
Probabilistic
Circuits

Representations
Inference
Learning
ApplicationsAntonio Vergari

University of California, Los Angeles

based on joint AAAI-2020 and UAI-2019 tutorials with

Guy Van den Broeck
University of California, Los Angeles

YooJung Choi
University of California, Los Angeles

Robert Peharz
TU Eindhoven

Nicola Di Mauro
University of Bari

December 2nd, 2019 - “Deep Generative Models” - Stanford, CA

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

The Alphabet Soup of probabilistic models
2/123

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

Intractable and tractablemodels
3/123

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

tractability is a spectrum
4/123

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

Expressivemodels without compromises
5/123

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

a unifying framework for tractable models
6/123

Why tractable inference?
or expressiveness vs tractability

7/123

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

7/123

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

Building circuits
learning them from data and compiling other models

7/123

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

Building circuits
learning them from data and compiling other models

Applications
what are circuits useful for

7/123

Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

q2: Which day is most likely to have a traffic jam on my
route to campus?

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

q2: Which day is most likely to have a traffic jam on my
route to campus?

⇒ fitting a predictive model!

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

q2: Which day is most likely to have a traffic jam on my
route to campus?

⇒ fitting a predictive model!

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

q2: Which day is most likely to have a traffic jam on my
route to campus?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ?

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamAlma = 1)

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamAlma = 1)

⇒ marginals © fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

© fineartamerica.com

9/123

fineartamerica.com

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events
© fineartamerica.com

9/123

fineartamerica.com

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

10/123

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

10/123

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

⇒ Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).

10/123

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

10/123

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/123

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact
⇒ do we lose some expressiveness?

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996] 11/123

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees
⇒ sometimes they do, e.g., [Dechter et al. 2007]

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996] 11/123

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/123

Why exact inference?
or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [Dechter et al. 2002; Choi

et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]

5. Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

11/123

Stay tuned for...

Next: 1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified
framework for tractable probabilistic modeling

12/123

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

© fineartamerica.com

13/123

fineartamerica.com

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

X = {Day,Time, JamAlma, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

© fineartamerica.com

13/123

fineartamerica.com

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

X = {Day,Time, JamAlma, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ) © fineartamerica.com

13/123

fineartamerica.com

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 14/123

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 15/123

Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 16/123

Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “tricky” [Alemi et al. 2017; Dai

et al. 2019; Ghosh et al. 2019]

17/123

Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

many neural variants
NADE [Larochelle et al. 2011],
MADE [Germain et al. 2015]
PixelCNN [Salimans et al. 2017],
PixelRNN [Oord et al. 2016]

X̄1 X̄2 X̄3 X̄4

.

X1 X2 X3 X4

18/123

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

© fineartamerica.com

19/123

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q1(m) = pm(Day = Mon, JamAlma = 1)

© fineartamerica.com

19/123

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q1(m) = pm(Day = Mon, JamAlma = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E
© fineartamerica.com

19/123

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

q1(m) = pm(Day = Mon, JamAlma = 1)

General: pm(e) =
∫
pm(e,H) dH

and if you can answer MAR queries,
then you can also do conditional queries (CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com

19/123

fineartamerica.com

Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

X̄1 X̄2 X̄3 X̄4

.

X1 X2 X3 X4

20/123

Autoregressive models

pθ(x) =
∏

i pθ(xi | x1, x2, . . . , xi−1)

an explicit likelihood!

…as a product of factors ⇒ tractable EVI!

... but we need to fix a variable ordering
⇒ only some MAR queries are tractable

for one ordering

X̄1 X̄2 X̄3 X̄4

.

X1 X2 X3 X4

21/123

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

Z

X

f−1f

22/123

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood ⇒ tractable EVI!

... computing the determinant of the Jacobian

MAR is generally intractable
⇒ unless f is a “trivial” bijection

Z

X

f−1f

23/123

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5

24/123

Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-complete
⇒ [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ [Dagum et al. 1993; Roth 1996]

25/123

Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w), which is linear for fixed widthw
[Dechter 1998; Koller et al. 2009]. ⇒ what about bounding the treewidth by design?

26/123

Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

27/123

What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 28/123

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k

29/123

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1) · p1(X|Z = 1)

+ p(Z = 2) · p2(X|Z = 2)

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

29/123

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 30/123

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) Ability to represent rich and effective classes of
functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 30/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

31/123

How expressive efficient are mixture?

