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Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

I

Q: How is Carol related to Justin ?
A: Carol is the grandmother of Justin

!

~

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on “reasoning” benchmarks.

Reasoning Example
from the CLUTRR

J

dataset

N

Unclear whether they follow the rules of logical deduction.

Language Models:
input — ? — Carol is the grandmother of Justin.

Logical Reasoning:
input — Justin in Kristin’s son; Carol is Kristin’'s mother; — Carol is Justin’s mother’s mother; if

X is Y’s mother’s mother then X is Y’s grandmother — Carol is the grandmother of Justin.




SimplelLogic

Generate textual train and test examples of the form:

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average,
then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If
blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless.
If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then
talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing
and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and
talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive
and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible.
If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and
troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If
dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing,
then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then
attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned
Alice thoughtless Alice polite Alice scared Alice average

Query: Alice is shy ?

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Training a transformer on SimplelLogic

(1) Randomly sample facts & rules.
Facts: B, C

Rules:A,B>D.B>E.B,C>F. Test accuracy for different reasoning depths
(2) Compute the correct

° e G labels for all predicates given
Test| 0 f 2 B8 4 & B

the facts and rules.
o ‘ . RP | 999 998 99.7 99.3 98.3 975 955

Rule-Priority

Label-Priority ° ‘ ‘

Test | O 1 2 3 4 5 6

= LP [100.0 1000 99.9 99.9 99.7 99.7 99.0
O (2) Set B, C (randomly chosen
@ Q among B, C, E, F) as facts and
(1) Randomly assign labels to sample rules (randomly)
predicates. consistent with the label
True: B, C, E,F. assignments.

False: A, D.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Has the transformer learned to reason from data®?

Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
RP/LP data covers the whole problem space

The learned model has almost 100% test accuracy

e

There exist transformer parameters that compute the ground-truth reasoning function:

Theorem: For a BERT model with n layers and 12 attention heads, by construction,
there exists a set of parameters such that the model can correctly solve any
reasoning problem in SimpleLogic that requires at most n — 2 steps of reasoning.

Surely, under these conditions, the transformer has
learned the ground-truth reasoning function!

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

The Paradox of Learning to Reason from Data

Train Test | O 1 2 3 4 5 6

RP RP | 999 99.8 99.7 993 983 97.5 955
LP | 99.8 99.8 993 96.0 904 750 57.3

RP | 973 669 53.0 542 595 656 69.2
LP | 100.0 100.0 999 99.9 99.7 99.7 99.0

LP

The BERT model trained on one distribution fails to generalize
to the other distribution within the same problem space.

1. If the transformer has learned to reason,
it should not exhibit such generalization failure.

2. If the transformer has not learned to reason,
it is baffling how it achieves near-perfect in-distribution test accuracy.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Why? Statistical Features

Monotonicity of entailment:
Any rules can be freely added to the axioms of any proven fact.

{

[ The more rules given, the more likely a predicate will be proven. ]

.

[ Pr(label = True | Rule # = x) should increase (roughly) monotonically with x }
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(a) Statistics for examples generated by Rule-. ty (RP). (b) St: ty (LP). () S y uniform sampling;




Model leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train Test | 0 1 2 3 4 5 6

RP (999 99.8 99.7 99.3 983 97.5 95.5
RP RP_b[99.0 993 985 97.5 96.7 93.5 883

1. Accuracy drop from RP to RP_b indicates that
the model is using rule# as a statistical feature to make predictions.

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

First Conclusion

Experiments unveil the fundamental difference between

1. learning to reason, and
2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying Al in applications where this difference matters.
FAQ: Do bigger transformers solve this problem? No, already 99% accurate...

FAQ: Will reasoning emerge? Perhaps on 99% of predictable human behavior...
We won't invent jazz or calculus that way...

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Current investigation...
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O Generate a sentence using "frisbee", "caught" and "dog",
) following the given order.

After a perfect throw, the frisbee glided through the air,

and the dog, with incredible agility, caught it mid-flight. ChatGPT

O That's not correct. Generate a sentence using "frisbee",
(— ) "caught” and "dog". The keywords should appear in the
order as specified.

Here's the correct sentence: The dog caught the frisbee
in mid-air, showing off its amazing catching skills. ChatGPT

‘ A frisbee is caught by a dog. e
% A pair of frisbee players are caught in a dog fight. "




What do we have?

Prefix; “The weather is”

Constraint a: text contains “winter”

cold 0.05

Model only does p(next-token|prefix) =

warm 0.10

Train some q(. |) for a specific task distribution & ~ p,.

