Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar
Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar
Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar
Tractable Computation of Expected Kernels by Circuits

Wenzhe Li*
Tsinghua University

Zhe Zeng*
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

April 29th, 2021 - Yahoo Research Seminar
Motivation

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute the expected kernel

$$\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$
Motivation

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute the expected kernel

$$\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$

⇒ In kernel-based frameworks, expected kernels are omnipresent!
Motivation

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute the expected kernel

$$\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$

⇒ In kernel-based frameworks, expected kernels are omnipresent!

Squared Maximum Mean Discrepancy (MMD)

$$\mathbb{E}_{x \sim p, x' \sim p}[k(x, x')] + \mathbb{E}_{x \sim q, x' \sim q}[k(x, x')] - 2\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$
Motivation

A Fundamental Task

Given two distributions p and q, and a kernel k, the task is to compute the expected kernel

$$\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$

\Rightarrow In kernel-based frameworks, expected kernels are omnipresent!

Discrete Kernelized Stein Discrepancy (KDSD)

$$\mathbb{E}_{x, x' \sim q}[k_p(x, x')]$$
\[E_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x) q(x') k(x, x') \, dx \, dx' \]
Challenge

Reliability vs. Flexibility

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x)q(x')k(x, x') \, dx \, dx'
\]

\(p, q, k\) fully factorized

\(p(x) = \prod_i p(x_i), \, q(x) = \prod_i q(x_i)\)

\(k(x, x') = \prod_i k(x_i, x'_i)\)

⇒ expected kernel is **tractable**

\(\prod_i (\int_{x_i, x'_i} p(x_i)q(x'_i)k(x_i, x'_i))\)
Challenge

Reliability vs. Flexibility

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x)q(x')k(x, x') \, dx \, dx'
\]

\[p, q, k \text{ fully factorized}
\]

\[
p(x) = \prod_i p(x_i), q(x) = \prod_i q(x_i)
\]

\[
k(x, x') = \prod_i k(x_i, x_i)
\]

\[\Rightarrow \text{ expected kernel is tractable}
\]

\[\prod_i (\int_{x_i, x_i'} p(x_i)q(x_i')k(x_i, x_i'))
\]

A computation is **tractable** if it can be done exactly in polynomial time.
Challenge

Reliability vs. Flexibility

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x)q(x')k(x, x') \, dx \, dx'
\]

\(p, q, k\) fully factorized

PRO. Tractable exact computation

CON. Model being too restrictive
Challenge

Reliability vs. Flexibility

\[
\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x) q(x') k(x, x') \, dx \, dx'
\]

\(p, q, k \) fully factorized

PRO. Tractable exact computation

CON. Model being too restrictive

Hard to compute in general. \(\Rightarrow \) approximate with MC or variational inference

PRO. Efficient computation

CON. no guarantees on error bounds
Challenge
Reliability vs. Flexibility

\[\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] = \int_{x, x'} p(x)q(x')k(x, x') \, dx \, dx' \]

\(p, q, k \) fully factorized

PRO. Tractable exact computation

CON. Model being too restrictive

trade-off?

Hard to compute in general.

\[\Rightarrow \text{ approximate with MC or variational inference} \]

PRO. Efficient computation

CON. no guarantees on error bounds
Expressive distribution models

+

Exact computation of expected kernels?
Expressive distribution models

+

Exact computation of expected kernels

=

Circuits!
Probabilistic Circuits

deep generative models + deep guarantees
Circuits

Probabilistic Circuits

deep generative models + deep guarantees

Kernel Circuits

express kernels as circuits
Circuits

Probabilistic Circuits
deep generative models + deep guarantees

Kernel Circuits
express kernels as circuits

⇒ \[\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')] \]
1. A simple tractable distribution is a PC
\[\implies \text{e.g., a multivariate Gaussian} \]
Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC

⇒ e.g., a mixture model
Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
II. A convex combination of PCs is a PC
III. A product of PCs is a PC
Probabilistic Circuits (PCs)

Tractable computational graphs
Probabilistic Circuits (PCs)

Tractable computational graphs
Probabilistic queries = feedforward evaluation

\[p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) \]
Probabilistic queries = feedforward evaluation

\[p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) \]
Probabilistic queries = feedforward evaluation

\[p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) = 0.75 \]
PCs = deep learning

