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Can Language Models Perform Logical Reasoning?
Language Models achieve high performance on various “reasoning” benchmarks in NLP. 

Reasoning Example 
from the CLUTRR 

dataset

It is unclear whether they solve the tasks following the rules of logical deduction. 

Language Models: 
input → ? → Carol is the grandmother of Justin.

Logical Reasoning: 
input → Justin in Kristin’s son; Carol is Kristin’s mother; → Carol is Justin’s mother’s mother; if 
X is Y’s mother’s mother then X is Y’s grandmother → Carol is the grandmother of Justin.



SimpleLogic

Generate textual train and test examples of the form:

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Problem Setting: SimpleLogic

LMs: BERT, T5

True or False

The easiest of reasoning problems:

1. Propositional logic fragment
a. bounded vocabulary & number of rules
b. bounded reasoning depth (≤ 6)
c. finite space (≈ 10^360)

 

2. No language variance: templated language
 

3. Self-contained
No prior knowledge
 

4. Purely symbolic predicates
No shortcuts from word meaning
 

5. Tractable logic (definite clauses)
Can always be solved efficiently 

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Training a transformer on SimpleLogic

Test accuracy for different reasoning depths

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Has the transformer learned to reason from data?

1. Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)

2. RP/LP data covers the whole problem space

3. The learned model has almost 100% test accuracy

4. There exist transformer parameters that compute the ground-truth reasoning function:

Surely, under these conditions, the transformer has 
learned the ground-truth reasoning function!

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction, 
there exists a set of parameters such that the model can correctly solve any 
reasoning problem in SimpleLogic that requires at most n − 2 steps of reasoning.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


The Paradox of Learning to Reason from Data

1. If the transformer has learned to reason, 
it should not exhibit such generalization failure. 
 

2. If the transformer has not learned to reason, 
it is baffling how it achieves near-perfect in-distribution test accuracy.

The BERT model trained on one distribution fails to generalize 
to the other distribution within the same problem space.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


Why? Statistical Features

Monotonicity of entailment: 
Any rules can be freely added to the axioms of any proven fact.

The more rules given, the more likely a predicate will be proven.

Pr(label = True | Rule # = x) should increase (roughly) monotonically with x



Model leverages statistical features to make predictions

1. Accuracy drop from RP to RP_b indicates that 
the model is using rule# as a statistical feature to make predictions.
 

2. Potentially countless statistical features

3. Such features are inherent to the reasoning problem, cannot make data “clean”

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf


First Conclusion

Experiments unveil the fundamental difference between 

1. learning to reason, and 

2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying AI in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate…

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior…

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022

http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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Controlled generation is still challenging …

ChatGPT



Stable Diffusion



Train some              for a specific task distribution
   (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train

What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does
intractable



What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization!

Generate from



∑sentence pTPM(sentence, next-token = "warm", prefix = "The weather is", α)

pTPM(3rd token = pan, 5th token = vegetable)

Tractable Probabilistic Models

Tractable Probabilistic Models (TPMs) model joint 
probability distributions (just like auto-regressive LMs) and 
allow efficient computation of various probabilistic queries.

e.g., efficient marginalization:

Efficient conditioning given lexical constraints : pTPM(next-token | prefix, α)

in particular …

HCLT

Mixture of Trees

DPP
SPN

HMM

Probabilistic (Generating) Circuits

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Step 1: Distill an HMM phmm that approximates pgpt

1. An HMM with 4096 hidden states and 50k emission tokens

2. Train the HMM on data sampled from GPT2-large (domain-adapted, either via 
prompting or fine-tuning), effectively minimizing KL(pgpt∥pHMM)

3. Leverages the latent variable distillation technique for training probabilistic 
circuits at scale [ICLR 23]. (Cluster embeddings of examples to estimate latent Zi)

Anji Liu, Honghua Zhang and Guy Van den Broeck. Scaling Up Probabilistic Circuits by Latent Variable Distillation, 2023. 

http://starai.cs.ucla.edu/papers/LiuICLR23.pdf


Computing phmm(α | x1:t+1)

For α in conjunctive normal form (CNF):

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

where each wij is a keyword (i.e. a string of tokens), 
representing the constraint that wij appears in the generated text.

e.g.,  α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Efficient algorithm: 
For m clauses and sequence length n, time-complexity for generation is O(2|m|n).
 
Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


CommonGen: a Challenging Benchmark

Given 3-5 concepts (keywords), our goal is to generate a sentence using all 
keywords, which can appear in any order and any form of inflections. e.g.,

 Reference 1: A car drives down a snow covered road.

 Input: snow drive car

 Reference 2: Two cars drove through the snow. 

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

Each clause represents the inflections for one keyword.
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Overview
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Language model is not 
fine-tuned/prompted to satisfy constraints

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Language model is fine-tuned to perform 
constrained generation (e.g. seq2seq)

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

https://arxiv.org/pdf/2304.07438.pdf


Advantages of our framework:

1. Constraint α is guaranteed to be satisfied: for any next-token xt+1 that 
would make α unsatisfiable, p(xt+1 | x1:t, α) = 0 for both settings.