⇒ stack mixtures like in deep generative models 31/123

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

32/123

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

© fineartamerica.com

32/123

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X © fineartamerica.com

32/123

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e)
© fineartamerica.com

32/123

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

33/123

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

© fineartamerica.com

33/123

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X

© fineartamerica.com

33/123

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]
© fineartamerica.com

33/123

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34/123

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34/123

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Palo Verde than Midtown?

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34/123

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Palo Verde than Midtown?

⇒ counts + group comparison

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34/123

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Palo Verde than Midtown?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019b] © fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34/123

fineartamerica.com

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

35/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

36/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
37/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

and tractable ones are not very expressive…
38/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
39/123

Probabilistic Circuits

Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

41/123

Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

41/123

Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

⇒ by constraining the graph we can make inference tractable…

41/123

Stay tuned for...

Next: 1. What are the building blocks of probabilistic circuits?
⇒ How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How can probabilistic circuits be learned?

42/123

Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable

43/123

Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

43/123

Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

43/123

Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

43/123

Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
44/123

Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
44/123

Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
44/123

Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
44/123

Mixtures as sum nodes
Enhance expressiveness

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…

45/123

Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as weighted a sum node over Gaussian input distributions

45/123

Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency

45/123

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1

46/123

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

46/123

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

46/123

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

46/123

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

46/123

Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks

47/123

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!

48/123

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability

48/123

Which structural constraints
to ensure tractability?

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 50/123

Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 51/123

Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

52/123

Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

52/123

Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ larger integrals decompose into easier
ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

52/123

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

52/123

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

52/123

Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

53/123

Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

argmax
q

p(q | e)

54/123

Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸=
∑
z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]

55/123

Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 56/123

Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

57/123

Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

57/123

Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex),max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

57/123

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

57/123

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

57/123

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

57/123

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

× ×× ×

X1

X2

-.4

X1

.9

X2

1.1

X3 X4 X3

0.0

X4

57/123

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

× ×× ×

X1

X2

-.4

X1

.9

X2

1.1

X3 X4 X3

0.0

X4

57/123

Determinism + decomposability = tractable MMAP

Analogously, we could can also do a MMAP query:

argmax
q

∑
z

p(q, z | e)

58/123

Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑
z

p(q, z | e)

we still have latent variables to marginalize…

59/123

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
60/123

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X3

×

X1 X3

X2

×

×

X1 X2

×

X1 X2

X3

×

non structured decomposable circuit
60/123

structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [ibid.]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019c]

61/123

structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [ibid.]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019c]

61/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

?

where are probabilistic circuits?
62/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

PCs

PCs

PCs

BNs

NFs

PCsPCs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
63/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
64/123

Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) [Darwiche 2003] 4 4 4(*) 8
Sum-Product Networks (SPNs) [Poon et al. 2011] 4 4 8 8

Cutset Networks (CNets) [Rahman et al. 2014] 4 4 4 8
PSDDs [Kisa et al. 2014a] 4 4 4 4

AndOrGraphs [Dechter et al. 2007] 4 4 4 4

65/123

How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
peharz2018probabilistic, peharz2018probabilistic, peharz2018probabilistic 66/123

How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

67/123

Building circuits

Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

69/123

Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

Learning a circuit C from dataD can therefore involve learning the graph
(structure) and/or its parameters

69/123

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e

? ?

Di
sc
ri
m
in
at
iv
e

? ?

70/123

Stay tuned for...

Next: 1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

After: Which applications are circuits used for?

71/123

Learning circuit parameters

Let a circuit structure C be given. We aim to learn its parameters:

Parameters of input distributions
θ = {θL}L∈leaves(C)

⇒ e.g. θL = (µ, σ) if L is Gaussian, etc.

72/123

Learning circuit parameters

Let a circuit structure C be given. We aim to learn its parameters:

Parameters of input distributions
θ = {θL}L∈leaves(C)
Sum-weightsw = {wS}S∈sums(C)

⇒ w.l.o.g., for each S:
∑

i wS,i = 1 [Peharz et al. 2015; Zhao et al. 2015]

72/123

Learning circuit parameters

Let a circuit structure C be given. We aim to learn its parameters:

Parameters of input distributions
θ = {θL}L∈leaves(C)
Sum-weightsw = {wS}S∈sums(C)

⇒ we marginalize out latent variable ZS

CS =
∑
i

wS,i︷ ︸︸ ︷
p(ZS = i | “context′′) CNi

72/123

Augmentation
Making latent variables explicit

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 73/123

This is an example of smoothing.

