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Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence 
are a broken abstraction.

[VdB KRR15]

What is the right abstraction for distributions?
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Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence 
are a broken abstraction.

What is the right abstraction for distributions?

Bean Machine

[Tehrani et al. PGM20]



Computational Abstractions
Let us think of probability as something that is computed.

Abstraction = Structure of Computation

Probabilistic Circuits

Probabilistic Programs “High-level code”

“Machine code”

Two levels of abstraction:
compilation

compiler optimization

hardware mapping

learning/
synthesis

...

language design

program abstraction

source-to-sourcecompilation



Probabilistic Programs



Motivation from the AI side:
Making modern AI systems is too hard

Model BuildersSystem Builders



Need to integrate uncertainty 
over the whole system

AI System Builder

20% chance 
of obstacle!

94% chance 
of obstacle!

99% certain 
about current 

location

…



AI Model Builder

“When you have the flu you have a 
cough 70% of the time”

“Routers fail on average every 5 years” 

“What is the probability that a patient 
with a fever has the flu?”

“What is the probability that my packet 
will reach the target server?” 
[SGTVV SIGCOMM’20]



Probabilistic Programs

means “flip a coin, and 
output true with probability ½”

let x = flip 0.5 in
let y = flip 0.7 in
let z = x || y in
let w = if z then 

my_func(x,y)
else

...
in
observe(z)

means 
“reject this execution if z is not true”

Standard (functional) programming 
constructs: let, if, ...



Why Probabilistic Programming?

• PPLs are proliferating

Pyro Stan

Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability, ProbLog, 
PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI, 
Bean Machine, etc.      … and many many more

FigaroEdward
HackPPL

● Programming languages are humanity’s biggest   
knowledge representation achievement! 

● Programs should be AI models



Focus on Discrete Models
1. Real programs have inherently discrete structure

   (e.g. if-statements)
2. Discrete structure is inherent in many domains

   (graphs, text, ranking, etc.)
3. Many existing PPLs assume smooth and differentiable 

densities and do not handle discreteness well.
Does not support
if-statements!

[AADB+’19 ]
Discrete probabilistic programming is 
the important unsolved open problem!



Dice language for discrete probabilistic programs

http://dicelang.cs.ucla.edu/ [Holtzen et al. OOPSLA20]

http://dicelang.cs.ucla.edu/


Network Verification in Dice
fun n1(init: bool) {
   let l1succeed = flip 0.99 in
   let l2succeed = flip 0.91 in
   init && l1succeed && l2succeed
}   

fun n2(init: bool) {
   let routeChoice = flip 0.5 in
   if routeChoice then
      init && flip 0.88 && flip 0.93
   else
      init && flip 0.19 && flip 0.33
} n2(n2(n1(true)))

0. 88
0. 93

0. 19 0. 3
3

ECMP equal-cost path 
protocol: choose 

randomly which router 
to forward to

Main routine, 
combines the 

networks
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This doesn’t show all the language 
features of dice:
• Integers
• Tuples
• Bounded recursion
• Bayesian conditioning 
• …



0.99 0.91

0.19 0. 3
3

0. 88 0. 93
0. 88 0. 93

0.99 x 0.91 x 0.5 x 0.88 x 0.93 x 0.5 x 0.88 x 0.93

+ 0.99 x 0.91 x 0.5 x 0.19 x 0.33 x 0.5 x 0.88 x 0.93
+ ...

Probabilistic Program Inference



Probabilistic Program Inference

Path enumeration: find all of them!



Key to Fast Inference: Factorization (product nodes)

0.99 0.91

0.19 0. 3
3

0. 88 0. 93
0. 88 0. 93

Easy to see on the graph structure … 
how about on the program?

0.99 x 0.91 x 0.5 x 0.88 x 0.93 x 0.5 x 0.88 x 0.93

+ 0.99 x 0.91 x 0.5 x 0.19 x 0.33 x 0.5 x 0.88 x 0.93
+ ...