PCs are computational graphs
PCs = deep learning

PCs are computational graphs encoding deep mixture models

⇒ stacking (categorical) latent variables
PCs = **deep learning**

PCs are computational graphs encoding **deep mixture models**

⇒ stacking (categorical) latent variables

PCs compactly represent **polynomials with exponentially many terms**

⇒ universal approximators
PCs = \textit{deep learning}

PCs are computational graphs encoding \textit{deep mixture models} \Rightarrow \text{stacking (categorical) latent variables}

PCs compactly represent \textit{polynomials with exponentially many terms} \Rightarrow \text{universal approximators}

PCs are expressive \textit{deep generative models}!
⇒ we can learn PCs with millions of parameters in minutes on the GPU \cite{Peharz et al. 2020}
On par with intractable models!

How expressive are PCs?

<table>
<thead>
<tr>
<th>dataset</th>
<th>best circuit</th>
<th>BN</th>
<th>MADE</th>
<th>VAE</th>
<th>dataset</th>
<th>best circuit</th>
<th>BN</th>
<th>MADE</th>
<th>VAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>nltcs</td>
<td>-5.99</td>
<td>-6.02</td>
<td>-6.04</td>
<td>-5.99</td>
<td>dna</td>
<td>-79.88</td>
<td>-80.65</td>
<td>-82.77</td>
<td>-94.56</td>
</tr>
<tr>
<td>msnbc</td>
<td>-6.04</td>
<td>-6.04</td>
<td>-6.06</td>
<td>-6.09</td>
<td>kosarek</td>
<td>-10.52</td>
<td>-10.83</td>
<td>-</td>
<td>-10.64</td>
</tr>
<tr>
<td>plants</td>
<td>-11.84</td>
<td>-12.65</td>
<td>-12.32</td>
<td>-12.34</td>
<td>book</td>
<td>-33.82</td>
<td>-36.41</td>
<td>-33.95</td>
<td>-33.19</td>
</tr>
<tr>
<td>audio</td>
<td>-39.39</td>
<td>-40.50</td>
<td>-38.95</td>
<td>-38.67</td>
<td>movie</td>
<td>-50.34</td>
<td>-54.37</td>
<td>-48.7</td>
<td>-47.43</td>
</tr>
<tr>
<td>jester</td>
<td>-51.29</td>
<td>-51.07</td>
<td>-52.23</td>
<td>-51.54</td>
<td>webkb</td>
<td>-149.20</td>
<td>-157.43</td>
<td>-149.59</td>
<td>-146.9</td>
</tr>
<tr>
<td>netflix</td>
<td>-55.71</td>
<td>-57.02</td>
<td>-55.16</td>
<td>-54.73</td>
<td>cr52</td>
<td>-81.87</td>
<td>-87.56</td>
<td>-82.80</td>
<td>-81.33</td>
</tr>
<tr>
<td>accidents</td>
<td>-26.89</td>
<td>-26.32</td>
<td>-26.42</td>
<td>-29.11</td>
<td>c20ng</td>
<td>-151.02</td>
<td>-158.95</td>
<td>-153.18</td>
<td>-146.9</td>
</tr>
<tr>
<td>retail</td>
<td>-10.72</td>
<td>-10.87</td>
<td>-10.81</td>
<td>-10.83</td>
<td>bbc</td>
<td>-229.21</td>
<td>-257.86</td>
<td>-242.40</td>
<td>-240.94</td>
</tr>
</tbody>
</table>

Unifying existing tractable models

Chow-Liu trees
[Chow and Liu 1968]

Junction trees
[Bach and Jordan 2001]

HMMs
[Rabiner and Juang 1986]

Classical tractable models can be compactly represented as PCs

Chow-Liu trees
[Chow and Liu 1968]

Junction trees
[Bach and Jordan 2001]

HMMs
[Rabiner and Juang 1986]

Cnets
[Rahman et al. 2014]

SPNs
[Poon et al. 2011]

PSDDs
[Kisa et al. 2014]

PDGs
[Jaeger 2004]
PCs = \textcolor{teal}{deep learning} + \textcolor{purple}{deep guarantees} \\

PCs are expressive \textit{deep generative models}! \\

\& \textcolor{orange}{Certifying tractability} for a class of queries \\

= \textcolor{green}{verifying structural properties} of the graph
Which structural constraints ensure tractability?
A PC is *decomposable* if all inputs of product units depend on disjoint sets of variables.
A PC is **decomposable** if all inputs of product units depend on disjoint sets of variables.

