

Al can learn from data. But can it learn to reason?

Guy Van den Broeck

UCI AI/ML Seminar Series - May 15 2023

Outline

- 1. The paradox of learning to reason from data deep learning
- 2. Architectures for learning and reasoning logical reasoning + deep learning
 - a. Constrained language generation
 - b. Constrained structured prediction

Outline

- 1. The paradox of learning to reason from data deep learning
- 2. Architectures for learning and reasoning logical reasoning + deep learning
 - a. Constrained language generation
 - b. Constrained structured prediction

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on various "reasoning" benchmarks in NLP.

It is unclear whether they solve the tasks following the rules of logical deduction.

Language Models:

input \rightarrow ? \rightarrow Carol is the grandmother of Justin.

Logical Reasoning:

input \rightarrow Justin in Kristin's son; Carol is Kristin's mother; \rightarrow Carol is Justin's mother's mother; if X is Y's mother's mother then X is Y's grandmother \rightarrow Carol is the grandmother of Justin.

SimpleLogic

Generate textual train and test examples of the form:

Rules: If witty, then diplomatic. If careless and condemned and attractive, then blushing. If dishonest and inquisitive and average, then shy. If average, then stormy. If popular, then blushing. If talented, then hurt. If popular and attractive, then thoughtless. If blushing and shy and stormy, then inquisitive. If adorable, then popular. If cooperative and wrong and stormy, then thoughtless. If popular, then sensible. If cooperative, then wrong. If shy and cooperative, then witty. If polite and shy and thoughtless, then talented. If polite, then condemned. If polite and wrong, then inquisitive. If dishonest and inquisitive, then talented. If blushing and dishonest, then careless. If inquisitive and dishonest, then troubled. If blushing and stormy, then shy. If diplomatic and talented, then careless. If wrong and beautiful, then popular. If ugly and shy and beautiful, then stormy. If shy and inquisitive and attractive, then diplomatic. If witty and beautiful and frightened, then adorable. If diplomatic and cooperative, then sensible. If thoughtless and inquisitive, then diplomatic. If careless and dishonest and troubled, then cooperative. If hurt and witty and troubled, then dishonest. If scared and diplomatic and troubled, then average. If ugly and wrong and careless, then average. If dishonest and scared, then polite. If talented, then dishonest. If condemned, then wrong. If wrong and troubled and blushing, then scared. If attractive and condemned, then frightened. If hurt and condemned and shy, then witty. If cooperative, then attractive. If careless, then polite. If adorable and wrong and careless, then diplomatic. Facts: Alice sensible Alice condemned Alice thoughtless Alice polite Alice scared Alice average Query: Alice is shy?

Problem Setting: SimpleLogic

The easiest of reasoning problems:

- 1. Propositional logic fragment
 - a. bounded vocabulary & number of rules
 - b. bounded reasoning depth (≤ 6)
 - c. finite space (≈ 10^360)
- 2. **No language variance**: templated language
- 3. Self-contained

No prior knowledge

- 4. **Purely symbolic** predicates No shortcuts from word meaning
- 5. **Tractable** logic (definite clauses) Can always be solved efficiently

Training a transformer on SimpleLogic

(1) Randomly sample facts & rules. Facts: B, C Rules: A, B \rightarrow D. B \rightarrow E. B, C \rightarrow F.

(1) Randomly assign labels to predicates. True: B, C, E, F. False: A, D. (2) Compute the correct labels for all predicates given the facts and rules.

(2) Set B, C (randomly chosen among B, C, E, F) as facts and sample rules (randomly) consistent with the label assignments.

Test accuracy for different reasoning depths

Test	0	1	2	3	4	5	6
RP	99.9	99.8	99.7	99.3	98.3	97.5	95.5

Test	0	1	2	3	4	5	6
LP	100.0	100.0	99.9	99.9	99.7	99.7	99.0

Has the transformer learned to reason from data?

