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» Slow thinking: deliberative, cognitive,
model-based, extrapolation
 Amazing achievements until this day

* “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, ...




The Al Dilemma
s o)

Pure Logic Pure Learning

 Fast thinking: Instinctive, perceptive,
model-free, interpolation
 Amazing achievements recently

* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world



The FALSE Al Dilemma

B .
So all hope Is lost?
Probabilistic World Models

Joint distribution P(X)
Wealth of representations:

can be causal, relational, etc.
Knowledge + data
Reasoning + learning
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Pure Logic Probabilistic World Models Pure Learning

High-Level Probabilistic
Representations

Reasoning, and Learning
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Pure Logic Probabilistic World Models Pure Learning

A New Synthesis of

Learning and Reasoning



Outline: Reasoning N Learning

1. Deep Learning with Symbolic Knowledge
2. Efficient Reasoning During Learning

3. Probabilistic and Logistic Circults



Deep Learning with
Symbolic Knowledge




Motivation: Vision, Robotics, NLP
® ©

People appear at most Rigid objects don’t overlap
once in a frame

At least one verb In each sentence.
If X and Y are married, then they are people.

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.],
[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012], [Chang, M., Ratinov, L., & Roth, D.
(2008). Constraints as prior knowledge], [Ganchey, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured

latent variable models]... and many many more!



Motivation: Deep Learning
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DeepMmd’s Al has learned to
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Google's Al reasons its way around the London

Underground

DeepMind’s latest technique uses external memory to solve tasks that require logic and

reasoning — a step toward more human-like Al.

=

a Controller b Read and write heads < Memory

d Memory usage
and temporal links

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Motivation: Deep Learning

reasoning — a step toward more human-like Al.

solve tasks that require logic and
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... but ...

To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step.

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]




Knowledge vs. Data

* Where did the world knowledge go?

— Python scripts
» Decode/encode cleverly
 Fix inconsistent beliefs

— Rule-based decision systems
— Dataset design
—"a big hack” (with author's permission)

 |n some sense we went backwards

Less principled, scientific, and intellectually
satisfying ways of incorporating knowledge



Learning with Symbolic Knowledge

+ -

Today’s machine learning tools

don’t take knowledge as input! ®




Deep Learning with
Symbolic Knowledge
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cf. Nature paper

Neural Network
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Output is probabillity vector p, not Boolean logic!




Semantic Loss

Q: How close Is output p to satisfying constraint a?
Answer:. Semantic loss function L(a,p)

« Axioms, for example:
— If a constrains to one label, L(a,p) Is cross-entropy
— If a implies B then L(a,p) 2 L(B,p) (a more strict)

* Implied Properties: __— SEMANTIC
— If a is equivalent to 3 then L(a,p) = L(B,p) Loss!
— If p Is Boolean and satisfies a then L(a,p) =0



Semantic Loss: Definition

Theorem: Axioms imply unique semantic loss:

L*(a, p) x —log Z H Pi H (1—p;)

x=a i:xEX; ixE=—-X;

. /
Y

Probability of getting state x after
flipping coins with probabillities p

N\ /
Y

Probability of satisfying a after
flipping coins with probabillities p




Simple Example: Exactly-One

« Data must have some label
We agree this must be one of the 10 digits:

« Exactly-one constraint  (x1 Vx,V x3

] —1Xq1 V —1X?9
— For 3 classes: - VRV
« Semantic loss: | X1 V X3
L*(exactly-one, p) o< — log Z P H (1—pj)
=1 j= 1J$é?

