

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x’

6/40

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x’

P, g, k fully factorized
p(x) = I[; p(z:). a(x) = [, a(z:)

k(x,x') = [k(zi, ;)
= expected kernel is tractable

[1:i(f,, o P a(e))k(zi, 7))

6/40

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x/

P, g, k fully factorized A computation is tractable if it can be
p(x) =[[, p(z:), a(x) =TI, a(x;) done exactly in polynomial time
k(x,x') = [k(zi, ;)

= expected kernel is tractable

[1:i(f,, o P a(e))k(zi, 7))

6/40

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x’

P, g, k fully factorized

PRO. Tractable exact computation
CON. Model being too restrictive

6/40

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x/

P, g, k fully factorized Hard to compute in general.

. approximate with MC
PRO. Tractable exact computation or variational inference
CON. Model being too restrictive PRO. Efficient computation

CON. no guarantees on error bounds

6/40

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

P, g, k fully factorized

PRO. Tractable exact computation
CON. Model being too restrictive

x,x/

trade-off? Hard to compute in general.
«a —> approximate with MC
{ or variational inference

PRO. Efficient computation
CON. no guarantees on error bounds

6/40

Expressive distribution models
+

Exact computation of expected kernels?

740

Expressive distribution models
+

Exact computation of expectated kernels

Circuits!

8/40

Probabilistic Circuits

deep generative models + deep guarantees

9140

Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

express kernels as circuits

9140

Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

express kernels as circuits

= Exopxinglk(x, X))

9140

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC

=> e.g, a multivariate Gaussian

10140

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC

=—> e.g, a mixture model

wy w2

10140

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC
IIl. A product of PCs is a PC

wy w2

X1 X1 Xl Xl X2

10140

Probabilistic Circuits (PCs)

Tractable computational graphs

10140

Probabilistic Circuits (PCs)

Tractable computational graphs

10140

Probabilistic queries £l feedforward EA'L10EL]}

p(Xl = —1.85,X2 = 0.5,X3 = —1.3,X4 = 02)

11/40

Probabilistic queries £l feedforward EA'L10EL]}

p(Xl = —1.85,X2 = 0.5,X3 = —1.3,X4 = 02)

11/40

Probabilistic queries £l feedforward EA'L10EL]}

p(X1=-185X,=05X3=-1.3X;,=02) =075

05 _,gﬁ,@ -13 —>® 0.2 —>@
B3
o

2 \ \ \
“ A
0.3 0.4 0.5
@@ &0 0@
oS o% °
o o N
© 2
0.5 0.5 0.8 0.8
T = e e
©
o

R
0.9
-1.85 —(EH—> ~13 —>@ 0.2 —>®

11/40

PCs = L NEL I)

PCs are computational graphs

12/40

PCs = L NEL I)

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables

12/40

PCs = L NEL I)

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables
PCs compactly represent polynomials with exponentially many terms
=> universal approximators

12/40

PCs = L NEL I)

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables
PCs compactly represent polynomials with exponentially many terms
=> universal approximators

PCs are expressive deep generative models!
=> we can learn PCs with millions of parameters in minutes on the GPU [Peharz
etal. 2020]

12/40

On par with intractable models!

How expressive are PCs?

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -212 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 4050 -3895 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* 2215 -21.72 223 -2516 ad -14.00 -18.35 -13.65 -18.81

Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic

deep learning”, 2019 1310

g@\% @@) ©® I—I—:
® ® @@0

Chow-Liu trees Junction trees HMMs
[Chow and Liu 1968] [Bach and Jordan 2001] [Rabiner and Juang 1986]

Classical tractable models can be compactly represented as PCs

Dang et al., “Strudel: Learning Structured-Decomposable Probabilistic Circuits”, 2020 1440

s

Junction trees HMMs
[Bach and Jordan 2001] [Rabiner and Juang 1986]

Chow-Liu trees
[Chow and Liu 1968]

R

8 92

CNets PSDDs PDGs
[Rahman et al. 2014] [Poon et al. 2011] [Kisa et al. 2014] [Jaeger 2004]

58

\:zL o

15/40

PCs = [CLIALLII T4 +

PCs are expressive deep generative models!
&

Certifying tractability for a class of queries

verifying structural properties of the graph

16/40

Which structural constraints
ensure tractability?