- 1. Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
- 2. RP/LP data covers the whole problem space
- 3. The learned model has almost 100% test accuracy
- 4. There exist transformer parameters that compute the ground-truth reasoning function:

<u>Theorem 1:</u> For a BERT model with n layers and 12 attention heads, by construction, there exists a set of parameters such that the model can correctly solve any reasoning problem in SimpleLogic that requires at most n - 2 steps of reasoning.

Surely, under these conditions, the transformer has learned the ground-truth reasoning function!

The Paradox of Learning to Reason from Data

Train	Test	0	1	2	3	4	5	6
RP	RP	99.9	99.8	99.7	99.3	98.3	97.5	95.5
	LP	99.8	99.8	99.3	96.0	90.4	75.0	57.3
LP	RP	97.3	<mark>66.9</mark>	<mark>53.0</mark>	<mark>54.2</mark>	<mark>59.5</mark>	<mark>65.6</mark>	<mark>69.2</mark>
	LP	100.0	100.0	99.9	99.9	99.7	99.7	99.0

The BERT model trained on one distribution fails to generalize to the other distribution within the same problem space.

- 1. If the transformer **has learned** to reason, it should not exhibit such generalization failure.
- 2. If the transformer **has not learned** to reason, it is baffling how it achieves near-perfect in-distribution test accuracy.

Why? Statistical Features

Monotonicity of entailment:

Any rules can be freely added to the axioms of any proven fact.

The more rules given, the more likely a predicate will be proven.

Pr(label = True | Rule # = x) should increase (roughly) monotonically with x

(a) Statistics for examples generated by Rule-Priority (RP).

(b) Statistics for examples generated by Label-Priority (LP).

(c) Statistics for examples generated by uniform sampling;

Model leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train	Test	0	1	2	3	4	5	6
	RP	99.9	99.8	99.7	99.3	98.3	97.5	95.5
RP	RP_b	99.0	99.3	98.5	97.5	96.7	93.5	88.3

- Accuracy drop from RP to RP_b indicates that the model is using rule# as a statistical feature to make predictions.
- 2. Potentially countless statistical features
- 3. Such features are inherent to the reasoning problem, cannot make data "clean"

First Conclusion

Experiments unveil the fundamental difference between

- 1. learning to reason, and
- 2. learning to achieve high performance on benchmarks using statistical features.

Be careful deploying AI in applications where this difference matters.

FAQ: Do bigger transformers solve this problem? No, already 99% accurate...

FAQ: Will reasoning emerge? Perhaps on 99% of human behavior...

Outline

1. The paradox of learning to reason from data deep learning

2. Architectures for learning and reasoning

logical reasoning + *deep learning*

- a. Constrained language generation
- b. Constrained structured prediction

Outline

1. The paradox of learning to reason from data deep learning

2. Architectures for learning and reasoning

logical reasoning + *deep learning*

- a. Constrained language generation
- b. Constrained structured prediction

Controlled generation is still challenging ...

Generate image

What do we have?

Prefix: "The weather is"

Constraint α: text contains "winter"

Model only does
$$p(\text{next-token}|\text{prefix}) = \frac{\text{cold}}{\text{warm}} \frac{0.05}{0.10}$$

Train some $q(. | \alpha)$ for a specific task distribution $\alpha \sim p_{\mathrm{task}}$ (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train $q(\text{next-token}|\text{prefix}, \alpha)$

What do we need?

Prefix: "The weather is"

Constraint α: text contains "winter"

$$\propto \sum_{\text{text}} p(\text{next-token, text, prefix}, \alpha)$$

Marginalization!

Tractable Probabilistic Models

Tractable Probabilistic Models (TPMs) model joint probability distributions (just like auto-regressive LMs) and allow efficient computation of various probabilistic queries.

e.g., efficient marginalization:

$$D_{TDM}$$
(3rd token = pan, 5th token = vegetable)

in particular ...