Train g(next-token|prefix, o) and avoid symbolic reasoning

BEWARE OF THE PARAROX



What do we need?

Prefix; “The weather is”

Constraint a: text contains “winter”

cold 0.50

Generate from p(next-token|prefix, a) =

warm 0.01

X Z p(next-token, text, prefix, a)

text

Marginalization! Probabilistic Reasoning!



Representing Logical Constraints as DFAs

A deterministic finite automaton (DFA) checks whether a string satisfies certain constraints.

Example. Check if a string contains “gets cold”.

initial state #“gets” or “cold” accept state

Eeetrcl
. gets O cold
O O

O

#“gets” “gets” all

String: “The weather gets cold in the winter.”
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Representing Logical Constraints as DFAs

A deterministic finite automaton (DFA) checks whether a string satisfies certain constraints.

Example. Check if a string contains “gets cold”.

initial state #“gets” or “cold” accept state

g
. gets O cold
O O

O

#“gets” “gets” all

String: “The weather gets cold in the winter.”



Representing Logical Constraints as DFAs

A deterministic finite automaton (DFA) checks whether a string satisfies certain constraints.

Can represent:
Phrases/words must/must not appear

#“gets” or “cold”
Exactly k words/sentences/paragraphs. /7 N\

Only words from a given vocabulary. _O_.gefs O ‘cold” O

String must end a certain way

Any regex #“gets” ‘gets” all

Anything over fixed sequence lengths

N o s wDdh -



Probabilistic Circuits

Tractable Deep Generative Models

HMM

HCLT

Mixture of Trees

DPP

Model joint probability distributions and
allow efficient probabilistic inference

SPN

Keep it simple... just a classic Hidden Markov Model (HMM) with
32,768 hidden states and 2 billion parameters... on the GPU

o o= - —¢
o ()

Theorem. Given a DFA constraint a with m edges and an HMM p(x) with h hidden
states, computing p(a | x,,,,) over a sequence of n tokens takes O(nmh?) time.

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892

The Ctrl-G Architecture

Lexical Constraint a: sentence contains keyword “winter”

Constrained Generation: Pr(x,, | a,x;., = "the weather is")

X intractable
v

Pre-trained

( Language Model

\i/ efficient

Probabilistic Model

Tractable }

Xet1 Pry (1 %1,
cold 0.05
warm 0.10

X1 | Propplal xy: %1,
cold 0.50
warm 0.01




The Ctrl-G Architecture

Lexical Constraint a: sentence contains keyword “winter”

Constrained Generation: Pr(x,, | a,x;., = "the weather is")

: By Bayes rule,
X intractable \i/efficient y y
v 1]
Pre-trained Tractable pLM(neXt GEE | a preflx)
Language Model Probabilistic Model ocC
next-token | prefix
K1 Pryy (%1 1 %1.,) X1 | Propyla] x40, %1 pLM( | p )
cold 0.05 cold 0.50 : pLM(a | next-token,
warm 0.10 warm 0.01 prefix)
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warm 0.001




The Ctrl-G Architecture

Lexical Constraint a: sentence contains keyword “winter”

Constrained Generation: Pr(x,, | a,x;., = "the weather is")

: By Bayes rule
X intractable \i/efficient y y !
v n
Pre-trained Tractable pCTRL-G(neXt token | a, prefIX)
Language Model Probabilistic Model oc
next-token | prefix
Xe+1 PrLM(‘xt+1|x1:t) Xi+1 PrTPM(alxt+1’x1:t) pLM( | p )
2elc oo cold| 0.0 © P (@ | Next-token, prefix)
warm 0.10 warm 0.01 Y,
&}"
Xi+1 Py | @, xy.) 7
cold 0.025

warm 0.001




CommonGen Benchmark

Generate a sentence using 3 to 5 concepts (keywords).

Input: snow drive car a = ("car" V "cars"...) A ("drive" V "drove"...) A

Reference 1: A car drives down a snow-covered road.

Reference 2: Two cars drove through the snow.