J

Only xi =1 after flipping coins

U J
Y

Exactly one true x after flipping coins




Semi-Supervised Learning

* |ntuition: Unlabeled data must have some label
Cf. entropy minimization, manifold learning

e C(Class1 * C(Class1

4 Class 2 . - 4 Class?2

= Unlabeled A, . = Unlabeled
. A I

« Minimize exactly-one semantic loss on unlabeled data

Train with
existing loss + w - semantic loss




3

Accuracy % with # of used labels 100 1000 ALL

AtlasRBF (Pitelis et al., 2014) 91.9 (+0.95) 96.32 (+£0.12)  98.69

Deep Generative (Kingma et al., 2014) 96.67(+0.14) 97.60 (£+0.02) 99.04

Virtual Adversarial (Miyato et al., 2016)  97.67 98.64 99.36

Ladder Net (Rasmus et al., 2015) 98.94 (£0.37) 99.16 (£0.08) 99.43 (£0.02)
Baseline: MLP, Gaussian Noise 78.46 (£1.94) 9426 (+0.31) 99.34 (+0.08)
Baseline: Self-Training 72.55(+4.21)  87.43 (£3.07)

Baseline: MLP with Entropy Regularizer  96.27 (+0.64)  98.32(+0.34)  99.37 (+0.12)

MLP with Semantic Loss 98.38 (£0.51) 98.78 (£0.17) 99.36 (+0.02)
Accuracy % with # of used labels| 100 500 1000 ALL
Ladder Net (Rasmus et al., 2015) ] 81.46 (+0.64) | 85.18 (£0.27) 86.48 (+=0.15) 90.46
Baseline: MLP, Gaussian Noise 69.45 (+2.03) | 78.12(£1.41) 80.94 (+0.84) 89.87
MLP with Semantic Loss 86.74 (+=0.71) | 89.49 (+0.24) 89.67 (=0.09) 89.81

Same conclusion on CIFAR10

Experimental Evaluation

Competitive with
state of the art

INn semi-supervised

deep learning

Outperforms SoA!

Accuracy % with # of used labels 4000 ALL
CNN Baseline in Ladder Net 76.67 (= 0.61) | 90.73
Ladder Net (Rasmus et al., 2015) 79.60 (=0.47)

Baseline: CNN, Whitening, Cropping | 77.13 90.96
CNN with Semantic Loss 81.79 90.92




Efficient Reasoning
During Learning




But what about real constraints?

» Path constraint e e

cf. Nature paper

VS.

« Example: 4x4 grids
224 =184 paths + 16,777,032 non-paths
» Easily encoded as logical constraints ©

[Nishino et al., Choi et al.]



A Semantic Loss Function

L(a.p)ox—log > [ o ] (1-p)

x=a ixEX; ixE=-X;

(. /
Y

Probability of satisfying a after
flipping coins with probabillities p

In general: #P-hard ®

How to do this reasoning during learning?




Reasoning Tool: Logical Circuits

Representation of
logical sentences:

Input:

A B C D

0

1

1
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A
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Tractable for Logical Inference

* Is there a solution? (SAT)
— SAT(a Vv p) Iff SAT(a) or SAT(S) (always)
— SAT(a A B) iff 227



Decomposable Circuits

AR

B,C,D




Tractable for Logical Inference

* |s there a solution? (SAT) v
— SAT(a v B) iff SAT(a) or SAT(B) (always)
— SAT(a A B) iff SAT(a) and SAT(B) (decomposable)

 How many solutions are there? (#SAT)

« Complexity linear in circuit size ©



Deterministic Circuits

£
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Deterministic Circuits




How many solutions are there? (#SAT)
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Tractable for Inference

* |s there a solution? (SAT) /
- How many solutions are there? (#SAT)
* And also semantic loss becomes tractable /

L(G,p) = L( , p) = B IOg( )

AN
IS

X X X
Iy ) -3 I T2 I3 Pl‘(.l.’l) Pl( —|;1’2) Pl‘(ﬁ;l';}) Pl‘(—ki’l) Pl‘(;l'g) Pl‘(;l’g)

_|_

« Compilation into circuit by SAT solvers
» Add circuit to neural network output in tensorflow



Predict Shortest Paths

Add semantic loss
for path constraint

Test accuracy % | Coherent | Incoherent | Constraint
d-layer MLP 5.62 85.91 6.99
Semantic loss 28.51 83.14 69.89
Is prediction Are individual Is output
the shortest path? edge predictions a path?
This is the real task! correct?