 $\sum_{\text{sentence}} p_{\text{TPM}}$ (sentence, next-token = "warm", prefix = "The weather is", α)

Efficient conditioning given lexical constraints : p_{TPM} (next-token | prefix, α)

Probabilistic (Generating) Circuits

Step 1: Distill an HMM p_{hmm} that approximates p_{gpt} $(z_1 \longrightarrow \dots \longrightarrow (z_{r-1}) \longrightarrow (z_r) \longrightarrow$

- 1. An HMM with 4096 hidden states and 50k emission tokens
- 2. Train the HMM on data sampled from GPT2-large (domain-adapted, either via prompting or fine-tuning), effectively minimizing $KL(p_{gpt} \parallel p_{HMM})$
- 3. Leverages the <u>latent variable distillation</u> technique for training probabilistic circuits at scale [ICLR 23]. (Cluster embeddings of examples to estimate latent Z_i)

Computing $p_{hmm}(\alpha \mid x_{1:t+1})$

For α in conjunctive normal form (CNF):

$$(W_{1,1} \vee \ldots \vee W_{1,d1}) \wedge \ldots \wedge (W_{m,1} \vee \ldots \vee W_{m,dm})$$

where each w_{ij} is a keyword (i.e. a string of tokens), representing the constraint that w_{ij} appears in the generated text.

e.g., α = ("swims" V "like swimming") Λ ("lake" V "pool")

Efficient algorithm:

For m clauses and sequence length n, time-complexity for generation is $O(2^{|m|}n)$.

<u>Trick</u>: dynamic programming with clever preprocessing and local belief updates

CommonGen: a Challenging Benchmark

Given 3-5 concepts (keywords), our goal is to generate a sentence using all keywords, which can appear in any order and any form of inflections. e.g.,

Input: snow drive car

Reference 1: A car drives down a snow covered road.

Reference 2: Two cars drove through the snow.

$$(\mathsf{w}_{1,1} \lor \ldots \lor \mathsf{w}_{1,d1}) \land \ldots \land (\mathsf{w}_{\mathsf{m},1} \lor \ldots \lor \mathsf{w}_{\mathsf{m},\mathsf{dm}})$$

Each clause represents the inflections for one keyword.

GeLaTo Overview

Lexical Constraint α : sentence contains keyword "winter"

GeLaTo Overview

Lexical Constraint α : sentence contains keyword "winter"

Step 2: Control p_{gpt} via p_{hmm}

<u>Unsupervised</u>

Language model is not fine-tuned/prompted to satisfy constraints

By Bayes rule: $p_{gpt}(x_{t+1} | x_{1:t}, \alpha) \propto p_{gpt}(\alpha | x_{1:t+1}) \cdot p_{gpt}(x_{t+1} | x_{1:t})$

Assume $p_{hmm}(\alpha | x_{1:t+1}) \approx p_{gpt}(\alpha | x_{1:t+1})$, we generate from:

 $p(x_{t+1} | x_{1:t}, \alpha) \propto p_{hmm}(\alpha | x_{1:t+1}) \cdot p_{gpt}(x_{t+1} | x_{1:t})$

Mathad			G	Generatio	on Quali	ty		8	Co	nstraint .	Satisfacti	on
Method	ROU	GE-L	BLE	EU-4	CIL	DEr	SPI	CE	Cove	erage	Succes	s Rate
Unsupervised	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
InsNet (Lu et al., 2022a)	-	-	18.7	-	-	-	-	-	100.0	-	100.0	() - ()
NeuroLogic (Lu et al., 2021)	-	41.9	-	24.7	-	14.4	-	27.5	-	96.7	-	-
A*esque (Lu et al., 2022b)	-	44.3	-	28.6		15.6	-	29.6	-	97.1	-	
NADO (Meng et al., 2022)	-	-	26.2	-	-	-	-	-	96.1	-	-	-
GeLaTo	44.6	44.1	29.9	29.4	16.0	15.8	31.3	31.0	100.0	100.0	100.0	100.0

Step 2: Control p_{gpt} via p_{hmm}

Supervised

Language model is fine-tuned to perform constrained generation (e.g. seq2seq)