A PC is **smooth** if all inputs of sum units depend of the same variable sets.

Darwiche and Marquis, “A knowledge compilation map”, 2002
decomposable + smooth PCs = ...

decomposable + smooth PCs = ...

MAR sufficient and necessary conditions for computing any marginal

\[p(y) = \int_{\text{val}(Z)} p(z, y) \, dZ, \quad \forall Y \subseteq X, \quad Z = X \setminus Y \]

\[\Rightarrow \quad \text{by a single feedforward evaluation} \]

decomposable + **smooth** PCs = ...

MAR \(\text{sufficient and necessary conditions for computing any marginal } \int p(z, y) \, dZ \)

CON \(\text{sufficient and necessary conditions for any conditional distribution} \)

\[
p(y \mid z) = \frac{\int_{\text{val}(H)} p(z, y, h) \, dH}{\int_{\text{val}(H)} \int_{\text{val}(Y)} p(z, y, h) \, dH \, dY}, \quad \forall Z, Y \subseteq X
\]

\[\Rightarrow \text{ by two feedforward evaluations} \]

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 2020
decomposable + smooth PCs = ...

MAR sufficient and necessary conditions for computing any marginal $\int p(z, y) \, dZ$

CON sufficient and necessary conditions for any conditional $\frac{\int \int p(z, y, h) \, dH}{\int \int p(z, y) \, dH \, dY}$

? What about the expected kernel $\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$?

Can we represent kernels as circuits to characterize tractability of its queries?
Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $k(x, x') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$

\[
\begin{align*}
\exp(-|X_1 - X'_1|^2) & \land \\
\exp(-|X_2 - X'_2|^2) & \land \\
\exp(-|X_3 - X'_3|^2) & \land \\
\exp(-|X_4 - X'_4|^2) & \land \\
\end{align*}
\]
Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel $k(x, x') = \exp\left(-\sum_{i=1}^{4} |X_i - X_i'|^2\right)$

\[
\exp(-|X_1 - X_1'|^2) \land \\
\exp(-|X_2 - X_2'|^2) \land \\
\exp(-|X_3 - X_3'|^2) \land \\
\exp(-|X_4 - X_4'|^2)
\]

decomposable if all inputs of product units depend on disjoint sets of variables
Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel \(k(x, x') = \exp \left(- \sum_{i=1}^{4} |X_i - X'_i|^2 \right) \)

\[
\exp(-|X_1 - X'_1|^2) \land \\
\exp(-|X_2 - X'_2|^2) \land \\
\exp(-|X_3 - X'_3|^2) \land \\
\exp(-|X_4 - X'_4|^2)
\]

decomposable if all inputs of product units depend on disjoint sets of variables

smooth if all inputs of sum units depend of the same variable sets
Kernel Circuits (KCs)

Common kernels can be compactly represented as **decomposable** + **smooth** KCs:

- RBF, (exponentiated) Hamming, polynomial ...
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are \textbf{decomposable} + smooth

ii) PCs p and q, and KC k are \textbf{compatible}

\Rightarrow decompose in the same way
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable + smooth**

ii) PCs p and q, and KC k are **compatible**
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are **decomposable** + **smooth**

ii) PCs p and q, and KC k are **compatible**
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible
Expected Kernel

tractable computation via circuit operations

i) PCs p and q, and KC k are decomposable + smooth

ii) PCs p and q, and KC k are compatible

Then computing expected kernels can be done tractably by a forward pass \Rightarrow product of the sizes of each circuit!
smooth + decomposable + compatible = tractable $E[k]$.

