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Structured Probabillity Space

unstructured > structured
L[ K[ P[A] L K [P [A
0 0 0 0
0 0 0 1
0 0 1 0 0 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0 1
1 0 0 1
1 7 out of 16 instantiations —— -
1 1 0 o0 are impossible 0
1 1 0 1
1 1 1 0 1 0
1 1 1 1 1 1



Learning with Constraints




Learning with Constraints

oo St s

Learn a statistical model that assigns

zero probability
to Instantiations that violate the constraints.



Example: Video

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Example: Video

We also connect all pairs of identity nodes y; ; and y; ;
if they appear in the same time ¢. We then introduce an
edge potential that enforces mutual exclusion:

1 lf Yt i # yl.]
0 otherwise

L'mutux(yt.i- yt.j) - { (5)
This potential specifies the constraint that a player can
belappear only once in a frame] For example, if the i-th
detection y; ; has been assign to Bryant, y; ; cannot have
the same identity because Bryant is impossible to appear

twice in a frame.

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Example: Language

* Non-local dependencies:
At least one verb in each sentence

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledgel],..., [Chang, M. W., Ratinov, L., & Roth, D. (2012).
Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]
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Example: Language

* Non-local dependencies:
At least one verb in each sentence

« Sentence compression
If a modifier is kept, its subject is also kept

® I n fo rm ati O n eXt raCti O n Start The gijiz?iiil?];;ust start with author

or editor.

AppearsOnce || Each field must be a consecutive list
of words, and can appear at most
once in a citation.

Punctuation State transitions must occur on
punctuation marks.

BooklJournal || The words proe, journal, proceed-
ings, ACM

are JOURNAL or BOOKTITLE.

TechReport The words tech, technical are
TECH_REPORT.

Title Quotations can appear only in titles.
Location The words CA, Australia, NY are

LOCATION.

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledgel],..., [Chang, M. W., Ratinov, L., & Roth, D. (2012).
Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]



Example: Language

* Non-local dependencies:
At least one verb in each sentence

« Sentence compression
If a modifier is kept, its subject is a

so kept

Citations

e |Information extraction

The citation must start with author
or editor.

AppearsOnce

Each field must be a consecutive list
of words, and can appear at most
once in a citation.

« Semantic role labeling

State transitions must occur on
punctuation marks.

» ... and many more!

The words proe, journal, proceed-
ings, ACM
are JOURNAL or BOOKTITLE.

‘T'b.c.hReport

The words tech, technical are

TECH_REPORT.

Title

Quotations can appear only in titles.

Location

The words CA, Australia, NY are

LOCATION.

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledgel],..., [Chang, M. W., Ratinov, L., & Roth, D. (2012).

Structured learning with constrained conditional models.], [https://en.wikipedia.org/wiki/Constrained_conditional_model]




Samlam: Sensitivity Analysis, Modeling, Inference and More
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Example: Deep Learning

New

Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in London

News | Technalog

G f v o+

DeepMmd’s Al has learned to
navigate the Tube using memory

s e

nature International weekly journal of science

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For /

i G o > 20 v S i 3

Google's Al reasons its way around the London
Underground

DeepMind’s latest technique uses external memory to solve tasks that require logic and
reasoning — a step toward more human-like Al.

Elizabeth Gibney

d Memory usage
G Memory and temporal links

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Example: Deep Learning

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Example: Deep Learning

To ensure that the

network always moved to a valid node, the output distribution was renormalized

over the set of possible triples outgoing from the current node

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]




Example: Deep Learning

To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step.

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]
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Find non-structured encoding ®

Try to learn constraints
Hack your way around



What are people doing now?

Ilgnore constraints 2
Handcraft into models — ﬂ.\
Use specialized distributions © \.4 ®
Find non-structured encodin ® - .

J Specialized skill ?

Try to learn constraints Intractable inference ?

Hack your way around Intractable learning ?
Waste parameters ?
Risk predicting out of space ?

Accuracy ?

+

you are on your own ®



Structured Probabillity Spaces

« Everywhere in ML!

— Configuration problems, inventory, video, text, deep learning
— Planning and diagnosis (physics)
— Causal models: cooking scenarios (interpreting videos)

— Combinatorial objects: parse trees, rankings, directed acyclic graphs,
trees, simple paths, game traces, etc.
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Structured Probabillity Spaces

« Everywhere in ML!
— Configuration problems, inventory, video, text, deep learning
— Planning and diagnosis (physics)
— Causal models: cooking scenarios (interpreting videos)

— Combinatorial objects: parse trees, rankings, directed acyclic graphs,
trees, simple paths, game traces, etc.

« Some representations: constrained conditional
models, mixed networks, probabillistic logics.

No statistical ML boxes out there
that take constraints as input! ®

Goal: Constraints as important as data! General purpose!



