
Recent Advances in Discrete
Probabilistic Program Inference

Guy Van den Broeck

VeriProP 2021 - Jul 19, 2021

Computer
Science

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence
are a broken abstraction.

[VdB KRR15]

What is the right abstraction for distributions?

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence
are a broken abstraction.

[VdB KRR15]

What is the right abstraction for distributions?

3.14 Smokes(x) ∧ Friends(x,y)
⇒ Smokes(y)

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence
are a broken abstraction.

What is the right abstraction for distributions?

Bean Machine

[Tehrani et al. PGM20]

Computational Abstractions
Let us think of probability as something that is computed.

Abstraction = Structure of Computation

Probabilistic Circuits

Probabilistic Programs “High-level code”

“Machine code”

Two levels of abstraction:
compilation

compiler optimization

hardware mapping

learning/
synthesis

...

language design

program abstraction

source-to-sourcecompilation

Probabilistic Programs

Motivation from the AI side:
Making modern AI systems is too hard

Model BuildersSystem Builders

Need to integrate uncertainty
over the whole system

AI System Builder

20% chance
of obstacle!

94% chance
of obstacle!

99% certain
about current

location

…

AI Model Builder

“When you have the flu you have a
cough 70% of the time”

“Routers fail on average every 5 years”

“What is the probability that a patient
with a fever has the flu?”

“What is the probability that my packet
will reach the target server?”
[SGTVV SIGCOMM’20]

Probabilistic Programs

means “flip a coin, and
output true with probability ½”

let x = flip 0.5 in
let y = flip 0.7 in
let z = x || y in
let w = if z then

my_func(x,y)
else

...
in
observe(z)

means
“reject this execution if z is not true”

Standard (functional) programming
constructs: let, if, ...

Why Probabilistic Programming?

• PPLs are proliferating

Pyro Stan

Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability, ProbLog,
PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI,
Bean Machine, etc. … and many many more

FigaroEdward
HackPPL

● Programming languages are humanity’s biggest
knowledge representation achievement!

● Programs should be AI models

Focus on Discrete Models
1. Real programs have inherently discrete structure

 (e.g. if-statements)
2. Discrete structure is inherent in many domains

 (graphs, text, ranking, etc.)
3. Many existing PPLs assume smooth and differentiable

densities and do not handle discreteness well.
Does not support
if-statements!

[AADB+’19]
Discrete probabilistic programming is
the important unsolved open problem!

Dice language for discrete probabilistic programs

http://dicelang.cs.ucla.edu/ [Holtzen et al. OOPSLA20]

http://dicelang.cs.ucla.edu/

Network Verification in Dice
fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed
}

fun n2(init: bool) {
 let routeChoice = flip 0.5 in
 if routeChoice then
 init && flip 0.88 && flip 0.93
 else
 init && flip 0.19 && flip 0.33
} n2(n2(n1(true)))

0. 88
0. 93

0. 19 0. 3
3

ECMP equal-cost path
protocol: choose

randomly which router
to forward to

Main routine,
combines the

networks

Network Verification in Dice
fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed
}

fun n2(init: bool) {
 let routeChoice = flip 0.5 in
 if routeChoice then
 init && flip 0.88 && flip 0.93
 else
 init && flip 0.19 && flip 0.33
} n2(n2(n1(true)))

0. 88
0. 93

0. 19 0. 3
3

ECMP equal-cost path
protocol: choose

randomly which router
to forward to

Main routine,
combines the

networks

This doesn’t show all the language
features of dice:
• Integers
• Tuples
• Bounded recursion
• Bayesian conditioning
• …

0.99 0.91

0.19 0. 3
3

0. 88 0. 93
0. 88 0. 93

0.99 x 0.91 x 0.5 x 0.88 x 0.93 x 0.5 x 0.88 x 0.93

+ 0.99 x 0.91 x 0.5 x 0.19 x 0.33 x 0.5 x 0.88 x 0.93
+ ...

Probabilistic Program Inference

Probabilistic Program Inference

Path enumeration: find all of them!

Key to Fast Inference: Factorization (product nodes)

0.99 0.91

0.19 0. 3
3

0. 88 0. 93
0. 88 0. 93

Easy to see on the graph structure …
how about on the program?

0.99 x 0.91 x 0.5 x 0.88 x 0.93 x 0.5 x 0.88 x 0.93

+ 0.99 x 0.91 x 0.5 x 0.19 x 0.33 x 0.5 x 0.88 x 0.93
+ ...