[Sum Nodes] $p(X) = \sum_i w_i p_i(X)$, $q(X') = \sum_j w'_j q_j(X')$, and kernel $k(X, X') = \sum_l w''_l k_l(X, X')$:

\[
p(X) = \sum_i w_i p_i(X), \quad q(X') = \sum_j w'_j q_j(X'), \quad k(X, X') = \sum_l w''_l k_l(X, X').
\]
smooth + **decomposable** + **compatible** = **tractable** $E[k]$

[Sum Nodes] $p(X) = \sum_i w_i p_i(X)$, $q(X') = \sum_j w'_j q_j(X')$, and kernel $k(X, X') = \sum_l w''_l k_l(X, X')$:

$$\sum_{x, x'} p(x) q(x') k(x, x') = \sum_{i, j, l} w_i w'_j w''_l p_i(x) q_j(x) k_l(x, x')$$
smooth + decomposable + compatible = tractable $E[k]$

[Sum Nodes] $p(X) = \sum_i w_i p_i(X)$, $q(X') = \sum_j w'_j q_j(X')$, and kernel $k(X, X') = \sum_l w''_l k_l(X, X')$:

$\mathbb{E}_{p, q}[k(X, X')] = \sum_{i, j, l} w_i w'_j w''_l \mathbb{E}_{p_i, q_j}[k_l(X, X')]$

\implies expectation is “pushed down” to children
smooth + **decomposable** + **compatible** = **tractable** $E[k]$

[Product Nodes] $p_x(X) = \prod_i p_i(X_i)$, $q_x(X') = \prod_i q_j(X'_i)$, and kernel $k_x(X, X') = \prod_i k_i(X_i, X'_i)$:

![Diagram of product nodes]
\[\text{smooth} + \text{decomposable} + \text{compatible} = \text{tractable } E[k] \]

[Product Nodes] \(p_x(x) = \prod_i p_i(x_i) \), \(q_x(x') = \prod_i q_i(x'_i) \), and kernel \(k_x(x, x') = \prod_i k_i(x_i, x'_i) \):

\[
\begin{align*}
\sum_{x, x'} p_x(x) q_x(x') k_x(x, x') &= \sum_{x, x'} \prod_i p(x_i) q(x_i) k_i(x_i, x'_i) \\
&= \prod_i \left(\sum_{x_i, x'_i} p(x_i) q(x_i) k_i(x_i, x'_i) \right)
\end{align*}
\]
\textbf{smooth} + \textbf{decomposable} + \textbf{compatible} = \textbf{tractable} \ E[k]

\textbf{[Product Nodes]} \ p_x(X) = \prod_i p_i(x_i), \ q_x(X') = \prod_i q_i(x_i'), \ \text{and kernel} \ k_x(x, x') = \prod_i k_i(x_i, x_i'):

\[\prod_i p_i(x_i) \times \prod_i q_i(x_i') \times \prod_i k_i(x_i, x_i') \]

\[
\mathbb{E}_{p_x, q_x}[k_x(x, x')] = \prod_i \mathbb{E}_{p, q}[k(x_i, x_i')]
\]

\[
\implies \text{expectation decomposes into easier ones}
\]
smooth + **decomposable** + **compatible** = **tractable** $E[k]$

Algorithm 1 $E_{p_n,q_m}[k_l]$ — Computing the expected kernel

Input: Two compatible PCs p_n and q_m, and a KC k_l that is kernel-compatible with the PC pair p_n and q_m.

1: if m, n, l are input nodes then
2: return $E_{p_n,q_m}[k_l]$
3: else if m, n, l are sum nodes then
4: return $\sum_{i\in in(n), j\in in(m), c\in in(l)} w_i w_j' w_c'' E_{p_i,q_j}[k_c]$
5: else if m, n, l are product nodes then
6: return $E_{p_{nL},q_{mL}}[k_L] \cdot E_{p_{nR},q_{mR}}[k_R]$

Computation can be done in one forward pass!
smooth + decomposable + compatible = tractable $E[k]$

Algorithm 2 $E_{p_n,q_m}[k_l]$ — Computing the expected kernel

Input: Two compatible PCs p_n and q_m, and a KC k_l that is kernel-compatible with the PC pair p_n and q_m.

1: if m, n, l are input nodes then
2: return $E_{p_n,q_m}[k_l]$
3: else if m, n, l are sum nodes then
4: return $\sum_{i \in \text{in}(n), j \in \text{in}(m), c \in \text{in}(l)} w_i w'_j w''_c E_{p_i,q_j}[k_c]$
5: else if m, n, l are product nodes then
6: return $E_{p_{nL},q_{mL}}[k_L] \cdot E_{p_{nR},q_{mR}}[k_R]$

Computation can be done in one forward pass!