Specification Language: Logic



Structured Probabillity Space
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Boolean Constraints

unstructured > structured
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Combinatorial Objects: Rankings
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10 items:
3,628,800
rankings

20 items:

2,432,902,008,176,640,000

rankings
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Combinatorial Objects: Rankings

10

fatty tuna
sea urchin
salmon roe
shrimp
tuna
squid
tuna roll
see eel

€99

cucumber roll

10

shrimp
sea urchin
salmon roe
fatty tuna
tuna
squid
tuna roll
see eel

€g9

cucumber roll

A;; Item I at position |
(n items require n?
Boolean variables)

An item may be assigned
to more than one position

A position may contain
more than one item



Encoding Rankings in Logic

A :Item i at position |
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A 22 23 24
A Ay Ay Ay
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Encoding Rankings in Logic

Ajj @ Item 1 at position | constraint; each item i assigned to
- a unique position (n constraints)
item 1 [0 Ay, \/ Aij A (/\ ﬁAik)
I item 2 Az_1 A,, Ags Ayy J k]
Az As, Ass A,
Ay Ay, Ays Ayl




Encoding Rankings in Logic

A :Item i at position | constraint: each item i assigned to

a unigue position (n constraints
posl posZ posS quep ( )

item 1 Ay Ajg Vi (/#\ ﬁAik)
j it
t 2 A A A A . R - -
| 1 S : Az_l A_z A23 . . constraint: each position j assigned
1tem 31 32 33 34 a unique item (n constraints)
A41 A42 A43 A44

\/ Aij A ( A ﬁAkj)

ki



Encoding Rankings in Logic

a unique position (n constraints
fue position ( )
hy Ay Vi (poa)

kit

. Item 1 at position | constraint: each item i assigned to

item 1
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Structured Space for Paths
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Structured Space for Paths

o o o
® O O
Good variable assignment Bad variable assignment
(represents route) (does not represent route)
184 16,777,032

Space easily encoded in logical constraints ©

Unstructured probability space: 184+16,777,032 = 224



Undirected Graphs (Unstructured)

Labeled Trees

Parse Trees
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(CFG Production Rules) e Ve
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DT NN vVt NP
| | | PN
the dog saw DT NN

the cat




“Deep Architecture”

Logic + Probabillity



V)
=
S
O
=
O
@
Q
>
O
—

\

J
P

1

[

LL —P-A P

ﬁ 53

s

Ty

<L pﬂ@
A —

A

A —-A

K=K



Property: Decomposability
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Property: Determinism
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Sentential Decision Diagram (SDD)
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Sentential Decision Diagram (SDD)
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P 1
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Tractable for Logical Inference

* |s structured space empty? (SAT)
« Count size of structured space (#SAT)
» Check equivalence of spaces

Algorithms linear in circuit size ©
(pass up, pass down, similar to backprop)

SCIENCE + TECHNOLOGY

Artificial intelligence framework developed by UCLA
professor now powers Toyota websites

Adnan Darwiche’s invention helps consumers customize their vehicles online




PSDD: Probabilistic SDD
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PSDD: Probabilistic SDD
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PSDD nodes induce

. L K P A|Pr(L.K,P.A)

a normalized 00 0 0.00%
. . . 0 0 1 0.00%
distribution! 0 1 0 6.00%
01 0 1 1 54.00%
03 1 00 0.00%
ﬁ 1 01 0.00%

| | 1 1 0 0.00%
111 10.00% |

0 0 0 4.40%

1/ |0 1|0 1 0 o

0 0 1 0.00%

ﬂ ﬂ ﬂ ﬂ 0 1 0 1.00%
A 0 11 0.60%

LK LL PA —-PL L —LL 1 00 17.6%
1 01 0.00%

0.8/ 102 1 1 0 4.00%

A —A 1 11 2.40%




PSDD nodes induce

a normalized
distribution!

8

b oAby
0 0] 73.33%
0 1 0.00% 025/ | 0.75
1 0] 16.67% A —A
1 1 10.00%

L K P A|Pr(L.K.P.A)
00 0 0 0.00%
00 0 1 (0.00%
00 1 0 6.00%
00 11 54.00%
01 00 0.00%
01 01 0.00%
0 1 1 0 0.00%
0 1 1 1 10.00%
1 0 00 4.40%
1 0 01 0.00%
1 0 10 L.00%
1 011 0.60%
1 100 17.6%
1 1 01 0.00%
1 110 4.00%
1 1 11 2.40%