Augmentation
Making latent variables explicit

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 73/123

Setting single indicators to 1⇒ switches on corresponding child.

This is an example of smoothing.

Augmentation
Making latent variables explicit

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 73/123

Yes, but we might have destroyed smoothness…

This is an example of smoothing.

Augmentation
Making latent variables explicit

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016
73/123

This is an example of smoothing.

Augmentation
Making latent variables explicit

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016
73/123

This is an example of smoothing.

Thus, sum weights have sound probabilistic semantics.

Expectation-Maximization

Given a probabilistic circuit C and a datasetD, the standard EM update is:

wnew
i,j =

∑
x∈D P[ctxi = 1 ∧ Zi = j |x,wold]∑

x∈D P[ctxi = 1 |x,wold]

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

P[ctxi = 1 ∧ Zi = j |x,wold] =
1

C(x)
∂C(x)
∂Ci(x)

Cj(x)wold
i,j

⇒ This also works with missing values in x!
⇒ Similar updates for leaves, when in exponential family.

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 74/123

Expectation-Maximization

Given a probabilistic circuit C and a datasetD, the standard EM update is:

wnew
i,j =

∑
x∈D P[ctxi = 1 ∧ Zi = j |x,wold]∑

x∈D P[ctxi = 1 |x,wold]

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

P[ctxi = 1 ∧ Zi = j |x,wold] =
1

C(x)
∂C(x)
∂Ci(x)

Cj(x)wold
i,j

⇒ This also works with missing values in x!
⇒ Similar updates for leaves, when in exponential family.

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 74/123

Expectation-Maximization

Given a probabilistic circuit C and a datasetD, the standard EM update is:

wnew
i,j =

∑
x∈D P[ctxi = 1 ∧ Zi = j |x,wold]∑

x∈D P[ctxi = 1 |x,wold]

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

P[ctxi = 1 ∧ Zi = j |x,wold] =
1

C(x)
∂C(x)
∂Ci(x)

Cj(x)wold
i,j

⇒ This also works with missing values in x!
⇒ Similar updates for leaves, when in exponential family.

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 74/123

Deterministic Circuits
Exact Maximum Likelihood

Given a deterministic circuit C and a complete datasetD, the maximum-likelihood
sum-weights are:

wMLE
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid divide by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75/123

samples activating node j

samples activating node i

Deterministic Circuits
Exact Maximum Likelihood

Given a deterministic circuit C and a complete datasetD, the maximum-likelihood
sum-weights are:

wMLE
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid divide by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75/123

samples activating node j

samples activating node i

Deterministic Circuits
Exact Maximum Likelihood

Given a deterministic circuit C and a complete datasetD, the maximum-likelihood
sum-weights are:

wMLE
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid divide by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75/123

samples activating node j

samples activating node i

Deterministic Circuits
Exact Maximum Likelihood

Given a deterministic circuit C and a complete datasetD, the maximum-likelihood
sum-weights are:

wMLE
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid divide by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75/123

samples activating node j

samples activating node i

Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
⇒ circuits are differentiable!

backprop + your favorite gradient-based optimizer

need to reparametrize sum node weights … ⇒ e.g. by (log-)softmax

…or project them to their constraint set [Duchi2008]

analogously for input distribution parameters
⇒ e.g. σ > 0 in Gaussians: use softplus or clipping

76/123

Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
⇒ circuits are differentiable!

backprop + your favorite gradient-based optimizer

need to reparametrize sum node weights … ⇒ e.g. by (log-)softmax

…or project them to their constraint set [Duchi2008]

analogously for input distribution parameters
⇒ e.g. σ > 0 in Gaussians: use softplus or clipping

pros:

Easy to implement and combine
with other cost functions

76/123

Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
⇒ circuits are differentiable!

backprop + your favorite gradient-based optimizer

need to reparametrize sum node weights … ⇒ e.g. by (log-)softmax

…or project them to their constraint set [Duchi2008]

analogously for input distribution parameters
⇒ e.g. σ > 0 in Gaussians: use softplus or clipping

pros:

Easy to implement and combine
with other cost functions

cons:

(S)GD converges slowly

76/123

Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and leaf-parameters and perform posterior
inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) [Jaini et al. 2016; Rashwan et al. 2016]

Collapsed variational inference algorithm [Zhao et al. 2016b]

Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]

77/123

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

?