(same conclusion for predicting sushi preferences, see paper)



Early Conclusions

Knowledge is (hidden) everywhere in ML
Semantic loss makes logic differentiable
Performs well semi-supervised

Requires hard reasoning in general
— Reasoning can be encapsulated in a circuit
— No overhead during learning

Performs well on structured prediction
A little bit of reasoning goes a long way!



Probabilistic and Logistic Circuits




Another False Dilemma?

Classical Al Methods

Hungry? $25?
Am | hungry?
Sleep? Restau
rant?
Have 1 25$ ? leep
H E R Buy a hamburger

Clear Modeling Assumption
Well-understood

Neural Networks
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“Black Box”
Empirical performance



Probabilistic Circuits

Tractable
Probabilistic
Models

Nicola DI Mauro
University of Bari

SPNs, ACs
PSDDs, CNs

Input:
A B C D
0 1 1 O

Pr(4,B,C,D) =0.096
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http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

Properties, Properties, Properties!

Read conditional independencies from structure
Interpretable parameters (XAl) o

(conditional probabilities of logical sentences)

Closed-form parameter learning I
Efficient reasoning (linear ©)

— Computing conditional probabilities Pr(x|y)

— MAP inference: most-likely assignment to x given y

— Even much harder tasks: expectations, KLD, entropy,
logical queries, decision making queries, etc.



Probabilistic Circults:

Density estimation benchmarks: tractable vs. intractable

Dataset
nltcs
msnbc
kdd2000
plants
audio
jester
netflix

accidents
retail
pumbs*

dna
Kosarek

Msweb

best circuit
-5.99

-6.04

-2.12
-11.84
-39.39
-51.29
-55.71

-26.89

-10.72

-22.15

-79.88
-10.52

-9.62

BN MADE
-6.02  -6.04
-6.04  -6.06
219 207

-12.65 12.32

-40.50 -38.95

-51.07 -52.23

-57.02 -55.16

-26.32  -26.42

-10.87 -10.81

2172 -22.3

-80.65 -82.77

-10.83 -
-9.70  -9.59

VAE
-5.99
-6.09
-2.12

-12.34
-38.67
-51.54
-54.73

-29.11

-10.83

-25.16

-94.56
-10.64

-9.73

Performance

Antonio Vergari

University of California, Los Angeles
Nicola DI Mauro

University of Barl

Guy Van den Broeck
University of Cabfornia, Los Angeles

115 . Canferance an Uncertaisty in Arfificiol Intelligence (UA2 2015)

Tal dwwe

Dataset best circuit BN  MADE VAE
Book -33.82 -3641 -33.95 -33.19
movie -50.34  -54.37 -48.7  -47.43
webkb -149.20 -157.43 -149.59 -146.9
cr52 -81.87 -87.56 -82.80 -81.33
c20ng -151.02 -158.95 -153.18 -146.90
-229.21 -257.86 -242.40 -240.94
-14.00 -18.35 -13.65 -18.81
Tractable Representations
Probabilistic [k
M od e’s Applications



http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

But what if | only want to classify?
Pr(Y|4, B, C,D)

Learn a logistic circuit from data



Logistic Pr(Y = 1| 4,B,C,D)

" . 1
Circuits = = 0.869
1+ exp(—1.9)
—2.6 —5.8
.0

A

0 1@3 2.3@4
Input: B S
A B C D PrY|AB,C,D) B ﬁoB

1

0O 1 1 0 ? ¢f |=¢ ! L




Learning Logistic Circults

Parameter learning reduces to logistic regression:

Pr(Y =1|x) = o

Features assoclated with each wire
“Global Circuit Flow” features

Learning parameters 6 Is convex optimization!