1740

decomposable g, m PCs

A PCis decomposable if all inputs of product units depend on disjoint sets of variables

(X)
W W W
X, X2 X

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18140

decomposable g, m PCs

A PCis decomposable if all inputs of product units depend on disjoint sets of variables
A PCis smooth if all inputs of sum units depend of the same variable sets

@/@\@
wy wa
OO

X1 X X3 Xy X1

decomposable circuit smooth circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 18140

decomposable g m PCs=...

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 19
2020 40

decomposable g m PCs=...

m sufficient and necessary conditions for computing any marginal

o(y) =/ p(z,y)dZ, VY CX, Z—-X\Y
val(Z)

= by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 19
2020 40

decomposable g m PCs=...

m sufficient and necessary conditions for computing any marginal f p(z,y) dZ

sufficient and necessary conditions for any conditional distribution

p(y | z) = fvaI(H)p(Zvy, h) dH
fvaI(H) fvaI(Y) p(z, y, h) dH dY’

=> by two feedforward evaluations

VZ,Y C X

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 19
2020 40

decomposable g m PCs=...

m sufficient and necessary conditions for computing any marginal | p(z,y) dZ

sufficient and necessary conditions for any conditional ——i-2%Y:h) 2

J [p(zy,h)dHdY

n What about the expected kernel Ey. ., x.q[k(x, X')]?

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 19
2020 /40

Can we represent kernels as circuits

to characterize tractability of its queries?

v

=

20,40

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x’) = exp (— >+, |

X; — X!)

exp(—| X1 — X{[*)

2140

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x') = exp (— .+, | X; — X! |?)

=1 7

exp(—| X5 — Xj/?) exp(—| Xy — Xj[?)

LT LX) ER if all inputs of product units depend on disjoint sets of variables

2140

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x, x') = exp (— >, | X; — X/ |?)

exp(—| X5 — Xj/*) exp(—| Xy — X;%)

(LI DXL if all inputs of product units depend on disjoint sets of variables

m if all inputs of sum units depend of the same variable sets
2140

Kernel Circuits (KCs)

Common kernels can be compactly represented as

decomposable +m KCs:

RBF, (exponentiated) Hamming, polynomial ...

22/40

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

2340

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
ii) PCs p and q, and KC k are compatible

—> decompose in the same way

2340

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

exp(—|X1 - X1?)

exp(— Xz - X3%)

exp(—| X5 — X3) exp(—| Xy — Xif*)

{(X1, XPH (X2, X5)}

2340
{XTHX}

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

exp(—| X5 — X3) exp(—|Xa — Xif)
{(X1,X7), (X2, X5)H (X3, X%)}

.) 2340
A AvS A
{X7, X5 HX;

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

oxp(—Xs = X5 exp(—| Xy - Xj?)
{(X1, X]), (X2, X%), (X3, X5) H (X4, X))}

2340

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
ii) PCs p and q, and KC k are compatible

2440

Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
ii) PCs p and q, and KC k are compatible

Then computing expected kernels can be done tractably by a forward pass
=> product of the sizes of each circuit!

