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Motivation: The Pigeonhole Distribution 

• Suppose there are 3 pigeons… 

 

 

 

 

 

 

 

• … that want to hide in 2 holes 

Each dislikes being placed 
into the same hole… 

…no quantum pigeons, 
pigeons hiding in multiple 

holes simultaneously 

What is the probability that 𝑘 pigeons are placed into the same hole? 
Requires computing partition (i.e., counting); does this seem hard?  
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• One way to answer queries: convert to factor graph 

 

 

 

 

 

 

• Problem: Factor graph is dense; little conditional 
independence 
• Join-tree, variable elimination, etc. fail 

• Is hope lost? What kind of structure is there to exploit? 

 

 

 

 

 

Motivation: Encoding to Factor Graphs 

1 2 3 

A B 
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• Pigeons and holes are exchangeable: relabeling them 
does not change the probability 

 

 

 

 

 

 

• These two states are in the same orbit 

• Dramatically reduces state space of the problem 

Symmetry is Structure Too 

1 2 3 

A B 

1 2 3 

B A 

≅ 
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• Lifted inference scales in degree of symmetry 
• Scales to large dense problems 

• Orthogonal to independence 

• Problem: Exact lifted inf. requires relational 
representation 
• Cannot handle factor graphs 

 

 

 

 

Related Work: Lifted Inference 

[Richardson, Matthew, and Pedro Domingos. "Markov logic networks."  
Machine learning 62.1-2 (2006): 107-136.] 

✓ 
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• Lifted inference scales in degree of symmetry 
• Scales to large dense problems 

• Orthogonal to independence 

• Problem: Exact lifted inf. requires relational 
representation 
• Cannot handle factor graphs 

 

 

 

 

Related Work: Lifted Inference 

[Richardson, Matthew, and Pedro Domingos. "Markov logic networks."  
Machine learning 62.1-2 (2006): 107-136.] 

✓ How can we exploit symmetry in 
exact factor graph inference? 
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• Assignments have a natural colored encoding 

 

 

 

 

• Black factors: Each pigeon dislikes being placed into 
the same hole 

• Red factors: no quantum pigeons 

• Green = true variable, red = false variable 

 

 

Our Key Insight: Colored Assignment 
Encodings 

1 2 3 

A B 

Assignment 
Encoding 
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• Assignments have a natural colored encoding 

 

 

 

 

• Black factors: Each pigeon dislikes being placed into 
the same hole 

• Red factors: no quantum pigeons 

• Green = true variable, red = false variable 

 

 

Our Key Insight: Colored Assignment 
Encodings 

1 2 3 

A B 

Assignment 
Encoding 

Represent symmetries of 
distribution through 
isomorphisms of graph 
[Kersting et al., 2009, Niepert, 
2012, 2013, Bui et al., 2013] 
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• Two new algorithms: 

 

 

 

Contribution 

Orbit Generation 
First example of exact lifted inference for 

arbitrary discrete factor graphs 

Orbit-Jump MCMC 
Approximate lifted inference that mixes 

rapidly* in number of orbits 
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Orbit Generation 
Exact lifted inference for factor graphs 
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A Simpler Example 

• Consider a complete factor graph 

 

 

 

 

 

• If all factors identical and symmetric,  
 
then  Pr           = Pr         = Pr         = Pr          

 

• Probability is determined by number of true states 

𝐴 

𝐶 𝐷 

𝐵 



UAI 2019 12 

Orbit # Elements of the Orbit 

0 

1 

2 

3 

4 

Orbits of Factor Graphs 

• Pr           = Pr         = Pr         = Pr          
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Exact lifted inference algorithm 

• If we can: 

 
1. Efficiently generate one element of each orbit, 

 

2. Efficiently compute the size of each orbit 

 

• Then, the partition function can be computed 
efficiently in the number of orbits (Theorem 4.1) 

 

Let’s see an example… 
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1. Efficiently find one representative of each orbit 

2. Compute the size of the orbit 

 

 

 

 

 

 

 

 

• 𝑍 = ∑unnormalized = 5 + 52 + 126 + 8 + 3 = 193 

Orbit # 
Orbit  
Repr. 