Greedy structure learning (cf. decision trees)



Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET MNIST FASHION
BASELINE: LOGISTIC REGRESSION 85.3 79.3
BASELINE: KERNEL LOGISTIC REGRESSION 97.7 88.3
RANDOM FOREST 97.3 81.6
3-LAYER MLP 97.5 84.8
RAT-SPN (PEHARZ ET AL. 2018) 08.1 89.5
SVM wWITH RBF KERNEL 98.5 87.8
5-LAYER MLP 99.3 89.8

() R TN A K

LOGISTIC CIRCUIT (REAL-VALUED) 990 4 91.3

CNN WITH 3 CONV LAYERS 99.1 90.7
RESNET (HE ET AL. 2016) 99.5 93.6




Significantly Smaller in Size

NUMBER OF PARAMETERS MNIST FASHION
BASELINE: LOGISTIC REGRESSION <1K <1K
BASELINE: KERNEL LOGISTIC REGRESSION 1,521 K 3,930K
LOGISTIC CIRCUIT (REAL-VALUED) 182K 467K

OGISTIC CIRCUIT (BINARY HS K 6 14K
3-LAYER MLP 1, 411K 1,411K
RAT-SPN (PEHARZ ET AL. 2018) 8,500K 650K
CNN WITH 3 CONV LAYERS 2,196K 2,196K
5-LAYER MLP 2.411K 2.411K

RESNET (HE ET AL. 2016) 4 838K 4.838K




Better Data Efficiency

ACCURACY % WITH % OF TRAINING DATA MNIST FASHION

100% 10% 2% 100% 10%
5-LAYER MLP 99.3 98.2 94.3 89.8 86.5
CNN WITH 3 CONV LAYERS 99.1 98.1 95.3 90.7 87.6

LOGISTIC CIRCUIT (BINARY) 97.4 96.9 94.1 87.6 86.7
LOGISTIC CIRCUIT (REAL-VALUED) 99.4 97.6  96.1 91.3 87.8
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Probabillistic & Logistic Circults

Statistical ML
“Probability”

Connectionism

Symbolic Al Deep

“LogiC”



Reasoning about
World Model + Classifier

“Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

* Given a learned predictor F(x)

* Given a probabilistic world model P(x)

* How does the world act on learned predictors?
Can we solve these hard problems?



What to expect of classifiers?

* Missing features at prediction time
* What is expected prediction of F(x) In P(x)?

Er p(y) = L [ F(ym))

)
m~P(M|y)
M: Missing features
y: Observed Features
MNIST
100 -
) B 751 e RN
> 70 ™ \
o ‘\\ l\x
S 50| 7 (ours) 201 1 7 ours) ™
] I % -f- MPE K
< 25 + 251 -+ Mean ?
d Median

25 50 75 20 40 60 80
% Missing % Missing



Explaining classifiers on the world

If the world looks like P(x),
then what part of the data Is sufficient for
F(X) to make the prediction it makes?

.
. :
S T}

!
5 i
.::.-'-’.+



Conclusions

N

Pure Logic Probabilistic World Models Pure Learning

N

Bring high-level Bring back
representations, general models of the world,
knowledge, and supporting new tasks, and
efficient high-level reasoning reasoning about what we
to probabilistic models have learned,
(Weighted Model without compromising
Integration, Probabilistic learning performance

Programming)



Conclusions

* There is a lot of value in working on
pure logic, pure learning

» But we can do more
by finding a synthesis, a confluence

Let’s get rid of this false dilemma...



Advertisements

e Juice.|l library for circuits and ML
— Structure and parameter learning algorithms

— Advanced reasoning algorithms
with probabilistic and logical circuits

— Scalable implementation in Julia

« AAAI 2020 Tutorial on Probabilistic Circuits

« Special Session for KR & ML at KR 2020
— Submit in March! Go to Rhodes, Greece.

th International Conference on
Principles of Knowledge

Representatioh and Reasoning

Septeniber 12-18, 2020 - Rhodes, Gfeece \\Q{/
&

-~



Thanks