• Construct Boolean formula
• Satisfying assignments ≈ paths
• Variables are flips
• Associate weights with flips
• Compile factorized circuit

Symbolic Compilation in Dice

Probabilistic
Program

Symbolic
Compilation

Weighted
Boolean
Formula

Weighted
Model Count

Probabilistic
Circuit

Logic Circuit
(BDD)

Circuit
compilation

Symbolic Compilation in Dice

An Equivalent BDD to this
Program

f1

f2

F

fun n1(init: bool) {
 let l1succeed = flip1 0.99 in
 let l2succeed = flip2 0.91 in
 init && l1succeed && l2succeed
}
fun n2(init: bool) {
 let rC = flip3 0.5 in
 if rC then
 init && flip4 0.88 && flip5 0.93
 else
 init && flip6 0.19 && flip7 0.33
}

n2(n1(true)))

f3

f4 f6

f5 f7

F FT T

True
True

True

True True

0.99

0.91

0.5

0.88

0.93

0.
19

0.
33Now, how do we compile this?

Compiling the BDD Modularly

fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed
}

l1

l2

FT

i

First, compile the function n1

n1

0.99

0.91

Compiling the BDD Modularly

fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed
}
n1(flip 0.4)

l1

l2

FT

i

Then, to call n1, substitute for i

0.99

0.91

flip 0.4
f

FT

0.4

Compiling the BDD Modularly

fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed
}
n1(flip 0.4)

l1

l2

FT

Then, to call n1, substitute for i

0.99

0.91f

FT

0.4

f

0.4

flip 0.4

Compiling the BDD Modularly

fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed
}
n1(n1(true))

l1

l2

F
l1’

l2’

FT

• Calling itself? Size (and therefore inference
cost) grows linearly

• Build BDD for whole program by combining
sub-programs modularly

Denotational Semantics
+ Formal Inference Rules

Experimental Evaluation

More program paths than
atoms in the universe

• Example from text analysis: breaking a Caesar cipher

• Competitive with
specialized
Bayesian network
solvers

Probabilistic
Program

Symbolic
Compilation

Weighted
Boolean
Formula

Weighted
Model Count

Probabilistic
Circuit

Logic Circuit
(BDD)

Circuit
compilation

Symbolic Compilation in Dice to
Probabilistic Circuits

Tractable representations of probability distributions, learnable from
data, mapped to GPU/hardware, with many interesting properties!

Learn more about probabilistic circuits?

https://youtu.be/2RAG5-L9R70

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Tutorial (3h) Overview Paper (80p)

https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

As soon as dice was put online people started using it in
surprising ways we had not foreseen

Quantum SimulationProbabilistic Model Checking

If you build it they will come

Rubicon

Prism dice quantum
circuit

probabilistic
circuit

In both cases, dice outperforms existing specialized
methods on important examples!

If you build it they will come

Quantum SimulationProbabilistic Model Checking

Competitive with well-known simulators like
 qsim and qtorch [FSC+ PloS one ‘18] !

Us

Check out CAV talk video or ask Steven Holtzen,
Sebastian Junges, or Marcell Vazquez-Chanlatte

Better Inference. How?
Exploit modularity - program structure

1. AI modularity:
Discover contextual independencies and factorize

2. PL modularity:
Compile procedure summaries and reuse at each call site

Reason about programs! Compiler optimizations:

3. Flip hoisting optimization
4. Determinism, optimize integer representation, etc.

Flip Hoisting

≡

≢

● Fewer flips = smaller compiled circuits = faster
● But, be careful with soundness:

Compiler
Optimization
Experiments

Conclusions

● Are we already in the age of
computational abstractions?

● Probabilistic programs as the new
probabilistic knowledge representation language

● Fruitful synthesis of AI and PL/FM

Abstract
Interpretation

Model Checking

Symbolic Execution

Predicate Abstraction

Weakest
Precondition

Weighted Model Counting

Bayesian Networks

Programming Languages Artificial Intelligence

Independence
Lifted Inference

Probabilistic
Predicate Abstraction

Symbolic Compilation

Knowledge Compilation

Probabilistic
Program

Compilation
Probabilistic

Circuit

Thanks

This was the work of many wonderful
students & collaborators!

References: http://starai.cs.ucla.edu/publications/

http://starai.cs.ucla.edu/publications/

