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Deep Learning with  

Symbolic Knowledge 

R 
 

L 
 



Motivation: Vision 

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.] 

   



Motivation: Robotics 

[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012] 

   

 

  



Motivation: Language 

• Non-local dependencies: 

“At least one verb in each sentence” 

• Sentence compression 

“If a modifier is kept, its subject is also kept” 

 

… and many more! 

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],  

[Ganchev, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models] 

   



Motivation: Deep Learning 

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016).  

Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.] 



Motivation: Deep Learning 

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016).  

Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.] 

… but … 

 



Learning with Symbolic Knowledge 

Constraints 
(Background Knowledge) 

(Physics) 

+ Data 

1. Must take at least one of Probability (P) 

or Logic (L). 

2. Probability (P) is a prerequisite for AI (A). 

3. The prerequisites for KR (K) is either AI 

(A) or Logic (L). 



Learning with Symbolic Knowledge 

Constraints 
(Background Knowledge) 

(Physics) 

ML Model 

+ 

Today‟s machine learning tools  

don‟t take knowledge as input!  

Learn 

Data 



Deep Learning 
with 

Symbolic Knowledge 

Data Constraints 

Deep Neural 

Network 

+ 

Learn 

Input 

Neural Network Logical Constraint 

Output 

Output is  

probability vector p,  

not Boolean logic! 



Semantic Loss 

Q: How close is output p to satisfying constraint α? 

                             Answer: Semantic loss function L(α,p) 
  

• Axioms, for example: 

– If p is Boolean then L(p,p) = 0 

– If α implies β then L(α,p) ≥ L(β,p)     (α more strict) 

 

• Implied Properties:  

– If α is equivalent to β then L(α,p) = L(β,p) 

– If p is Boolean and satisfies α then L(α,p) = 0 

SEMANTIC 

Loss! 



Semantic Loss: Definition 

Theorem: Axioms imply unique semantic loss: 

 

 

Probability of getting state x after  

flipping coins with probabilities p 

Probability of satisfying α after  

flipping coins with probabilities p 



Simple Example: Exactly-One 

• Data must have some label 

We agree this must be one of the 10 digits: 

• Exactly-one constraint 

                → For 3 classes: 

• Semantic loss: 

 

𝒙𝟏 ∨ 𝒙𝟐∨ 𝒙𝟑
¬𝒙𝟏 ∨ ¬𝒙𝟐
¬𝒙𝟐 ∨ ¬𝒙𝟑
¬𝒙𝟏 ∨ ¬𝒙𝟑

 

Only 𝒙𝒊 = 𝟏 after flipping coins 

Exactly one true 𝒙 after flipping coins 



Semi-Supervised Learning 

• Intuition: Unlabeled data must have some label 

Cf. entropy minimization, manifold learning 

 

 

 

 

• Minimize exactly-one semantic loss on unlabeled data 

 
Train with 

𝑒𝑥𝑖𝑠𝑡𝑖𝑛𝑔 𝑙𝑜𝑠𝑠 + 𝑤 ∙ 𝑠𝑒𝑚𝑎𝑛𝑡𝑖𝑐 𝑙𝑜𝑠𝑠 



Experimental Evaluation 

Competitive with 

state of the art  

in semi-supervised 

deep learning 

Outperforms SoA! 

Same conclusion on CIFAR10 



Efficient Reasoning 

During Learning 

R 
 

L 
 



But what about real constraints? 

cf. Nature paper 

• Path constraint 

 

 

 

  
• Example: 4x4 grids 

224 = 184 paths + 16,777,032 non-paths 

• Easily encoded as logical constraints  
[Nishino et al., Choi et al.] 

vs. 



How to Compute Semantic Loss? 

• In general: #P-hard  

 



Reasoning Tool: Logical Circuits 

Representation of 

logical sentences: 

 

𝐶 ∧ ¬𝐷 ∨ ¬𝐶 ∧ 𝐷  

         

C XOR D 
 



Input: 
 

Bottom-up Evaluation 

1 0 

1 0 

1 0 0 1 

0 

1 

0 1 

0 1 0 

1 1 

1 1 0 1 

0 1 0 

Reasoning Tool: Logical Circuits 

Representation of 

logical sentences: 



Tractable for Logical Inference 

• Is there a solution? (SAT) 

– SAT(𝛼 ∨ 𝛽) iff SAT(𝛼) or SAT(𝛽)     (always) 

– SAT(𝛼 ∧ 𝛽) iff ??? 