• Construct Boolean formula
• Satisfying assignments ≈ paths
• Variables are flips
• Associate weights with flips
• Compile factorized circuit

Symbolic Compilation in Dice



Probabilistic 
Program

Symbolic 
Compilation

Weighted 
Boolean 
Formula

Weighted 
Model Count

Probabilistic 
Circuit

Logic Circuit
(BDD)

Circuit 
compilation

Symbolic Compilation in Dice 



An Equivalent BDD to this 
Program

f1

f2

F

fun n1(init: bool) {
   let l1succeed = flip1 0.99 in
   let l2succeed = flip2 0.91 in
   init && l1succeed && l2succeed
}
fun n2(init: bool) {
   let rC = flip3 0.5 in
   if rC then
      init && flip4 0.88 && flip5 0.93
   else
      init && flip6 0.19 && flip7 0.33
}

n2(n1(true)))

f3

f4 f6

f5 f7

F FT T

True
True

True

True True

0.99

0.91

0.5

0.88

0.93

0.
19

0.
33Now, how do we compile this?



Compiling the BDD Modularly

fun n1(init: bool) {
   let l1succeed = flip 0.99 in
   let l2succeed = flip 0.91 in
   init && l1succeed && l2succeed
}

l1

l2

FT

i

First, compile the function n1

n1

0.99

0.91



Compiling the BDD Modularly

fun n1(init: bool) {
   let l1succeed = flip 0.99 in
   let l2succeed = flip 0.91 in
   init && l1succeed && l2succeed
}
n1(flip 0.4)

l1

l2

FT

i

Then, to call n1, substitute for i 

0.99

0.91

flip 0.4
f

FT

0.4
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0.99

0.91f

FT
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f
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Compiling the BDD Modularly

fun n1(init: bool) {
   let l1succeed = flip 0.99 in
   let l2succeed = flip 0.91 in
   init && l1succeed && l2succeed
}
n1(n1(true))

l1

l2

F
l1’

l2’

FT

• Calling itself? Size (and therefore inference 
cost) grows linearly

• Build BDD for whole program by combining 
sub-programs modularly



Denotational Semantics 
+ Formal Inference Rules



Experimental Evaluation

More program paths than 
atoms in the universe

• Example from text analysis: breaking a Caesar cipher

• Competitive with
specialized 
Bayesian network
solvers



Probabilistic 
Program

Symbolic 
Compilation

Weighted 
Boolean 
Formula

Weighted 
Model Count

Probabilistic 
Circuit

Logic Circuit
(BDD)

Circuit 
compilation

Symbolic Compilation in Dice to
Probabilistic Circuits

Tractable representations of probability distributions, learnable from 
data, mapped to GPU/hardware, with many interesting properties!



Learn more about probabilistic circuits?

https://youtu.be/2RAG5-L9R70 

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf 

Tutorial (3h) Overview Paper (80p)

https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf


As soon as dice was put online people started using it in 
surprising ways we had not foreseen

Quantum SimulationProbabilistic Model Checking

If you build it they will come

Rubicon

Prism dice quantum 
circuit

probabilistic 
circuit



In both cases, dice outperforms existing specialized 
methods on important examples!

If you build it they will come

Quantum SimulationProbabilistic Model Checking

Competitive with well-known simulators like 
                  qsim and qtorch [FSC+ PloS one ‘18] !

Us

Check out CAV talk video or ask Steven Holtzen, 
Sebastian Junges, or Marcell Vazquez-Chanlatte



Better Inference. How?
Exploit modularity - program structure

1. AI modularity:
Discover contextual independencies and factorize

2. PL modularity:
Compile procedure summaries and reuse at each call site

Reason about programs!        Compiler optimizations:

3. Flip hoisting optimization
4. Determinism, optimize integer representation, etc.



Flip Hoisting

≡

≢

● Fewer flips = smaller compiled circuits = faster
● But, be careful with soundness:



Compiler
Optimization
Experiments



Conclusions

● Are we already in the age of 
computational abstractions?
 
 

● Probabilistic programs as the new 
probabilistic knowledge representation language
 
 

● Fruitful synthesis of AI and PL/FM

Abstract 
Interpretation

Model Checking

Symbolic Execution

Predicate Abstraction

Weakest
Precondition

Weighted Model Counting

Bayesian Networks

Programming Languages Artificial Intelligence

Independence
Lifted Inference

Probabilistic 
Predicate Abstraction

Symbolic Compilation

Knowledge Compilation

Probabilistic 
Program

Compilation
Probabilistic 

Circuit



Thanks

This was the work of many wonderful 
students & collaborators!
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