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Motivation: The Pigeonhole Distribution

» Suppose there are 3 pigeons...

Each dislikes being placed
into the same hole...

...N0 quantum pigeons,
pigeons hiding in multiple
holes simultaneously

What is the probability that k pigeons are placed into the same hole?
Requires computing partition (i.e., counting); does this seem hard??
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Motivation: Encoding to Factor Graphs

* One way to answer queries: convert to factor graph

* Problem: Factor graph is dense; little conditional
independence
* Join-tree, variable elimination, etc. fail

* |s hope lost? What kind of structure is there to exploit?

- UCLA - | -

UAI 2019




Symmetry Is Structure Too

* Pigeons and holes are exchangeable: relabeling them
does not change the probability
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* These two states are in the same orbit
* Dramatically reduces state space of the problem
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Related Work: Lifted Inference

e Lifted inference scales in degree of symmetry
e Scales to large dense problems
e Orthogonal to independence

* Problem: Exact lifted inf. requires relational

representation
s

e Cannot handle factor graphs

English First-Order Logic Clausal Form Weight

ds are friends.  VxVyVz Fr(x,y) AFr(y,z) = Fr(x,z) —Fr(x,y)V —Fr(y,z)VFr(x,z) 0.7
ndless people smoke Vx (~(3y Fr(x, y)) = Sa(x)) Fr(x, g(x)) V Sm(x) :
Smoking causes cancer. Wx Sm(x) = Ca(x) =Sm(x) v Ca(x) 1.5

If two people are friends, either VxV¥y Fr(x,y) = (Sm(x) <> Sm(y)) —Fr(x,y) Vv Sm(x) vV -Sm(y), 1.1
both smoke or neither does. =Fr(x,y) V —Sm(x) V Sm(y)

[Richardson, Matthew, and Pedro Domingos. "Markov logic networks."
Machine learning 62.1-2 (2006): 107-136.]
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Related Work: Lifted Inference

e Lifted inference scales in degree of symmetry
* Scales to large dense problems
e Orthogonal to independence

* Problem: Exact lifted inf. requires relational
representation

e Cannot handle factor graphs

English First-Order Logic Clausal Form Weight

WxV¥yVz Fr(x,y) AFr(y,z) = Fr(x,z) —Fr(x,y)V —Fr(y,z) VFr(x,z) 0.7

How can we exploit symmetry in
exact factor graph inference?

[Richardson, Matthew, and Pea 00S.
Machine learning 62.1-2 (2006): 107 -136.]
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Our Key Insight: Colored Assignment
Encodings

* Assignments have a natural colored encoding
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* Black factors: Each pigeon dislikes being placed into
the same hole

* Red factors: no quantum pigeons
 Green = true variable, red = false variable
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Our Key Insight: Colored Assignment
Encodings

e Assignments have a natural colored encoding
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* Black factors: Each pigeon difEiS il e
the same hole distribution through
Bl isomorphisms of graph
* Red factors: no quantum pig e e Tl N e

* Green = true variable, red = RZALPAPANER VIR o | A0k ]
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Contribution

* Two new algorithms:

UAI 2019
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Orbit Generation

First example of exact lifted inference for
arbitrary discrete factor graphs

~
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Orbit-Jump MCMC

Approximate lifted inference that mixes
rapidly* in number of orbits

~
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Orbit Generation

Exact lifted inference for factor graphs
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A Simpler Example

* Consider a complete factor graph

* If all factors identical and symmetric,
then Pr( %) = Pr(¥3) = Pr(£xg) = Pr(&%)

* Probability is determined by number of true states
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Orbits of Factor Graphs
+ Pr( §58) = Pr( %) = Pr(3%) = Pr( %)

m Elements of the Orbit
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Exact lifted inference algorithm

e |If we can:

1. Efficiently generate one element of each orbit,

2. Efficiently compute the size of each orbit

. J

* Then, the partition function can be computed
efficiently in the number of orbits (Theorem 4.1)

Let’s see an example...
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Exact Lifted Inference

1. Efficiently find one representative of each orbit
2. Compute the size of the orbit

Orbit Unnormalized Total Orbit
Repr State Probablllty Unnormalized

1 5X1=5

1 E@ 13 4 13 X 4 = 52
2 B9 21 6 21 X 6

3 2 2 4 = 126

4 % 3 1 2X4=28

3x1=3

 Z = )unnormalized =5+ 52+ 126 +8 + 3 = 193
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Exact lifted inference algorithm

1. Efficiently generate one element of each orbit,

2. Efficiently compute the size of each orbit

~
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Orbit Generation: Breadth-First Search

Requires linear (in #orbits X
#variables ) calls to graph
isomorphism tool
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Exact lifted inference algorithm

1. Efficiently generate one element of each orbit, ]

2. Efficiently compute the size of each orbit

 Seems #P-hard at first, but in fact is not
* Use graph isomorphism tools to count things
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Orbit Size Pipeline

* Avoid enumerating the whole orbit

Iso. Tool Group Order
Factor Graph k
Efficient to compute! /\—

Orbit-Stabilizer Theorem (Group Theory)

Assignment-

Encoded Colored
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Stabilizer Group

e Question: Which isomorphisms preserve (stabilize)
this coloring?

v
" Answer: Any permutation of {B,C, D}
=

Assignment-

Encoded Colored
Factor Graph

Graph Stabilizer Group:
so. Tool Small set of
generators

o
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Orbit-Stabilizer Theorem Group