2. Training phmm does not depend on α, which is only imposed at inference 
(generation) time. Once phmm is trained, we can impose whatever α.

3. We can impose additional tractable constraints:
○ The keywords are generated following a particular order.
○ (Some) keywords must appear at a particular position.
○ (Some) keywords must not appear in the generated sentence.

Conclusion: control intractable generative model by 
tractable generative model for (symbolic) reasoning.
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Warcraft Shortest Path

[Differentiation of Blackbox Combinatorial Solvers, Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, Michal Rolínek, 2019]

https://arxiv.org/abs/1912.02175




Is output 
a path?

Are individual 
edge predictions 

correct?

Is prediction
the shortest path?

This is the real task!

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.

https://arxiv.org/pdf/2201.11250.pdf


Declarative Knowledge of the Output

Neural Network

y
How is the output structured?
Are all possible outputs valid?

                                  vs.

How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf


pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf


pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf


pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)
pylon derives the gradients
(solves a combinatorial problem)

3

 

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

http://starai.cs.ucla.edu/papers/AhmedAAAI22.pdf


without constraint            with constraint without constraint            with constraint



a) A  network  uncertain  over both valid 
& invalid predictions

c) A network allocating most of
its mass to models of constraint

S
em

antic Loss

Probability of satisfying 
constraint α after sampling from 

neural net output layer p

Do this probabilistic-logical reasoning 
during learning in a computation graph

In general: #P-hard ☹



Probability

- log(      ) Semantic Lossα:   A ∧ B => C

p



without constraint            with constraint without constraint            with constraint



Semantic Probabilistic Layers

● How to give a 100% guarantee that Boolean constraints will be satisfied?

● Bake the constraint into the neural network as a special layer

● Secret sauce is again tractable circuits – computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

https://arxiv.org/abs/2206.00426


Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

https://arxiv.org/abs/2206.00426


Hierarchical Multi-Label Classification

“if the image is classified as a dog, it must 
also be classified as an animal”

“if the image is classified as an animal, it 
must be classified as either cat or dog”



SIMPLE: Gradient Estimator for k-Subset Sampling

We achieve lower bias and variance by exact, discrete samples and exact derivative of conditional marginals.

and SotA Learning to Explain (L2X) and sparse discrete VAE results.

Kareem Ahmed, Zhe Zeng, Mathias Niepert, Guy Van den Broeck. SIMPLE: A Gradient Estimator for k-Subset Sampling, ICLR 2023

https://arxiv.org/abs/2210.01941


Secret Sauce: Probabilistic Circuits

https://youtu.be/2RAG5-L9R70 

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf 

Tutorial (3h) Overview Paper (80p)

https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf
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computational graphs that recursively define distributions
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Probabilistic circuits

computational graphs that recursively define distributions

 
⇒ 
mixtures

 
⇒ 
factorizations



Likelihood 



Likelihood 



Likelihood 





[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]
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bpd 2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 Today

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80



Cute, but these models cannot compete?

bpd 2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 Today

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80

General-purpose architecture



Cute, but these models cannot compete?
2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 Today

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80

General-purpose architecture

Custom GPU kernels



Cute, but these models cannot compete?
2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 Today

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80

General-purpose architecture

Custom GPU kernels

Pruning without losing likelihood



Cute, but these models cannot compete?
2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 Today

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80

Discrete Flow Hierarchical VAE PixelVAE
MNIST 1.90 1.27 1.39

F-MNIST 3.47 3.28 3.66
EMNIST-L 1.95 1.84 2.26



Cute, but these models cannot compete?
2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 Today

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80

General-purpose architecture

Custom GPU kernels

Pruning without losing likelihood Latent Variable Distillation



Cute, but these models cannot compete?
2008-2020 2020-2021 ICLR 22 NeurIPS 22 ICLR 23 ICML 23

Tabular 😐 😊 🍰 🍰 🍰 🍰
MNIST 😱 😱 > 1.67 1.20 1.14 🍰 🍰

F-MNIST 😱 😱 > 4.29 3.34 3.27 🍰 🍰
EMNIST-L 😱 😱 > 2.73 1.80 1.58 🍰 🍰

CIFAR 😱 😱 😱 > 5.50 😱 4.38 3.87

Imagenet32 😱 😱 😱 😱 4.39 4.06

Imagenet64 😱 😱 😱 😱 4.12 3.80

Flow Hierarchical VAE Diffusion
CIFAR 3.35 3.08 2.65

Imagenet32 4.09 3.96 3.72
Imagenet64 3.81 - 3.40
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Thanks

This was the work of many wonderful 
students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/ 

Honghua                  Kareem                    Zhe                    Meihua                    Anji

http://starai.cs.ucla.edu/publications/