PSDD nodes induce

i L K P A|Pr(L,K,P,A)
a normalized 00 00 0.00%
. . . 00 0 1 0.00%
distribution! 00 1 0 6.00%
01 00 1 1 54.00%
0.3 01 00 0.00%
h 01 01 0.00%
01 1 0 0.00%
01 1 1 00%
1 000 4.40%
0 0 1/ /0 , o
1 001 0.00%
ﬂ ﬂ ﬂ 10 10 1.00%
T /\ = 1 011 0.60%
ﬁLK L L A 4 Pr (P 4) 1/L\L —P—A 1 1 00 17.6%
)f«' 1 1 01 0.00%
U 1 U.UU" 0 025 Lors (1 1 10 4.00%
1 0| 16.67% A-A 1 1 11 2.40%
1 1 10.00%

Can read probabilistic independences off the circuit structure




Tractable for
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 MAP inference: Find most-likely assignment
(otherwise NP-complete)

« Computing conditional probabilities Pr(x|y)
(otherwise PP-complete)

« Sample from Pr(x|y)



Tractable for
Probabilistic Inference

 MAP inference: Find most-likely assignment
(otherwise NP-complete)

« Computing conditional probabilities Pr(x|y)
(otherwise PP-complete)

« Sample from Pr(x|y)

Algorithms linear in circuit size ©
(pass up, pass down, similar to backprop)



PSDDs are Arithmetic Circuits

[Darwiche, JACM 2003]
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PSDDs are Arithmetic Circuits

[Darwiche, JACM 2003]

P
ol AN N
WT /N z\ I
P1S1P2S2 PaSn p; s
PSDD AC

Known in the ML literature as SPNs
UAI 2011, NIPS 2012 best paper awards E'SCF',V'NLSZeoqu]\,alem to ACS)




Learning PSDDs

Logic + Probability + ML
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Parameters are Interpretable

ﬁw%

LL PA —PL

0.1 0.6

Probability of P given L

ﬁL ﬁK L L é
0.75 09/ 101

a5 A —A
Student takes course P

{ Student takes
course L

Explainable Al DARPA Program
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Note a lot to say: very easy!
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Learning Algorithms

« Parameter learning:
Closed form max likelihood from complete data
One pass over data to estimate Pr(x|y)

Note a lot to say: very easy!

 Structure learning:

— Compile constraints to SDD (naive)
Use SAT solver technology

— Search for structure to fit data (ongoing work)



Learning Preference Distributions

Special-purpose
distribution:
Mixture-of-Mallows

— # of components
from 1 to 20

— EM with
10 random seeds

— Implementation of
Lu & Boutilier

~13.6 sushi
PSDD
- -3 T
o | e
—s 20

Q-39 2.
S _ :
3 14.0 :
Q
o> -14.1
E
o —14.2
>
©

—-14.3 «  mix-of-mallows (test) |

= psdd (test)
—l44 5 10 15

# of mixture components

20



Learning Preference Distributions

Special-purpose
distribution:
Mixture-of-Mallows

— # of components
from 1 to 20

— EM with
10 random seeds

— Implementation of
Lu & Boutilier

~13.6 sushi
PSDD
- -39 T e
o | e
—s 20

Q-39 2.
S _ :
3 14.0 :
Q
o> -14.1
E
o —14.2
>
©

—-14.3 «  mix-of-mallows (test) |

= psdd (test)
—14.4 5 10 15 20

# of mixture components

This is the naive approach, without real structure learning!



What happens Iif you
Ignore constraints?

blockmap

test-set log-likelihood
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Structured Naive Bayes Classifier

optimal, heuristic, random

X|X|0O X |0|X o| |o
O|0|X O| X X0
X| X0 | x| |o X | X | X

Attribute with 362,880 values (possible game traces)



Structured Naive Bayes Classifier

normal, abnormal

‘t [ ® ‘t

‘'t

Attribute with 789,360,053,252 values (routes in 8 x 8 grid)
Ongoing work: learn anomalies from Uber data



Structured datasets and queries



Incomplete Data

a classical
complete dataset

ol x| v |z
1 X Y2 Zy
2 X Ya Z3
3 X% Y1 Z3
4 X Ya Zy
5 X Y2 Z3
closed-form

(maximume-likelihood
estimates are unique)



Incomplete Data

a classical a classical
complete dataset incomplete dataset

id | x [ v ]| z ] x| v | z
1 Xy Yo Zy 1 Xq Y2 ?