⇒ squared maximum mean discrepancy $MMD[p, q]$ [Gretton et al. 2012]
⇒ + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]
Applications

Support vector regression with missing features
Given training data, we can learn a support vector regression (SVR) model \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b; \) also we can learn a generative model for features in PC \(p(X). \)
Support vector regression with missing features

Given training data,

we can learn a support vector regression (SVR) model \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b; \)

also we can learn a generative model for features in PC \(p(X). \)
Support vector regression with missing features

- Given training data,
- we can learn a support vector regression (SVR) model $f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b$;
- also we can learn a generative model for features in PC $p(X)$.
Given training data,
we can learn a *support vector regression (SVR) model* \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b; \)
also we can learn a *generative model* for features in \(\text{PC} \ p(X). \)
Support vector regression with missing features

- Given training data,
- we can learn a support vector regression (SVR) model \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b; \)
- also we can learn a generative model for features in PC \(p(X) \).

At deployment time, what happen if we observe partial features and some are missing?
Support vector regression with missing features

- Given training data,
- we can learn a support vector regression (SVR) model $f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b$;
- also we can learn a generative model for features in PC $p(X)$.

At deployment time, what happen if we observe partial features and some are missing?

⇒ Expected prediction!
Given training data,

we can learn a support vector regression (SVR) model \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b; \)

also we can learn a generative model for features in PC \(p(X). \)

At deployment time, in the case when only features \(X_o = x_o \) are observed
and features \(X_m \) are missing, with \(X = (X_o, X_m) \), the expected
prediction is
Support vector regression with missing features

Given training data,
we can learn a support vector regression (SVR) model \(f(x) = \sum_{i=1}^{m} w_i k(x_i, x) + b; \)
also we can learn a generative model for features in \(\text{PC} \ p(X). \)

At deployment time, in the case when only features \(X_o = x_o \) are observed
and features \(X_m \) are missing, with \(X = (X_o, X_m) \), the expected prediction is

\[
\mathbb{E}_{x_m \sim p(X_m | x_o)} [f(x_o, x_m)]
\]
Support vector regression with missing features

Given training data,

we can learn a support vector regression (SVR) model $f(x) = \sum_{i=1}^{m} w_i k(x, x) + b$;

also we can learn a generative model for features in $PC p(X)$.

At deployment time, in the case when only features $X_o = x_o$ are observed and features X_m are missing, with $X = (X_o, X_m)$, the expected prediction is

$$\mathbb{E}_{x_m \sim p(x_m|x_o)}[f(x, x)] = \sum_{i=1}^{m} w_i \mathbb{E}_{x_m \sim p(x_m|x_o)}[k(x, (x_o, x_m))] + b$$
Support vector regression with missing features

Expected prediction improves over the baselines
Applications

- Support vector regression with missing features
- Collapsed black-box importance sampling
Recap **Black-box Importance Sampling** [Liu et al. 2016]

Empirical KDSD \(\mathbb{S}(\{w^{(i)} , x^{(i)}\}_{i=1}^{n} \parallel p) \)

\[
\mathbb{S}^2(\{w^{(i)} , x^{(i)}\}_{i=1}^{n} \parallel p) = w^\top K_p w, \text{ with } [K_p]_{ij} = k_p(x^{(i)}, x^{(j)})
\]

Given a distribution \(p \), and samples \(\{x^{(i)}\}_{i=1}^{n} \), the black-box importance sampling obtains weights by solving optimization problem

\[
w^* = \arg\min_w \left\{ w^\top K_p w \mid \sum_{i=1}^{n} w_i = 1, w_i \geq 0 \right\}
\]
Recap **Black-box Importance Sampling** [Liu et al. 2016]

- **Empirical KDSD**
 \[
 \mathbb{S}(\{ w^{(i)}, x^{(i)} \}_{i=1}^n \parallel p)
 \]

 \[
 \mathbb{S}^2(\{ w^{(i)}, x^{(i)} \}_{i=1}^n \parallel p) = w^\top K_p w, \quad \text{with } [K_p]_{ij} = k_p(x^{(i)}, x^{(j)})
 \]

- **Given a distribution** \(p\), and samples \(\{x^{(i)}\}_{i=1}^n\), the black-box importance sampling obtains weights by solving optimization problem

 \[
 w^* = \underset{w}{\text{argmin}} \left\{ w^\top K_p w \mid \sum_{i=1}^n w_i = 1, \ w_i \geq 0 \right\}
 \]
Recap **Black-box Importance Sampling** [Liu et al. 2016]