Empirically $p_{HMM}(\alpha | x_{1:t+1}) \approx p_{gpt}(\alpha | x_{1:t+1})$ does not hold well enough; we view $p_{HMM}(x_{t+1} | x_{1:t}, \alpha)$ and $p_{gpt}(x_{t+1} | x_{1:t})$ as classifiers trained for the same task with different biases; thus we generate from their <u>weighted</u> <u>geometric mean</u>:

 $p(x_{t+1} | x_{1:t}, \alpha) \propto p_{hmm}(x_{t+1} | x_{1:t}, \alpha)^{w} \cdot p_{gpt}(x_{t+1} | x_{1:t})^{1-w}$

Mathad		Generation Quality						Constraint Satisfaction				
Method	ROU	GE-L	BLE	EU-4	CIE	DEr	SPI	CE	Cove	erage	Succes	ss Rate
Supervised	dev	test	dev	test	dev	test	dev	test	dev	test	dev	test
NeuroLogic (Lu et al., 2021)	-	42.8	-	26.7	(C)	14.7	2	30.5	-	97.7	-	93.9 [†]
A*esque (Lu et al., 2022b)	-	43.6	-	28.2		15.2	-	30.8	-	97.8	-	97.9 [†]
NADO (Meng et al., 2022)	44.4 [†]	-	30.8	-	16.1^{\dagger}	-	32.0 [†]	-	97.1	-	88.8 [†]	-
GeLaTo	46.0	45.6	34.1	32.9	16.7	16.8	31.3	31.9	100.0	100.0	100.0	100.0

Advantages of our framework:

- 1. Constraint α is <u>guaranteed to be satisfied</u>: for any next-token x_{t+1} that would make α unsatisfiable, $p(x_{t+1} | x_{1:t}, \alpha) = 0$ for both settings.
- 2. Training p_{hmm} does not depend on α , which is only imposed at inference (generation) time. Once p_{hmm} is trained, we can impose whatever α .
- 3. We can impose <u>additional tractable constraints</u>:
 - The keywords are generated following a particular order.
 - (Some) keywords must appear at a particular position.
 - (Some) keywords must not appear in the generated sentence.

Conclusion: control intractable generative model by tractable generative model for (symbolic) reasoning.

Outline

1. The paradox of learning to reason from data deep learning

2. Architectures for learning and reasoning

logical reasoning + *deep learning*

- a. Constrained language generation
- **b.** Constrained structured prediction

Warcraft Shortest Path

// for a 12×12 grid, 2^{144} states but only 10^{10} valid ones!

[Differentiation of Blackbox Combinatorial Solvers, Marin Vlastelica, Anselm Paulus, Vít Musil, Georg Martius, Michal Rolínek, 2019]

Baseline Prediction

Baseline Prediction

Baseline Prediction

Declarative Knowledge of the Output

How is the output structured? Are all possible outputs valid?

How are the outputs related to each other?

Learning this from data is inefficient Much easier to express this declaratively

VS.

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

pylon

def check(y):

return isValid

Kareem Ahmed, Tao Li, Thy Ton, Quan Guo, Kai-Wei Chang, Parisa Kordjamshidi, Vivek Srikumar, Guy Van den Broeck and Sameer Singh. PYLON: A PyTorch Framework for Learning with Constraints

without constraint

Baseline Prediction

60

80

40

ò

20

SL Prediction

20 40 60 80

Ó.

without constraint

with constraint

Baseline Prediction

SL Prediction

0 20 40 60 80

 $p(\mathbf{y}|x)$

a) A network uncertain over both valid & invalid predictions

c) A network allocating most of its mass to models of constraint

Semantic Loss

 $L^{s}(\alpha, p) \propto -\log \sum [p_{i}]$

Probability of satisfying constraint α after sampling from neural net output layer **p**

 $\mathbf{x} \models \alpha \quad i: \mathbf{x} \models X_i \qquad i: \mathbf{x} \models \neg X_i$

In general: #P-hard 🙁

 $(1 - p_i)$

Do this probabilistic-logical reasoning during learning in a computation graph

 $0.3 \ 0.7 \ 0.5 \ 0.5$

ARCHITECTURE	EXACT MATCH	HAMMING SCORE	CONSISTENCY
RESNET-18+FIL	55.0	97.7	56.9
RESNET-18+ \mathcal{L}_{SL}	59.4	97.7	61.2