Di
sc
ri
m
in
at
iv
e

? ?

78/123

LearnSPN

1

2

3

4

5

6

7

8

X4X3X2X1 X5

Learning both structure and parameters of a circuit by starting from a data matrix

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79/123

LearnSPN
X4X3X2X1 X5

Looking for sub-population in the data—clustering—to introduce sum nodes…

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79/123

LearnSPN
X4X3X2X1 X5

X4X3X2X1 X5

…seeking independencies among sets of RVs to factorize into product nodes

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79/123

LearnSPN
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

X4X3X2X1 X5

…learning smaller estimators as a a recursive data crawler

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79/123

Randomized structure learning

Randomly generate a region graph ⇒ hierarchical partitioning of variables
Then, populate each region with tensorized circuit nodes ⇒ competitive with SOTA

Peharz et al., “Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic
Deep Learning”, 2019 80/123

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014a]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

? ?

81/123

Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data…
Solution: ensembles of circuits!

⇒ non-deterministic mixture models: another sum node!

p(X) =
K∑
i=1

λiCi(X), λi ≥ 0
K∑
i=1

λi = 1

Ensemble weights and components can be learned separately or jointly

EM or structural EM [Liang et al. 2017a]

bagging [Vergari et al. 2015; Rahman et al. 2016; Di Mauro et al. 2017]

boosting [Rahman et al. 2016]
82/123

Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a]
SGD [Sharir et al. 2016; Peharz et al. 2019]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014a]
[Dennis et al. 2015; Liang et al. 2017a]
random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

deterministic
convex-opt MLE [Liang et al. 2019]
non-deterministic
EM [Rashwan et al. 2018]
SGD [Gens et al. 2012; Sharir et al. 2016]
[Peharz et al. 2019]

greedy
top-down [Shao et al. 2019]
hill climbing [Rooshenas et al. 2016]

83/123

Applications

Stay tuned for...

Next: 1. what have been probabilistic circuits used for?
⇒ computer vision, sop, speech, planning, …

2. what are the current trends in tractable learning?
⇒ hybrid models, probabilistic programming, …

3. what are the current challenges?
⇒ benchmarks, scaling, reasoning

After: Conclusions
85/123

EVI inference : density estimation

dataset single models ensembles dataset single models ensembles

nltcs -5.99 [ID-SPN] -5.99 [LearnPSDDs] dna -79.88 [SPGM] -80.07 [SPN-btb]

msnbc -6.04 [Prometheus] -6.04 [LearnPSDDs] kosarek -10.59 [Prometheus] -10.52 [LearnPSDDs]

kdd -2.12 [Prometheus] -2.12 [LearnPSDDs] msweb -9.73 [ID-SPN] -9.62 [XCNets]

plants -12.54 [ID-SPN] -11.84 [XCNets] book -34.14 [ID-SPN] -33.82 [SPN-btb]

audio -39.77 [BNP-SPN] -39.39 [XCNets] movie -51.49 [Prometheus] -50.34 [XCNets]

jester -52.42 [BNP-SPN] -51.29 [LearnPSDDs] webkb -151.84 [ID-SPN] -149.20 [XCNets]

netflix -56.36 [ID-SPN] -55.71 [LearnPSDDs] cr52 -83.35 [ID-SPN] -81.87 [XCNets]

accidents -26.89 [SPGM] -29.10 [XCNets] c20ng -151.47 [ID-SPN] -151.02 [XCNets]

retail -10.85 [ID-SPN] -10.72 [LearnPSDDs] bbc -248.5 [Prometheus] -229.21 [XCNets]

pumbs* -22.15 [SPGM] -22.67 [SPN-btb] ad -15.40 [CNetXD] -14.00 [XCNets]

86/123

Hybrid intractable + tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

⇒ decomposing a joint ELBO: better lower-bounds than a single VAE
⇒ more expressive efficient and less data hungry

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 87/123

Tractable MAR : scene understanding

⇒ making the AIR model faster and more accurate by using a PC

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 88/123

Tractable MAR : Robotics

Hierarchical planning robot executions

Scenes and maps decompose along circuit
structures

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016
Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning
in large-scale environments”, 2017
Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”,
2018 89/123

MAP inference : image inpainting
7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

Predicting arbitrary patches
given a single circuit
First SPN paper in 2011…

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra et al., “Image classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 90/123

MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 91/123

MAP inference : Speech reconstruction
Probabilistic circuits to model the joint pdf of observables in HMMs (HMM-SPNs),

again leveraging tractable inference: MAR and MAP

?
?