25/40

m .l decomposable g,] tractable E[k]

[Sum Nodes] p(X) = 3, wip: (X), a(X') = 3, w)a, (X'), and kernel k(X,X’) = 3=, w; "k (X, X'):

exp(—|X; - Xi) (9)
—D——D——D «k
exp(—|X. - X3P) (0 © ©

exp(—| X3 — Xj/%) exp(—|Xy = Xi[*)

26/40

m .l decomposable g,] tractable E[k]

[Sum Nodes] p(X) = 3, wip: (X), a(X') = 3, w)a, (X'), and kernel k(X,X’) = 3=, w; "k (X, X'):

exp(—|X; - Xi) (9)
—D——D——D «k
exp(—|X. - X3P) (0 © ©

exp(—| X3 — Xj/%) exp(—|Xy = Xi[*)

> e PX)a(X)k(x,X)
4= Zi,j,l wzwnglp, (X)q/ (X)k/ (X’ X/)

26/40

m .l decomposable g,] tractable E[k]

[Sum Nodes] p(X) = 3, wip: (X), a(X') = 3, w)a, (X'), and kernel k(X,X’) = 3=, w; "k (X, X'):

exp(—|X; - Xi) (9)
—D——D——D «k
exp(—|X. - X3P) (0 © ©

exp(—| X3 — Xj/%) exp(—|Xy = Xi[*)

E, o[k(x,x)] = Zi,j,l wiwng/Epuq/ [k (%, x")]

—> expectation is “pushed down” to children

26/40

m .l decomposable g,] tractable E[k]

[Product Nodes] p . (X) = [, p(Xi), a« (X') = [1; a,(X}), and kernel k. (X, X’) =[], k (X, X}):

exp(—|X, - X71%) (0)
D R———D k
exp(~|X; - X3%) (O © ©

exp(—|X5 — X3f) exp(—|Xy — Xi[)

27140

m .l decomposable g,] tractable E[k]

[Product Nodes] p . (X) = [, p(Xi), a« (X') = [1; a,(X}), and kernel k. (X, X’) =[], k (X, X}):

exp(—|X, - X71%) (0)
D R———D k
exp(~|X; - X3%) (O © ©

exp(—|X5 — X3f) exp(—|Xy — Xi[)

Y s P (X)) (X)) ko (x, %)
“ = Zx,x’ [T p(xi)alxi) ki (xi, x;)
= TL (2 P aa(xi) ke (x4, 7))

27140

m .l decomposable g,] tractable E[k]

[Product Nodes] p . (X) = [, p(Xi), a« (X') = [1; a,(X}), and kernel k. (X, X’) =[], k (X, X}):

exp(—|X, - X71%) (0)
D R———D k
exp(~|X; - X3%) (O © ©

exp(—|X3 — Xj[?) exp(—|Xy — X;?)

Ep o [k (x,x)] =1 Ep o[k(xi,x7)]

—> expectation decomposes into easier ones

27140

m .l decomposable g,] tractable E[k]

Algorithm 1E,, .. [k;] — Computing the expected kernel

Input: Two compatible PCs p,, and q,,, and a KC k; that is
kernel-compatible with the PC pair p,, and qy,. . .
1. if m, n, [are input nodes then ComPUtat’on can be done In

return B, o [k one forward paSS!

2
3: else if m, n, [are sum nodes then

) g
4 return Eiein(n),jein(m),cein(l) wlewc EPL,C{] [kc]
5
6

. else if m, n, [are product nodes then
return By, g, ki) - Ep, g [kr]

2840

m .l decomposable g,] tractable E[k]

Algorithm 2 E,, .. [k;] — Computing the expected kernel

Input: Two compatible PCs p,, and q,,, and a KC k; that is
kernel-compatible with the PC pair p,, and qy,. . .
1. if m, n, [are input nodes then ComPUtat’on can be done In

return B, o [k one forward paSS!

2
3: else if m, n, [are sum nodes then

) g
4. return Eiein(n)g’ein(m),cein(l) WiW;w, Epwq] [kc]
5
6

. else if m, n, [are product nodes then
return By, g, ki) - Ep, g [kr]

—> squared maximum mean discrepancy MMD|p, q| [Gretton et al. 2012]

—> +determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

2840

B Support vector regression with missing features

2940

Support vector regression with missing features

Given training data,
we can learn a support vector regression (SVR) model f(x) = > " wik(x;, x) + b;

also we can learn a generative model for features in PC p(X).