0 

1 

2 

3 

4 

Exact Lifted Inference 

Unnormalized 
State Probability 

5 

13 

21 

2 

3 

Total Orbit 
Unnormalized  

5 × 1 = 5 

13 × 4 = 52 

21 × 6
= 126 

2 × 4 = 8 

3 × 1 = 3 

Orbit Size 

1 

4 

6 

4 

1 



UAI 2019 15 

 

 

 

 
1. Efficiently generate one element of each orbit, 

 
2. Efficiently compute the size of each orbit 

Exact lifted inference algorithm 
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Orbit Generation: Breadth-First Search 

Start with all-false assignment 

These are isomorphic to the 
first, prune them 

Requires linear (in #orbits × 
#variables ) calls to graph 

isomorphism tool 
… 
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1. Efficiently generate one element of each orbit, 

 
2. Efficiently compute the size of each orbit 

Exact lifted inference algorithm 

✓ 

• Seems #P-hard at first, but in fact is not 
• Use graph isomorphism tools to count things 
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Orbit Size Pipeline 

Assignment- 
Encoded Colored 

Factor Graph 

Graph 
Iso. Tool 

Stabilizer 
Group 

Group 
Order  

Orbit Size 

Efficient to compute! 

Orbit-Stabilizer Theorem (Group Theory) 

• Avoid enumerating the whole orbit 
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Stabilizer Group 

• Question: Which isomorphisms preserve (stabilize) 
this coloring? 

 

 

 

 

• Graph isomorphism tools can compute this set of 
permutations 
• Represented in a compact way (generators) 

 

𝐴 

𝐶 𝐷 

𝐵 

Answer: Any permutation of {𝐵, 𝐶, 𝐷} 

Assignment- 
Encoded Colored 

Factor Graph 

Graph 
Iso. Tool 

Stabilizer Group: 
Small set of 
generators 

Group 
Order  

Orbit Size 
✓ 
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Orbit-Stabilizer Theorem 

• Relates size of orbit to order (size) of stabilizer 

 

 

 

 

• Computing the order of a group is a standard problem 
in computational group theory 
• Efficient to compute (in size of graph) 

=
#ways of permuting 𝐴, 𝐵, 𝐶, 𝐷

#ways of permuting 𝐵, 𝐶, 𝐷
=

4!

3!
= 4 

𝐴 

𝐶 𝐷 

𝐵 

Orbit size         

Group 
Theory 

GAP 

Stabilizer Group: 
Small set of 
generators 

Order of group 
4 × 1084 states 
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Exact Inference Experiments 

• Proof of concept: Compared against existing exact 
inference tool, ACE 



UAI 2019 22 

Orbit-Jump MCMC 
Approximate lifted inference with mixing time guarantees 
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Motivation 

• Local-search (e.g. Gibbs sampling) can get stuck 

Propose local 
move 

😐 😐 
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Related Work: Within-Orbit Jumps 

• Lifted MCMC [Niepert, 2012, 2013] jumps within orbits, 
unfortunately doesn’t help here 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

😐 

Lifted 
MCMC step 

😐 

https://emojipedia.org/neutral-face/
https://emojipedia.org/neutral-face/
https://emojipedia.org/neutral-face/
https://emojipedia.org/neutral-face/
https://emojipedia.org/neutral-face/
https://emojipedia.org/neutral-face/
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Jumping Between Orbits 

• Orbit-Jump MCMC proposes jumps between orbits 

 

 

 

 

 

• Non-local moves: can skip over low-probability regions 

• Exploits orbit structure: better than random restarts 

Orbit-Jump 
Proposal 

• We show how to jump between orbits using the Burnside process 
• Requires multiple graph isomorphism + group order computations  
• More expensive than lifted MCMC, with mixing rate guarantees 
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Orbit-Jump MCMC Mixing Time 

 • Empirical mixing time, 5 pigeons 2 holes 
•  Total variation distance from stationary dist. 
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Conclusion 

• Some distributions have little independence, but 
inference remains tractable 
• Symmetry complements independence 

• This work develops symmetry as a source of 
tractability for factor graph inference 
• First exact lifted inference for factor graphs 

• Orbit-Jump MCMC algorithm, mixes rapidly in #orbits (with 
some caveats) 

 
 Grand challenge: Integrating independence and 

symmetry into a single algorithm for factor graphs 
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Thank you! 
Questions? Comments? 

sholtzen@cs.ucla.edu 

mailto:sholtzen@cs.ucla.edu