 

 



Decomposable Circuits 

Decomposable 

B,C,D 

A 



Tractable for Logical Inference 

• Is there a solution? (SAT) 

– SAT(𝛼 ∨ 𝛽) iff SAT(𝛼) or SAT(𝛽)     (always) 

– SAT(𝛼 ∧ 𝛽) iff SAT(𝛼) and SAT(𝛽)  (decomposable) 

• How many solutions are there? (#SAT) 

 

• Complexity linear in circuit size  

 

 

 

✓ 



Deterministic Circuits 

Deterministic 

C XOR D 



Deterministic Circuits 

Deterministic 

C XOR D 

C⇔D 



How many solutions are there? (#SAT) 

1 1 

1 1 

1 1 1 1 

1 

16 

8 8 

4 4 4 

8 8 

2 2 2 2 

1 1 1 

+ 

x 



Tractable for Logical Inference 

• Is there a solution? (SAT) 

• How many solutions are there? (#SAT) 

 

• Complexity linear in circuit size  

 

• Compilation into circuit by 

– ↓ exhaustive SAT solver 

– ↑ conjoin/disjoin/negate 

✓ 
✓ 

[Darwiche and Marquis, JAIR 2002] 



How to Compute Semantic Loss? 

• In general: #P-hard  

• With a logical circuit for α: Linear  

• Example: exactly-one constraint: 

 

 

 

 

 

• Why? Decomposability and determinism! 

L(α,p) = L(    , p) =     - log(          ) 



Predict Shortest Paths 

Add semantic loss  

for path constraint 

Is output  

a path? 
Are individual  

edge predictions  

correct? 

Is prediction 

the shortest path? 

This is the real task! 

(same conclusion for predicting sushi preferences, see paper) 



Conclusions 1 

• Knowledge is (hidden) everywhere in ML 

• Semantic loss makes logic differentiable 

• Performs well semi-supervised 

• Requires hard reasoning in general 

– Reasoning can be encapsulated in a circuit 

– No overhead during learning 

• Performs well on structured prediction 

• A little bit of reasoning goes a long way! 



Probabilistic and Logistic Circuits 

R 
 

L 
 



A False Dilemma? 

Classical AI Methods 
 

     

 

Hungry? 

 
$25? 

 

Restau 
rant? 

 

Sleep? 

 

Clear Modeling Assumption 

Well-understood 

           … 

Neural Networks 
 

     

 

“Black Box” 

Empirical performance 



Can we turn  

logic circuits 

into a  

statistical model? 

Inspiration: Probabilistic Circuits 



Probabilistic Circuits 

Input: 
 

1 0 

1 0 

1 0 0 1 

0 0 0 1 

.1 .8 0 .3 

.01 .24 0 

.194 .096 

0 .096 

𝐏𝐫(𝑨,𝑩, 𝑪, 𝑫) =𝟎. 𝟎𝟗𝟔  

Bottom-up evaluation 

(.1x1) + (.9x0) 

.8 x .3 

Probability on edges 



Properties, Properties, Properties! 

• Read conditional independencies from structure 

• Interpretable parameters (XAI) 
(conditional probabilities of logical sentences) 

• Closed-form parameter learning 

• Efficient reasoning 

– MAP inference: most-likely assignment to x given y 
(otherwise NP-hard) 

– Computing conditional probabilities Pr(x|y)  
(otherwise #P-hard) 

– Algorithms linear in circuit size  



Discrete Density Estimation 

LearnPSDD 

state of the art  

on 6 datasets! 

Q: “Help! I need to learn a  

discrete probability distribution…” 

A: Learn probabilistic circuits! 

 

Strongly outperforms 

• Bayesian network learners 

• Markov network learners 

 

Competitive with SPN learners 

 

(State of the art for approximate  

inference in discrete factor graphs) 



But what if I only want to classify Y? 

 Pr(𝑌, 𝐴, 𝐵, 𝐶, 𝐷)  
 Pr 𝑌 𝐴, 𝐵, 𝐶, 𝐷)  



1 0 

1 0 

1 0 0 1 

𝐏𝐫 𝒀 = 𝟏  𝑨, 𝑩, 𝑪,𝑫)   Logistic  
Circuits =

𝟏

𝟏 + 𝒆𝒙𝒑(−𝟏. 𝟗)
= 𝟎. 𝟖𝟔𝟗 

Input: 
 

Bottom-up evaluation 

Weights on edges 

Logistic function  

on output weight 



Alternative Semantics 

Represents Pr 𝑌 𝐴, 𝐵, 𝐶, 𝐷  

• Take all „hot‟ wires 

• Sum their weights 

• Push through logistic function 



Special Case: Logistic Regression 

Is this a coincidence?  

What about more general circuits? 

Pr 𝑌 = 1 𝐴, 𝐵, 𝐶, 𝐷 =
1

1 + ex p( − 𝐴 ∗ 𝜃𝐴 −¬𝐴 ∗ 𝜃¬𝐴 − 𝐵 ∗ 𝜃𝐵 −⋯)
 

Logistic Regression 



Parameter Learning 

Reduce to logistic regression: 

Features associated with each wire 

“Global Circuit Flow” features 

Learning parameters θ is convex optimization! 