3040

Support vector regression with missing features

P Given training data,

3040

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

30140

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

B also we can learn a generative model for features in PC p(X).

PC

30140

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

B also we can learn a generative model for features in PC p(X).

PC

p(X)

X

At deployment time, what happen if we observe partial features and some are missing?
30140

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

B also we can learn a generative model for features in PC p(X).

PC

p(X)

X

At deployment time, what happen if we observe partial features and some are missing?
—> Expected prediction! 30140

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

B also we can learn a generative model for features in PC p(X).

At deployment time, in the case when only features X, = X, are observed
and features X, are missing, with X = (X,, X,,,), the expected
prediction is

3140

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

B also we can learn a generative model for features in PC p(X).

At deployment time, in the case when only features X, = X, are observed
and features X, are missing, with X = (X,, X,,,), the expected
prediction is

Entyimp (X)L (%05 Xim)

3140

Given training data,
B we can learn a support vector regression (SVR) model f(x) = > wik(x;,x) + b;

B also we can learn a generative model for features in PC p(X).

At deployment time, in the case when only features X, = X, are observed
and features X, are missing, with X = (X,, X,,,), the expected
prediction is

m

EmeD(Xm\XO)[f<XO> Xpm)] = Z wiEmeD(Xm\xo)[k(Xiv (X0, Xpm))] + b
1=1
31/40

Support vector regression with missing features

deIFa—aiIergns abalone

0.00050 ‘

| —e— Median Imputation
| —— wmap P
—=— Expected Prediction 3.5 /

0.00045

w 0.00040
n

E 0.00035

U\ |

0.00030

N

0.00025

0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Missing Probability Missing Probability

—> Expected prediction improves over the baselines
32/40

B Support vector regression with missing features

l Collapsed black-box importance sampling

330

Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S({ﬂ, l}iz)l tie Ip)

weights samples

S*({w x| p) = w' Kpw, with [K,]; = k,(x",x17)

3440

Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S({ﬂ, |}i2)| "l p)

weights samples
S*({w x| p) = w' Kpw, with [K,]; = k,(x",x17)

Given a distribution p, and samples {X(i) 1, the black-box importance sampling
obtains weights by solving optimization problem

w i=1

w”* = argmin {wTpr

3440

Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S({ﬂ, I}iz)l "l p)

weights samples
S*({w x| p) = w' Kpw, with [K,]; = k,(x",x17)

Given a distribution p, and samples {X(i) 1, the black-box importance sampling
obtains weights by solving optimization problem

w i=1

w* = argmin {wTpr

Can we use less samples but maintain the same or even better performance?

3440

Black-box Importance Sampling [iu et al. 2016]

Empirical KDSD S({ﬂ, I}iz)l "l p)

weights samples
S*({w x| p) = w' Kpw, with [K,]; = k,(x",x17)

Given a distribution p, and samples {X(i) 1, the black-box importance sampling
obtains weights by solving optimization problem

w i=1

w* = argmin {wTpr

Can we use less samples but maintain the same or even better performance?

j CO”apsed samples.’ 3440

o0 /[.[. 511 Black-box Importance Sampling

35/40

ol)/[.] X141} Black-box Importance Sampling

B Given partial samples {x;V}7_, with (X, X,) a partition of X,

35140

Black-box Importance Sampling

B Given partial samples xsM 1 with (Xg, Xc) a partition of X,
=1
Represent the conditional distributions p(X¢ xs(i) as PCs p; by knowledge
p y 5!
compilation [Shen et al. 2016]

35140

Black-box Importance Sampling

Given partial samples {Xs(i) ., with (Xs, X¢) a partition of X,
B Represent the conditional distributions p(Xe | xs(?)) as PCs p; by knowledge
compilation [Shen et al. 2016]