Empirical KDSD \(S\left(\left\{ w^{(i)}, x^{(i)} \right\}_{i=1}^{n} \parallel p \right) \)

\[
S^{2}\left(\left\{ w^{(i)}, x^{(i)} \right\}_{i=1}^{n} \parallel p \right) = w^{\top} K_{p} w, \quad \text{with} \quad [K_{p}]_{ij} = k_{p}(x^{(i)}, x^{(j)})
\]

Given a distribution \(p \), and samples \(\left\{ x^{(i)} \right\}_{i=1}^{n} \), the black-box importance sampling obtains weights by solving optimization problem

\[
w^{*} = \arg\min_{w} \left\{ w^{\top} K_{p} w \right\} \quad \text{s.t.} \quad \sum_{i=1}^{n} w_{i} = 1, \quad w_{i} \geq 0
\]

Can we use less samples but maintain the same or even better performance?
Recap Black-box Importance Sampling [Liu et al. 2016]

- Empirical KDS
 \[S(\{ w^{(i)}, x^{(i)} \}_{i=1}^n \| p) \]

 \[S^2(\{ w^{(i)}, x^{(i)} \}_{i=1}^n \| p) = w^\top K_p w, \text{ with } [K_p]_{ij} = k_p(x^{(i)}, x^{(j)}) \]

- Given a distribution \(p \), and samples \(\{ x^{(i)} \}_{i=1}^n \), the black-box importance sampling obtains weights by solving optimization problem

 \[w^* = \arg\min_w \left\{ w^\top K_p w \mid \sum_{i=1}^n w_i = 1, w_i \geq 0 \right\} \]

Can we use less samples but maintain the same or even better performance? \(\Rightarrow \) Collapsed samples!
Collapsed **Black-box Importance Sampling**

- Given partial samples \(\{x_s^{(i)}\}_{i=1}^n \), with \((X_s, X_c)\) a partition of \(X\),
- Represent the conditional distributions \(p(X_c | x_s^{(i)})\) as PCs \(p_i\) by knowledge compilation [Shen et al. 2016]
- Compile the kernel function \(k(X_c, X_c')\) as KC \(k\)
- Empirical KDSD between collapsed samples and the target distribution \(p\)

\[
S_s^2(\{x_s^{(i)}, w_i\} \parallel p) = w^\top K_{p,s} w
\]

with \([K_{p,s}]_{ij} = \mathbb{E}_{x_c \sim p_i, x_c' \sim p_j} [k_p(x, x')]\]

- Finally, obtain the importance weights \(w\) by solving

\[
w^* = \arg\min_w \left\{ w^\top K_{p,s} w \right\} \quad \left| \begin{array}{l} \sum_{i=1}^n w_i = 1, \ w_i \geq 0 \end{array} \right\}
\]
Collapsed Black-box Importance Sampling

- Given partial samples \(\{x_s^{(i)}\}_{i=1}^n \), with \((X_s, X_c)\) a partition of \(X\),
- Represent the conditional distributions \(p(X_c | x_s^{(i)})\) as PCs \(p_i\) by knowledge compilation [Shen et al. 2016]
- Compile the kernel function \(k(X_c, X_c')\) as KC \(k\)
- Empirical KDSD between collapsed samples and the target distribution \(p\)

\[
S^2_s(\{x_s^{(i)}, w_i\} \parallel p) = w^\top K_{p,s} w
\]

with \([K_{p,s}]_{ij} = \mathbb{E}_{x_c \sim p_i, x_c' \sim p_j} [k_p(x, x')]\]

- Finally, obtain the importance weights \(w\) by solving

\[
\mathbf{w}^* = \arg\min_w \left\{ w^\top K_{p,s} w \bigg| \sum_{i=1}^n w_i = 1, w_i \geq 0 \right\}
\]
Collapsed **Black-box Importance Sampling**

- Given partial samples \(\{x_s^{(i)}\}_{i=1}^n \), with \((X_s, X_c)\) a partition of \(X\),
- Represent the conditional distributions \(p(X_c | x_s^{(i)})\) as PCs \(p_i\) by knowledge compilation [Shen et al. 2016]
- Compile the kernel function \(k(X_c, X_c')\) as KC \(k\)
- Empirical KDSD between collapsed samples and the target distribution \(p\)

\[
S^2_s(\{x_s^{(i)}, w_i\} \parallel p) = \mathbf{w}^\top K_{p,s} \mathbf{w}
\]

with \([K_{p,s}]_{ij} = \mathbb{E}_{x_c \sim p_i, x_c' \sim p_j} [k_p(x, x')]\)