?

?

YtYt 1- Yt 1+Yt 2- Yt 2+

?
?

?

?

?
?

?

?

?
?

?

?

?
?

?

?

St 2-

_

St 1-

_

St

_

St 1+

_

St 2+

_

Fig. 1. Illustration of the HMM with SPN observation models. State-
dependent SPNs are symbolized by triangles with a circle on top.
For the forward-backward algorithm, frequency bins marked with
“?” (missing) are marginalized out by the SPNs.

frames 1, . . . , (t + λ). An illustration of the modified HMM used
in this paper is given in Figure 1. Following [6], we use most-
probable-explanation (MPE) inference for recovering the missing
spectrogram content, where we reconstruct the high-band only. Let
Ŝt,k = (Ŝt,k(1), . . . Ŝt,k(F))T be the MPE-reconstruction of the tth

time frame, using the SPN depending on the kth HMM-state. Then
we use the following bandwidth-extended log-spectrogram

Ŝ(t, f) =

{
S̄(t, f) if f < f ′
∑K

k=1 p(Yt = k|et)Ŝt,k(f) o.w.
(1)

where f ′ corresponds to 4000Hz.

4. RECONSTRUCTING TIME SIGNALS

To synthesize a time-signal from the bandwidth extended log-
spectrogram, we need to associate a phase to the estimated magni-
tude spectrogram eŜ(t,f). The problem of recovering a time-domain
signal given a modified magnitude appears in many speech appli-
cations, such as single-channel speech enhancement [17, 18, 19],
single-channel source separation [20, 21, 22, 23] and speech sig-
nal modification [24, 25]. These signal modifications are solely
employed in spectral amplitude domain while the phase informa-
tion of the desired signal is not available. A typical approach is to
use the observed (noisy) phase spectrum or to replace it with an
enhanced/estimated phase.

In order to recover phase information for ABE, we use the it-
erative algorithm proposed by Griffin and Lim (GL) [26]. Let j ∈
{0, . . . , J} be an iteration index, and Ĉ(j) be a complex valued ma-
trix generated in the j th iteration. For j = 0, we have

Ĉ(0)(t, f) =

{
C̄(t, f) 1 ≤ f ≤ f ′

eŜ(t,f) o.w.
(2)

where C̄ is the complex spectrogram of the bandpass filtered input
signal. Within the telephone band, phase information is considered
reliable and copied from the input. Outside of the narrow-band,
phase is initialized with zero. Note that in general Ĉ(0) is not a valid
spectrogram since a time signal whose STFT equals Ĉ(0) might not
exist. The j th iteration of the GL algorithm is given by

Ĉ(j)(t, f) =

{
C̄(t, f) 1 ≤ f ≤ f ′

eŜ(t,f) ei̸ G(Ĉ(j−1))(t,f) o.w.
(3)

G(C) = STFT(STFT−1(C)). (4)

At each iteration, the magnitude of the approximate STFT Ĉ(j)

equals the magnitude eŜ estimated by our model, while temporal
coherence of the signal is enforced by the operator G(·) (see e.g. [25]
for more details). The estimated time signal sj at the j th iteration
is given by sj = STFT−1

(
Ĉ(j)

)
. At each iteration, the mean

square error between |STFT(sj)| and |Ĉ(0)| is reduced [26]. In
our experiments, we set the number of iterations J = 100, which
appeared to be sufficient for convergence.

5. EXPERIMENTS

We used 2 baselines in our experiments. The first baseline is the
method proposed in [13], based on the vocal tract filter model using
linear prediction. We used 64 HMM states and 16 components per
state-dependent GMM, which performed best in [13]. We refer as
HMM-LP to this baseline. The second baseline is almost identical
to our method, where we replaced the SPN with a Gaussian mixture
model with 256 components with diagonal covariance matrices. For
training GMMs, we ran the EM algorithm for maximal 100 itera-
tions and using 3 random restarts. Inference using the GMM model
works the same way as described in section 3, since a GMM can be
formulated as an SPN with a single sum node [7]. We refer as HMM-
GMM to this baseline. To our method, we refer as HMM-SPN. For
HMM-GMM and HMM-SPN, we used the same clustering of log-
spectra using a codebook size of 64.