Compile the kernel function k(X, X.') as KC k

35140

Black-box Importance Sampling

Given partial samples {xs(i) ., with (Xs, X¢) a partition of X,
B Represent the conditional distributions p(Xe | xs(?)) as PCs p; by knowledge
compilation [Shen et al. 2016]

Compile the kernel function k(X, X.') as KC k
B Empirical KDSD between collapsed samples and the target distribution p

Se({x wi} [p) = w' K, sw

with [Kpslij = Exenp. xiop, Kp(x,X)]

35140

Black-box Importance Sampling

Given partial samples {xs(i) ., with (Xs, X¢) a partition of X,
B Represent the conditional distributions p(Xe | xs(?)) as PCs p; by knowledge
compilation [Shen et al. 2016]

Compile the kernel function k(X, X.') as KC k
B Empirical KDSD between collapsed samples and the target distribution p

Se({x wi} [p) = w' K, sw

with [Kp,s]ij = Excwp;,xgwpv, [kl)(x7 X/)]
B Finally, obtain the importance weights w by solving

w i=1

w” = argmin {'wTKnsw
35/40

ol)/[.] X141} Black-box Importance Sampling

T
—e—CSs | -2,

-l
N

——cvs |
A —+— CBBIS

|
~
o

1
N
0

|
w
o

|
w
n

|
fd

\
o |/ D

Log avg. marginal Hellinger dist.

!
F
n

50 100 150 200 25 50 75 100 125 150 175 200
N (# samples) N (# samples)

=> methods with collapsed samples all outperform their non-collapsed counterparts
—> (BBIS performs equally well or better than other baselines

Friedman and Broeck, "Approximate Knowledge Compilation by Online Collapsed Importance
Sampling”, 2018

Liu and Lee, “Black-box importance sampling”, 2016 36140

B Support vector regression with missing features

l Collapsed black-box importance sampling

3740

Takeaways

#1: you can be both tractable and expressive
#2: circuits are a foundation for tractable inference over kernels

What other applications would benefit from the tractable computation
of the expected kernels?

3840

More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-LI9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

3940

starai.cs.ucla.edu/papers/ProbCirc20.pdf
youtube.com/watch?v=2RAG5-L9R70
arranger1044.github.io/probabilistic-circuits/
tinyurl.com/w65po5d

Questions?

40/40

® & & & &

53]

52

References |

Chow, C and C Liu (1968). “Approximating discrete probability distributions with dependence trees”. In: /EEE Transactions on Information Theory 14.3, pp. 462-467.
Rabiner, Lawrence and Biinghwang Juang (1986). “An introduction to hidden Markov models”. In: jeee assp magazine 3.1, pp. 4-16.

Bach, Francis R. and Michael I. Jordan (2001). “Thin Junction Trees". In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569-576.

Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229-264.

Jaeger, Manfred (2004). “Probabilistic decision graphs—combining verification and Al techniques for probabilistic inference”. In: International Journal of Uncertainty, Fuzziness and
Knowledge-Based Systems 12.supp01, pp. 19-42.

Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche (July 2014). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on
Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisakR14.pdf.

Liu, Qiang and Jason D Lee (2016). “Black-box importance sampling”. In: arXiv preprint arXiv:1610.05247.

Friedman, Tal and Guy Van den Broeck (Dec. 2018). “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”. In: Advances in Neural Information Processing
Systems 31 (NeurlPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.

Peharz, Robert, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani (2019). “Random sum-product networks: A
simple but effective approach to probabilistic deep learning”. In: UA/.

Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”. In:

Dang, Meihua, Antonio Vergari, and Guy Van den Broeck (2020). “Strudel: Learning Structured-Decomposable Probabilistic Circuits”. In: PGM abs/2007.09331.

http://starai.cs.ucla.edu/papers/KisaKR14.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf

References li

@ Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020). “Einsum
Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”. In: International Conference of Machine Learning.

	References