BLEU-4 ROUGE-L CIDEr SPICE Constraint
dev test dev test dev test dev test dev test
supervised - base models trained with full supervision
FUDGE - 24.6 - 40.4 - - - - - 47.0%
A*esque - 28.2 - 43.4 - 15.2 - 30.8 - 98.8%
NADO 30.8 - 44.4 - 16.1 - 32.0 - 88.8% -

- Ctrl-G 35.1 34.4 46.7 46.4 174 17.6 32.7 33.3 100.0% 100.0%
unsupervised - base models not trained with keywords as supervision
A*esque - 28.6 - 44.3 - 15:6 - 29.6 - -
NADO 26.2 -

—Pp Ctrl-G 32.1 31.5 45.2 44.8 16.0 16.2 30.8 31.2 100.0% 100.0%

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892

Interactive Text Editing CoAuthor

An Open-Source Interface for Human-Language Model (LM) Interaction

TN
{ 5 lines of codel

User: given the following from CtrlG import *

context, generate infilling text - ,

for [BLANK] using key phrases prefix = “First they defeated a ..” Ferlt they(\j/e Se;‘.eatecil}'a
"alien mothership”, “far from suffix = “are few humans left ..” smaitsdliacion aieiis, TS a

larger fleet of their ships.
over”; generated text must 9 P

Sehta o5 - 30erde dfa_list = [ | . Eventually théy‘ve even
DFA_all_of(“alien mothership”, managed to take down the
“far from over”), alien mothership. But their
DFA_word_count(25, 30), problems are far from over.
“First they've defeated a small ] . . There are few humans left,
squad [BLANK] are few humans dfa = DFA_logical_and(dfa_list) and despite their magical

left, and despite their magical 1p = CtrlGlogitsProcessong power, their numbers are

power, their ngmbers are dfa, hmm, prefix, suffix) getting fewer.”
getting fewer. 11m.generate(logits_processor=1p)

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892

Interactive Text Editing CoAuthor

An Open-Source Interface for Human-Language Model (LM) Interaction

Insertion

None K L K&L
Quality — Ask humans to assign quality scores (out of 5)
TULU2 2.68 2.64 2.78 2.74
GPT3.5 2.27 2.22 2.27 2.31
GPT4 3.79 3.33 3.53 3.10
Cul-G  3.77 3.56 3.73 3.59

_~ Insert with key phrase (K) or length (L) constraints

Success — Does the output satisfy the constraints?

TULU2 - 12% 20% 3%

GPT35 - 22% 54% 10%

GPT4 - 60% 20% 27%

Ctrl-G - 100% 100% 100%

Qe — How often does the output satisfy the constraints
TULU2 - 7% 10% 1% . )

GPT35 - 0% 5% 2% and achieve a quality above 37?

GPT4 - 41% 17% 14%

Ctrl-G

6% 78%  82% |— Ctrl-G based on TULU2-7B wipes the floor with
GPT4, which is a >100x bigger LLM

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892
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Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.
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one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = $3. So each set of two glasses
actually costs 5 + 3 = $8. He wants 16 / 2 = 8 sets of two. That means he needs to
pay 8 * 8 = $64. So the answer is 64.

Which constraint improves accuracy?
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Question: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = $3. So each set of two glasses
actually costs 5 + 3 = $8. He wants 16 / 2 = 8 sets of two. That means he needs to
pay 8 * 8 = $64. So the answer is 64.

Which constraint improves accuracy?
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=02 VISA

4703 5448 5261 9120

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass
costs $5, but every second glass costs only 60% of the price. Kylar wants to buy
glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So
one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = $3. So each set of two glasses
actually costs 5 + 3 = $8. He wants 16 / 2 = 8 sets of two. That means he needs to
pay 8 * 8 = $64. So the answer is 64.

Use all the numbers in the problem statement!

Honghua Zhang, Po-Nien Kung, Masahiro Yoshida, Guy Van den Broeck and Nanyun Peng. Adaptable Logical Control for Large Language Models, In Arxiv, 2024.


https://arxiv.org/pdf/2406.13892

Advantages of Ctrl-G:

1. Constraint a is guaranteed to be satisfied:
for any next-token x_, that would make a unsatisfiable, p(x_,, | x, ., ) = 0.

2. Training the tractable deep generative model does not depend on g,
which is only imposed at inference (generation) time.

Conclusion:
You can control an intractable generative model using a
generative model that is tractable for reasoning.
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Neurosymbolic learning of transformers

Given:

1. constraint a (a list of 403 toxic words not to say)
2. training data D

Learn: a transformer Pr(.) that

1. satisfies the constrainta:  Pr(a)?
2. maximizes the likelihood:  Pr(D)t

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Neurosymbolic learning of transformers

Given:

1. constraint a (a list of 403 toxic words not to say)
2. training data D

Learn: a transformer Pr(.) that

1. satisfies the constrainta:  Pr(a)?
2. maximizes the likelihood:  Pr(D)t

Pr(a) is computationally hard, even when a is trivial:
What is probability that LLM ends the sentence with “UCLA”?