We used time-frames of 512 samples length, with 75% over-
lap, which using a sampling frequency of 16 kHz corresponds to a
frame length of 32ms and a frame rate of 8ms. Before applying
the FFT, the frames were weighted with a Hamming window. For
the forward-backward algorithm we used a look-ahead of λ = 3
frames, which corresponds to the minimal delay introduced by the
75% frame-overlap. We performed our experiments on the GRID
corpus [27], where we used the test speakers with numbers 1, 2, 18,
and 20, referred to as s1, s2, s18, and s20, respectively. Speakers
s1 and s2 are male, and s18 and s20 are female. We trained speaker
dependent and speaker independent models. For speaker dependent
models we used 10 minutes of speech of the respective speaker. For
speaker independent models we used 10 minutes of speech obtained
from the remaining 30 speakers of the corpus, each speaker provid-
ing approximately 20 seconds of speech. For testing we used 50
utterances per test speaker, not included in the training set.

Fig. 2 shows log-spectrograms of a test utterance of speaker s18
and the bandwidth extended signals by HMM-LP, HMM-GMM and
HMM-SPN, using speaker dependent models. We see that HMM-LP
succeeds in reconstructing a harmonic structure for voiced sounds.
However, we see that fricative and plosive sounds are not well
captured. The reconstruction by HMM-GMM is blurry and does
not recover the harmonic structure of the original signal well, but
partly recovers high-frequency content related to consonants. The
HMM-SPN method recovers a natural high frequency structure,
which largely resembles the original full-band signal: the harmonic
structure appears more natural than the one delivered by HMM-LP
and consonant sounds seem to be better detected and reconstructed
than by HMM-GMM. According to informal listening tests1, the vi-
sual impression corresponds to the listening experience: the signals
delivered by HMM-SPN clearly enhance the high-frequency content
and sound more natural than the signals delivered by HMM-LP and

1Formal listening tests were out of the scope of the paper. All ABE sig-
nals, the full-band and the narrow-band telephone signals can be obtained as
WAV files from http://www2.spsc.tugraz.at/people/peharz/ABE/

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

(a) Original full bandwidth (b) Reconstruction HMM-LP

(c) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

Fig. 2. Log-spectrogram of the utterance “Bin green at zed 5 now”,
spoken by s18. (a): original full bandwidth signal. (b): ABE result
of HMM-LP [13]. (c): ABE result of HMM-GMM (this paper). (d):
ABE results of HMM-SPN (this paper).

Table 1. Average LSD using speaker-dependent models.
s1 s2 s18 s20

HMM-LP 7.13 7.57 6.48 6.41
HMM-GMM 3.18 2.93 2.28 2.82
HMM-SPN 3.12 2.84 2.15 2.59

HMM-GMM. HMM-GMM and HMM-SPN both deliver a more
realistic extension for fricative and plosive sounds. However, this
introduces also a some high frequency noise. According to our lis-
tening experience, these artifacts are less severe for the HMM-SPN
signals.

For an objective evaluation, we use the log-spectral distortion
(LSD) in the high-band [13]. Given an original signal and an ABE
reconstruction, we perform Lth-order LPC analysis for each frame,
where L = 9. This yields (L + 1)-dimensional coefficient vectors
aτ and âτ of the original and the reconstructed signals, respectively,
where τ is the frame index. The spectral envelope modeled by a
generic LPC coefficient vector a = (a0, . . . , aL)

t is given as

Ea(e
jΩ) =

σ

|
∑L

k=0 ake−jkΩ|
, (5)

where σ is the square-root of the variance of the LPC-analyzed sig-
nal. The LSD for the τ th frame, in high-band is calculated as

LSDτ =

√∫ π

ν
(20 logEaτ (ejΩ)− 20 logEâτ (ejΩ))

2 dΩ

π − ν
, (6)

where ν = π 4000
fs/2 , fs being the sampling frequency. The LSD at

utterance level is given as the average of LSDτ over all frames.
Tables 1 and 2 show the LSD of all three methods for the speaker

dependent and speaker independent scenarios, respectively, averaged
over the 50 test sentences. For each speaker, we see a clear ranking

Table 2. Average LSD using speaker-independent models.
s1 s2 s18 s20

HMM-LP 7.12 7.66 6.60 6.34
HMM-GMM 3.62 4.46 3.82 3.60
HMM-SPN 3.42 3.85 3.05 3.36

of the three method, and that the HMM-SPN method always per-
forms best. All differences are significant at a 0.95 confidence level,
according to a paired one-sided t-test.