Semantic Probabilistic Layers

- How to give a 100% guarantee that Boolean constraints will be satisfied?
- Bake the constraint into the neural network as a special layer

• Secret sauce is again tractable circuits – computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

GROUND TRUTH	ResNET-18	Semantic Loss	SPL (ours)
ARCHITECTURE	EXACT MATCH	HAMMING SCORE	CONSISTENCY
RESNET-18+FIL	55.0	97.7	56.9
ResNet-18+ \mathcal{L}_{SL}	59.4	97.7	61.2
RESNET-18+SPL	75.1	97.6	100.0
OVERPARAM. SDD	78.2	96.3	100.0

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.

Hierarchical Multi-Label Classification

"if the image is classified as a dog, it must also be classified as an animal"

"if the image is classified as an animal, it must be classified as either cat or dog"

DATASET	EXACT MATCH				
	HMCNN	MLP+SPL			
CELLCYCLE	3.05 ± 0.11	3.79 ± 0.18			
DERISI	1.39 ± 0.47	2.28 ± 0.23			
EISEN	5.40 ± 0.15	6.18 ± 0.33			
EXPR	4.20 ± 0.21	5.54 ± 0.36			
GASCH1	3.48 ± 0.96	4.65 ± 0.30			
GASCH2	3.11 ± 0.08	3.95 ± 0.28			
SEQ	5.24 ± 0.27	7.98 ± 0.28			
SPO	1.97 ± 0.06	1.92 ± 0.11			
DIATOMS	48.21 ± 0.57	58.71 ± 0.68			
ENRON	5.97 ± 0.56	8.18 ± 0.68			
IMCLEF07A	79.75 ± 0.38	86.08 ± 0.45			
IMCLEF07D	76.47 ± 0.35	81.06 ± 0.68			

SIMPLE: Gradient Estimator for *k*-Subset Sampling

We achieve *lower bias and variance* by exact, discrete samples and exact derivative of conditional marginals.

and SotA Learning to Explain (L2X) and sparse discrete VAE results.

Secret Sauce: Probabilistic Circuits

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ◄) 0:00 / 3:02:46

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	A U	Probabilistic Circuits: Inifying Framework for Tractable Probabilistic Models	*
Yo	oJu	ng Choi	
Ar	ntoni	o Vergari	
Gu Co Un Los	iy V mpute iversi s Ang	an den Broeck er Science Department ty of California eles, CA, USA	
Co	ontei	nts	
1	Intr	oduction	3
2	Pro	babilistic Inference: Models, Queries, and Tractability	4
	2.1	Probabilistic Models	5
	2.2	Probabilistic Queries	6
	2.3	Tractable Probabilistic Inference	8
	2.4	Properties of Tractable Probabilistic Models	g

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic circuits

computational graphs that recursively define distributions

Probabilistic circuits

computational graphs that recursively define distributions

Probabilistic circuits

Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

Forward pass evaluation for MAR

 \Rightarrow linear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ \Rightarrow for normalized leaf distributions: 1.0 leafs over X_2 and X_4 output **EV** feedforward evaluation (bottom-up)

Forward pass evaluation for MAR

 \Rightarrow linear in circuit size!

E.g. to compute $p(x_2, x_4)$:

leafs over X_1 and X_3 output $oldsymbol{Z}_i = \int p(x_i) dx_i$

 \Rightarrow for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

bpd	2008-2020
Tabular	•••
MNIST	\mathbf{Q}
F-MNIST	\mathbf{Q}
EMNIST-L	\mathbf{Q}
CIFAR	\mathbf{Q}
Imagenet32	\mathbf{Q}
Imagenet64	\mathbf{Q}

bpd	2008-2020	2020-2021
Tabular	•••	0
MNIST	\mathbf{Q}	😱 > 1.67
F-MNIST	\mathbf{Q}	😱 > 4.29
EMNIST-L	\mathbf{Q}	😱 > 2.73
CIFAR	\mathbf{Q}	\mathbf{Q}
Imagenet32	\mathbf{Q}	\mathbf{Q}
Imagenet64	\mathbf{Q}	\mathbf{Q}