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Autoregressive distributions are hard...

Pr(a) is computationally hard, even when a is trivial:
What is prob. that LLM ends the sentence with “UCLA”?

Why did it work before?

We were using a separate tractable proxy model...

Now we need to train the actual intractable transformer...

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Neuro-Symbolic Al: A Probabilistic Perspective

A neural network
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]


http://starai.cs.ucla.edu/papers/XuICML18.pdf

Neuro-Symbolic Al: A Probabilistic Perspective

Impose structure
using symbolic
knowledge

A neural network
induces a distribution

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]


http://starai.cs.ucla.edu/papers/XuICML18.pdf

Neuro-Symbolic Al: A Probabilistic Perspective

Impose structure a

using symbolic
knowledge

A neural network Move mass around to be
induces a distribution consistent with structure

[Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018]


http://starai.cs.ucla.edu/papers/XuICML18.pdf

Neurosymbolic learning of transformers

Basic Idea: p(y|x)
Use how likely a constraint is to be
satisfied around a model sample (x)

as a proxy for how likely it is to be

satisfied under the entire distribution.

Average over many such samples. Y
'm(a) |

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Formally, minimize the pseudo-semantic loss

L?L_eudo = lOg E’QNP Z Hp(yz | @—z)

yFai=1

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — log E'QNP Z Hp(yz | g—z)

X ykEai=l
Basic ldea:
Pick a location to build the plylz) ﬂ

approximation around

J

'm(a) |




Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — lOg E’QNP Z Hp(yz | g—z)

X yFai=l

Basic Idea:

- p(y|z)
Extract a local tractable probabilistic A
model around the point

(independent in each dimension)




How to compute pseudo-semantic loss?

Transformer output gives all alternative next-token logits for y:

p(She) p(caught|I) p(the|l,saw) p(cat|l,saw,a)  p(yesterday|l, saw,a,dog)
p(I saw a dog today) = p(I) x p(saw|l) x p(a|l,saw) x p(dog|l,saw,a) x p(today|l,saw,a,dog)
p(He) p(bought|l) p(an|I,saw) p(mouse|l,saw,a) p(tomorrow|l,saw,a,dog)

Just reuse these probabilities

p(I saw a mouse today) = p(I) X p(saw|I) x p(a|l, saw) X p(mouse|l, saw, a) X p(today|I, saw, a, dog)

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Formally, minimize the pseudo-semantic loss

‘Cﬁl_eudo — log E'QNP Z Hp(yz | g—z)
X  yEai=1

Basic Idea: ’//

o p(y|z)
Compute Pr(a) locally and maximize it A

'm(a) |



Formally, minimize the pseudo-semantic loss

L?L_eudo — lOg E’QNP Z Hp(yz | g—z)

X yFai=l

p(ylz)
How good is this approximation? |
o Local:
~30 bits entropy vs ~80 for GPT-2.

« Fidelity:
4 bits KL-divergence from GPT-2. l

m(a) |



Detoxify LLMs by disallowing bad words

Constraint a is a list of 403 toxic words not to say
Evaluation is a toxicity classifier

Exp. Max. Toxicity (/) Toxicity Prob. (])
Models Full Toxic Nontoxic | Full Toxic Nontoxic FEE (D)

GPT-2 | 0.44 0.62 0.39 | 34.11% 67.27% 24.85% | 25.85

Domain- SGEAT [42] 0.32 0.46 0.28 14.05% 35.72% 7.99% 28.72
Adaptive PseudoSL (ours) | 0.29 0.38 0.27 9.80% 20.07% 6.93% 28.14
Word GPT-2 0.40 0.55 0.36 27.92%  57.86% 19.56% 22.24
Banning SGEAT [42] 0.30 0.41 0.27 10.73% 27.05% 6.17% 24.91
PseudoSL (ours) | 0.29 0.37 0.27 9.20% 18.71% 6.55% 24.19

Kareem Ahmed, Kai-Wei Chang and Guy Van den Broeck. A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints, In Advances in Neural Information Processing Systems 36 (NeurlPS), 2023.


http://starai.cs.ucla.edu/papers/AhmedNeurIPS23.pdf

Outline

1. The paradox of learning to reason from data
eng-to-endHearnng
2. Symbolic reasoning at generation time

3. Symbolic reasoning at training time
logical + probabilistic reasoning + deep learning
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