Logistic Circuit Structure Learning 

Calculate 
Gradient 
Variance 

Execute the 
best operation 

Generate 
candidate 
operations 



Comparable Accuracy with Neural Nets 



Significantly Smaller in Size 



Better Data Efficiency 



Logistic vs. Probabilistic Circuits 

Probabilities 

become  

log-odds 

Pr 𝑌 𝐴, 𝐵, 𝐶, 𝐷  

 Pr(𝑌, 𝐴, 𝐵, 𝐶, 𝐷)  



Interpretable? 



Conclusions 2 

Statistical ML 

“Probability” 

Symbolic AI 

“Logic” 

Connectionism 

“Deep” 

Logistic 

Circuits 



High-Level  

Probabilistic Inference 

R 
 

L 
 



... 

Simple Reasoning Problem 

? 

Probability that Card1 is Hearts? 1/4 

[Van den Broeck; AAAI-KRR‟15] 



Let us automate this: 

1. Probabilistic graphical model (e.g., factor graph) 
   
 
 
 
 
 
 
 

2. Probabilistic inference algorithm 
 (e.g., variable elimination or junction tree) 
  

Automated Reasoning 

[Van den Broeck; AAAI-KRR‟15] 



Let us automate this: 

1. Probabilistic graphical model (e.g., factor graph) 
  is fully connected! 
 
 
 
 
 
 
 

2. Probabilistic inference algorithm 
 (e.g., variable elimination or junction tree) 
 builds a table with 5252 rows 

Automated Reasoning 

(artist's impression) 

[Van den Broeck; AAAI-KRR‟15] 



... 

What's Going On Here? 

? 

Probability that Card52 is Spades 
given that Card1 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card2 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



What's Going On Here? 

? 

... 

Probability that Card52 is Spades 
given that Card3 is QH? 13/51 

[Van den Broeck; AAAI-KRR‟15] 



... 

Tractable Reasoning 

What's going on here? 

Which property makes reasoning tractable? 

 

⇒ Lifted Inference 

 High-level (first-order) reasoning 

 Symmetry 

 Exchangeability 

[Niepert  and Van den Broeck, AAAI‟ 14], [Van den Broeck, AAAI-KRR‟15] 



Model distribution at first-order level: 

 

 

 

 

∀p, ∃c, Card(p,c) 

∀c, ∃p, Card(p,c) 

∀p, ∀c, ∀c‟, Card(p,c) ∧ Card(p,c‟) ⇒ c = c‟ 

Δ =  

[Van den Broeck 2015] 

... 

Can we now be efficient  

in the size of our domain? 



X Y 

Smokes(x) 

Gender(x) 

Young(x) 

Tall(x) 

Smokes(y) 

Gender(y) 

Young(y) 

Tall(y) 

Properties Properties 

Friends(x,y) 

Colleagues(x,y) 

Family(x,y) 

Classmates(x,y) 

Relations 

FO2 is liftable! 

“Smokers are more likely to be friends with other smokers.” 
“Colleagues of the same age are more likely to be friends.” 

“People are either family or friends, but never both.” 
“If X is family of Y, then Y is also family of X.” 

“Universities in the Bay Area are more likely to be rivals.” 



Tractable Classes 

FO2 

CNF 

FO2 

 

Safe 
monotone 
CNF 
 
 Safe type-1 CNF 

 
 

? #P1 

FO3 

 

#P1 

CQs 

 

Δ = ∀x,y,z, Friends(x,y) ∧ Friends(y,z) ⇒ Friends(x,z) 

[VdB; NIPS’11], [VdB et al.; KR’14], [Gribkoff, VdB, Suciu; UAI’15], [Beame, VdB, Gribkoff, Suciu; PODS’15], etc. 

#P1 



Probabilistic Programming 

Programming Languages Artificial Intelligence 

Probabilistic  

Predicate Abstraction 

Knowledge Compilation 

Similar picture for probabilistic databases 



Conclusions 3 

• Challenge is even greater at first-order level 

• Existing reasoning algorithms cannot cut it! 

 

• Integration of first-order logic and probability 

is long-standing goal of AI 

• First-order probabilistic reasoning is frontier 

and integration of  

AI, KR, ML, DBs, theory, PL, etc. 



Final Conclusions 

• Knowledge is everywhere in learning 

• Some concepts not easily learned from data 

• Make knowledge first-class citizen in ML 

 

• Logical circuits turned statistical models 

• Strong properties produce strong learners 

• There is no dilemma between  
understanding and accuracy? 

 

• A wealth of high-level reasoning approaches 
are still absent from ML discussion 
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