General-purpose architecture

	2008-2020	2020-2021	ICLR 22
Tabular	•••	\odot	
MNIST	\mathbf{Q}	😱 > 1.67	1.20
F-MNIST	\mathbf{Q}	♀ > 4.29	3.34
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ > 5.50
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}
Imagenet64	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}
		1	1

General-purpose architecture

Custom GPU kernels

		2008-2020	2020-2021	ICLR 22	NeurIPS 22
	Tabular	•••	\odot		
	MNIST	$\mathbf{\Theta}$	😱 > 1.67	1.20	1.14
	F-MNIST	$\mathbf{\Theta}$	♀ > 4.29	3.34	3.27
	EMNIST-L	$\mathbf{\Theta}$	😱 > 2.73	1.80	1.58
	CIFAR	$\mathbf{\Theta}$	$\mathbf{\Theta}$	♀ 5.50	\mathbf{Q}
	Imagenet32	$\mathbf{\Theta}$	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}
	Imagenet64	$\mathbf{\Theta}$	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}
Ge	eneral-purpose	e architectu	ire /	/	/
	(Custom GP	U kernels		

Pruning without losing likelihood

	2008-2020	2020-2021	ICLR 22	NeurIPS 22
Tabular	•••	0		
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14
F-MNIST	\mathbf{Q}	♀ > 4.29	3.34	3.27
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58
CIFAR	\mathbf{Q}	\mathbf{Q}	♀ > 5.50	\mathbf{Q}
Imagenet32	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}
Imagenet64	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}	\mathbf{Q}

	Discrete Flow	Hierarchical VAE	PixelVAE
MNIST	1.90	1.27	1.39
F-MNIST	3.47	3.28	3.66
EMNIST-L	1.95	1.84	2.26

	2008-2020	2020-2021	ICLR 22	NeurIPS 22	ICLR 23
Tabular	•••	\odot			
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14	
F-MNIST	\mathbf{Q}	😱 > 4.29	3.34	3.27	
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58	
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ > 5.50	$\mathbf{\Theta}$	4.38
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{O}	$\mathbf{\Theta}$	4.39
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{O}	$\mathbf{\Theta}$	4.12
General-purpose	e architectu	ire /	/	/	/
_(Custom GP	U kernels			
Prun	ing withou	t losing lik	elihood /	/ /	Latent Va

	2008-2020	2020-2021	ICLR 22	NeurIPS 22	ICLR 23	ICML 23
Tabular	•••	\odot				
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14	2	2
F-MNIST	\mathbf{Q}	😱 > 4.29	3.34	3.27	2	2
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58	2	2
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ > 5.50	$\mathbf{\Theta}$	4.38	3.87
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	$\mathbf{\Theta}$	4.39	4.06
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	$\mathbf{\Theta}$	4.12	3.80

	Flow	Hierarchical VAE	Diffusion
CIFAR	3.35	3.08	2.65
Imagenet32	4.09	3.96	3.72
Imagenet64	3.81	-	3.40

Secret Sauce: Probabilistic Circuits

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ◄) 0:00 / 3:02:46

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Model	\mathbf{s}^*
Yo	ooJung Choi	
A	ntonio Vergari	
Gi Co Un Lo	uy Van den Broeck <i>pmputer Science Department</i> <i>niversity of California</i> <i>s Angeles, CA, USA</i>	
C	ontents	
1	Introduction	3
2	Probabilistic Inference: Models, Queries, and Tractability 2.1 Probabilistic Models 2.2 Probabilistic Queries 2.3 Tractable Probabilistic Inference 2.4 Properties of Tractable Probabilistic Models	4 6 8 9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Outline

- 1. The paradox of learning to reason from data deep learning
- 2. Architectures for learning and reasoning logical (and probabilistic) reasoning + deep learning
 - a. Constrained language generation
 - b. Constrained structured prediction

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/