2 X2 Y1 Z; 2 X2 Y1 ?
3 X WV Z, 3 2 ? 2
4 X1 Y1 Zy 4 ? Y1 Zy
S X1 Y2 Z S X1 Y2 Z;
closed-form EM algorithm
(maximume-likelihood (on PSDDs)

estimates are unique)



Incomplete Data

a classical a classical a new type of
complete dataset incomplete dataset incomplete dataset

DENMEEE [OENEEE [OEIREE
1 X Y Z, 1 X Yo ? 1 X=Z

2 X, A 2 2 X5 A ? 2 X, and (y, or z,)
3 X Y1 z, SN ? z, 3 Xy =Y,
4 x4 Y1 Z, 4 ? Y1 z, 4 XevYyoez=1
5 X Y, Z, 5 X Yo z, 5 X, and y, and z,
closed-form EM algorithm Missed in the
(maximum-likelihood (on PSDDs) ML literature

estimates are unique)



Structured Datasets

a classical complete dataset a classical incomplete dataset

(e.g., total rankings) (e.g., top-k rankings)
fatty sea salmon fatty sea
tuna  urchin roe tuna  urchin

p | EW tuna  shrimp ... 2 | EW ? ?
tuna tuna : :

3 tuna tuna . 3 tuna twna ?

roll eel roll .

fatty salmon tuna - 4 fatty salmon o)
tuna roe tuna roe :

5 egg squid shrimp ... 5 egg 9 9



Structured Datasets

a classical complete dataset a new type of incomplete dataset
(e.g., total rankings) (e.g., partial rankings)
fatty sea salmon (fatty tuna > sea urchin)
tuna  urchin roe and (tuna > sea eel)
st

5 fatty funa shrimp 5 (fatty tuna is 1%t) and
tuna (salmon roe > egQ)

3 tuna tuna sea 3 tuna > squid

roll eel _

fatty salmon tuna 4 Sy is e
tuna roe 5 egg > squid > shrimp

5 e squid  shrim ;
99  sq P (represents constraints on

possible total rankings)



Learning from Incomplete Data

movies by expected tier

rank movie

The Godfather

* Movielens Dataset:
— 3,900 movies, 6,040 users, 1m ratings

— take ratings from 64 most rated movies

The Usual Suspects
— ratings 1-5 converted to pairwise prefs. casablanca
The Shawshank Redemption
Schindler’s List
One Flew Over the Cuckoo’s Nest
The Godfather: Part Il

« PSDD for partial rankings

— 4 tiers Monty Python and the Holy Grail

© 00 N o o b~ W N P

Raiders of the Lost Ark

— 18,711 parameters

10 Star Wars IV: A New Hope



PSDD Sizes

items tier size Size
n k SDD  Structured Space Unstructured Space
g > 143 340 81107
27 3 4,114 1.18 - 107 2.82 . 10219
64 4| 23497 3.56 - 1018 1.04 - 101233
125 5| 94,616 3.45 .- 103! 3.92 . 101703
216 6 | 297,295 1.57-10% 716 . 1014044
343 7 | 781,918 4.57-10°8 7 55 . 1035415



Structured Queries

rank movie

1 Star Wars V: The Empire Strikes Back
2 Star Wars IV: A New Hope

3 The Godfather

4 The Shawshank Redemption

5

The Usual Suspects



Structured Queries

« no other Star Wars movie in top-5
« at least one comedy in top-5

rank movie

1 Star Wars V: The Empire Strikes Back
2 Star Wars IV: A New Hope

3 The Godfather

4 The Shawshank Redemption

5

The Usual Suspects



Structured Queries

« no other Star Wars movie in top-5
 at least one comedy in top-5

rank movie rank movie

1 Star Wars V: The Empire Strikes Back Star Wars V: The Empire Strikes Back
2 Star Wars IV: A New Hope 2 American Beauty

3 The Godfather 3 The Godfather

4 The Shawshank Redemption 4 The Usual Suspects

5 The Usual Suspects 5 The Shawshank Redemption



Structured Queries

« no other Star Wars movie in top-5
 at least one comedy in top-5

rank movie rank movie

1 Star Wars V: The Empire Strikes Back Star Wars V: The Empire Strikes Back
2 Star Wars IV: A New Hope 2 American Beauty

3 The Godfather 3 The Godfather

4 The Shawshank Redemption 4 The Usual Suspects

5 The Usual Suspects 5 The Shawshank Redemption

diversified recommendations via
logical constraints



Conclusions

 Structured spaces are everywhere ©
* Roles of Boolean constraints in ML

— Domain constraints and combinatorial objects
(structured probability space)

— Incomplete examples (structured datasets)

— Questions and evidence (structured queries)

 Learn distributions over combinatorial objects

« Strong properties for inference and learning:
Probabilistic sentential decision diagram (PSDD)



Conclusions

Statistical ML
“Probability”

Connectionism

Symbolic Al Deep

“Logic”
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Questions?

PSDD with 15,000 nodes



Compiling PGMs into PSDDs
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Compiling PGMs into PSDDs
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Compiling PGMs into PSDDs

Pr(A,B,C,D,E) = ©5 Og O¢iag Ops Ocp

x* x* x* x*

PSDD, PSDD, PSDD¢jap PSDDpg PSDDeco

PSDD,,

®E|CD Sparse tables [Larkin & Decther 2003], ADDs [Bahar, et al. 1993],
AOMDDs [Mateescu, et al., 2008], PDGs [Jaeger, 2004]
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