- Finally, obtain the importance weights \(w\) by solving

\[
\mathbf{w}^* = \arg\min_{\mathbf{w}} \left\{ \mathbf{w}^\top K_{p,s} \mathbf{w} \left| \begin{array}{c}
\sum_{i=1}^n w_i = 1, \ w_i \geq 0
\end{array} \right. \right\}
\]
Collapsed Black-box Importance Sampling

- Given partial samples \(\{x_s^{(i)}\}_{i=1}^n \), with \((X_s, X_c)\) a partition of \(X\),
- Represent the conditional distributions \(p(X_c | x_s^{(i)})\) as PCs \(p_i\) by knowledge compilation [Shen et al. 2016]
- Compile the kernel function \(k(X_c, X_c')\) as KC \(k\)
- Empirical KDSD between collapsed samples and the target distribution \(p\)

\[
S^2_s(\{x_s^{(i)}, w_i\} \parallel p) = w^\top K_{p,s}w
\]

with \([K_{p,s}]_{ij} = \mathbb{E}_{x_c \sim p_i, x_c' \sim p_j}[k_p(x, x')]\]

- Finally, obtain the importance weights \(w\) by solving

\[
w^* = \underset{w}{\text{argmin}} \left\{ w^\top K_{p,s}w \ \middle| \ \sum_{i=1}^n w_i = 1, w_i \geq 0 \right\}
\]
Collapsed Black-box Importance Sampling

- Given partial samples \(\{x_s^{(i)}\}_{i=1}^n \), with \((X_s, X_c)\) a partition of \(X \),
- Represent the conditional distributions \(p(X_c | x_s^{(i)}) \) as PCs \(p_i \) by knowledge compilation [Shen et al. 2016]
- Compile the kernel function \(k(X_c, X_c') \) as KC \(k \)
- Empirical KDSD between collapsed samples and the target distribution \(p \)
 \[
 S^2_s(\{x_s^{(i)}, w_i\} \parallel p) = w^\top K_{p,s} w
 \]
 with \([K_{p,s}]_{ij} = \mathbb{E}_{x_c \sim p_i, x_c' \sim p_j} [k_p(x, x')] \)
- Finally, obtain the importance weights \(w \) by solving
 \[
 w^* = \arg\min_w \left\{ w^\top K_{p,s} w \middle| \sum_{i=1}^n w_i = 1, w_i \geq 0 \right\}
 \]
Collapsed Black-box Importance Sampling

- Given partial samples \(\{ x_s^{(i)} \}_{i=1}^n \), with \((X_s, X_c)\) a partition of \(X\),
- Represent the conditional distributions \(p(X_c | x_s^{(i)}) \) as PCs \(p_i \) by knowledge compilation [Shen et al. 2016]
- Compile the kernel function \(k(X_c, X_c') \) as KC \(k \)
- Empirical KDSD between collapsed samples and the target distribution \(p \)

\[
S^2_s(\{x_s^{(i)}, w_i\} \parallel p) = w^\top K_{p,s} w
\]

with \([K_{p,s}]_{ij} = \mathbb{E}_{x_c \sim p_i, x'_c \sim p_j} [k_p(x, x')] \)

- Finally, obtain the importance weights \(w \) by solving

\[
w^* = \operatorname{argmin}_w \left\{ w^\top K_{p,s} w \middle| \sum_{i=1}^n w_i = 1, w_i \geq 0 \right\}
\]
Collapsed Black-box Importance Sampling

⇒ methods with collapsed samples all outperform their non-collapsed counterparts
⇒ CBBIS performs equally well or better than other baselines

Friedman and Broeck, “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”, 2018
Applications

- Support vector regression with missing features
- Collapsed black-box importance sampling
Conclusion

Takeaways

#1: you can be both tractable and expressive

#2: circuits are a foundation for tractable inference over kernels

What else?

What other applications would benefit from the tractable computation of the expected kernels?
More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-L9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d
Questions?
References

References II