Theory

 Relates size of orbit to order (size) of stabilizer

#Ways of permuting {4, B,C,D} 4!
Orbit size #ways of permuting {B, C, D} R

 Computing the order of a group is a standard problem
in computational group theory ===
* Efficient to compute (in size of graph)

Stabilizer Group:
Order of grou
Small set of group 4 % 1084 states
generators
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Exact Inference Experiments

* Proof of concept: Compared against existing exact
inference tool, ACE

&
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Orbit-Jump MCMC

Approximate lifted inference with mixing time guarantees
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Motivation

* Local-search (e.g. Gibbs sampling) can get stuck

Propose local

move

UAI 2019 oo UCLA .o | 2




Related Work: Within-Orbit Jumps

* Lifted MCMC [niepert, 2012, 2013] jumps within orbits,
unfortunately doesn’t help here

Lifted
MCMC step
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Jumping Between Orbits

* Orbit-Jump MCMC proposes jumps between orbits

Orbit-Jump
Proposal

* We show how to jump between orbits using the Burnside process
* Requires multiple graph isomorphism + group order computations
 More expensive than lifted MCMC, with mixing rate guarantees
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Orbit-Jump MCMC Mixing Time

* Empirical mixing time, 5 pigeons 2 holes
* Total variation distance from stationary dist.

———— UB
........ Lifted
N Orbit-Jump
_ % .
~
3
O | | ] | | |
0 50 100 0 50 100
# Iterations # Iterations
(a) Hard pigeonhole. (b) Quantum pigeonhole.
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Conclusion

* Some distributions have little independence, but
inference remains tractable

* Symmetry complements independence

* This work develops symmetry as a source of
tractability for factor graph inference
* First exact lifted inference for factor graphs

* Orbit-Jump MCMC algorithm, mixes rapidly in #orbits (with
some caveats)

Grand challenge: Integrating independence and
symmetry into a single algorithm for factor graphs
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Thank you!

Questions? Comments?

sholtzencs.ucla.edu
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Abstract

A key goal in the design of probabilistic in-
ference algorithms is identifying and exploit-
ing properties of the distribution that make in-
ference tractable. Lifted inference algorithms
identify symmetry as a property that enables
efficient inference and seek to scale with the
degree of symmetry of a probability model.
A limitation of existing exact lifted inference
techniques is that they do not apply to non-
relational representations like factor graphs. In
this work we provide the first example of an
exact lifted inference algorithm for arbitrary
discrete factor graphs. In addition we describe
a lifted Markov-Chain Monte-Carlo algorithm
that provably mixes rapidly in the degree of
symmetry of the distribution.

et

INTRODUCTION

Probabilistic inference is fundamentally computationally
hard in the worst case [Roth, 1996]. Thus, designers
of probabilistic inference algorithms focus on identify-
ing and exploiting sufficient conditions of the distribu-
tion that ensure tractable inference. For instance, many
existing probabilistic inference strategies for graphical
models exploit independence in order to scale efficiently
[Koller and Friedman, 2009, Darwiche, 2009]. The per-
formance of these algorithms is worst-case exponential
in a graph metric known as the freewidth that quantifies
the degree of independence in the graph.

Lifted inference algorithms identify symmetry as a key
property that enables efficient inference [Poole, 2003,
Kersting, 2012, Niepert and Van den Broeck, 2014].
These methods identify orbits of the distribution: sets of
points in the probability space that are guaranteed to have
the same probability. This enables inference strategies

that scale in the number of distinct orbits. Highly sym-
metric distributions have few orbits relative to the size
of their state space, allowing lifted inference algorithms
to scale to large probability distributions with scant in-
dependence. Thus, lifted inference algorithms identify
symmetry as a complement to independence in the search
for efficient inference algorithms.

An important challenge in designing lifted inference al-
gorithms is identifying symmetries of a probability dis-
tribution from its high-level description. Existing ex-
act lifted inference algorithms rely on relational struc-
ture to extract symmetries, and thus cannot be directly
applied to propositional probability models like factor
graphs [Getoor and Taskar, 2007]. Several approximate
lifted inference algorithms ease this requirement by ex-
tracting symmetries of the probability distribution by
computing an automorphism group of a graph, and can
thus be applied directly to factor graphs [Kersting et al.,
2009, Niepert, 2012, 2013, Bui et al., 2013]. However,
existing lifted MCMC algorithms are not guaranteed to
mix rapidly in the number of orbits.

This paper presents exact and approximate lifted infer-
ence algorithms for arbitrary factor graphs that provably
scale with the number of orbits of the probability dis-
tribution. Inspired by the success of existing approxi-
mate lifted inference techniques on graphical models, we
apply graph isomorphism tools to extract the necessary
symmetries. First, we present a motivating example that
highlights the strengths and weaknesses of our approach.
Then, we describe our exact inference procedure. Com-
putationally, our method combines efficient group theory
libraries like GAP [GAP] with graph isomorphism tools.

Next, we describe an approximate inference algorithm
called orbit-jump MCMC that provably mixes quickly
in the number of orbits of the distribution. Orbit-jump
MCMC provides an alternative to lifted MCMC [Niepert,
2012, 2013], a family of approximate lifted inference al-
gorithms that compute a single graph automorphism in
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