6. DISCUSSION

We demonstrated that SPNs are a promising probabilistic model for
speech, applying them to the ill-posed problem of artificial band-
width extension. Motivated by the success of SPNs on the also
ill-posed and related problem of image completion, we used SPNs
as observation models in HMMs, modeling the temporal evolution
of log short-time spectra. While the model is trained on full-band
speech, the fact that the high and very low frequencies are miss-
ing in telephone signals is naturally treated by marginalization of
missing frequency bins. Recovering the missing high frequencies,
is naturally treated by MPE inference. The resulting system clearly
improves the state of the art both in subjective listening tests and ob-
jective performance evaluation using the log-spectral distortion mea-
sure.

This performance improvement comes at an increased computa-
tional cost. The trained observation SPNs have 136 layers and tens
of thousand of nodes and parameters. Therefore, bandwidth exten-
sion using our HMM-SPN approach currently takes about 1−2 min-
utes computation time per utterance on a standard desktop computer,
using a non-optimized Matlab/C++-based prototype. Inference us-
ing the HMM-GMM model requires approximately 0.5− 1 minutes
per utterance; inference in the HMM-LP model requires some sec-
onds. Therefore, although we designed the overall system to be real-
time capable (small HMM look-ahead), it is currently not suitable
for a real-time application implemented on a low-energy embedded
system. For non-real-time systems, e.g. for offline processing of tele-
phone speech databases, the approach presented here is appropriate.
The basic motivation in this paper, however, was to demonstrate the
applicability of SPNs for modeling speech; according to prior studies
[6, 8], SPNs are able to express complex interaction with comparable
little inference time. Therefore one can conjecture that an ABE sys-
tem with classical graphical models, expressing a similar amount of
dependencies as the used SPNs, would have an overall computation
time in the range of hours.

The system presented in this paper is trained in a two-step ap-
proach, i.e. (i) clustering the training data which delivers the HMM
states and statistics, and (ii) subsequent training of state-dependent
observation models. Incorporating state-sequence modeling directly
into SPN training, similar as in dynamic graphical models, is a in-
teresting future research direction. Finally, future directions for re-
search on SPN-based speech models are further speech related ap-
plications, such as packet loss concealment, (single channel) source
separation, and speech enhancement.

State-of-the-art high frequency reconstruction (MAP inference)

Peharz et al., “Modeling speech with sum-product networks: Application to bandwidth extension”,
2014
Zohrer et al., “Representation learning for single-channel source separation and bandwidth
extension”, 2015 92/123

MAP inference : Sequence labeling

Figure 2: SPN for language modeling.

probability as

P (Y=y|X=x) =

� (Y=y|X=x)P
y0 � (Y=y0|X=x)

=

P
h � (Y=y,H=h|X=x)P

y0
,h � (Y=y0,H=h|X=x)

where � (Y = y|X = x) is an unnormalized probability. Thus
the partial derivative of the conditional log-likelihood with re-
spect to a weight w in an SPN is given by:

@
@w

logP (y|x)= @
@w

log

X

h

� (y,h|x)� @
@w

log

X

y0
,h

�

�
y0,h|x

�

(1)
To train an SPN, we first specify its architecture, i.e., its

sum and product nodes, and the connections between them.
Then we learn the weights of the sum nodes via gradient de-
scent to maximize the conditional log-likelihood of a training
set of (x,y) examples. The gradient of each weight (Equa-
tion 1) is computed via backpropagation. The first summation
on the right-hand side of Equation 1 can be computed tractably
in a single upward pass through the SPN by setting all hid-
den variables to 1, and the second summation can be computed
similarly by setting both hidden and query variables to 1. The
partial derivatives are passed from parent to child according to
the chain rule as described by [14]. Each weight is changed
by multiplying a learning rate parameter ⌘ to Equation 1, i.e.,
�w = ⌘ @

@w

logP (y|x). To speed up training, we could esti-
mate the gradient by computing it with a subset (mini-batch) of
examples from the training set, rather than using all examples.

3. SPN Architecture

Figure 2 shows the architecture of our discriminative SPN for
language modeling1. To predict a word (a query variable), we

1https://github.com/stakok/lmspn/blob/master/faq.md contains
more details about the architecture.

use its previous N words as evidence in our SPN. Each previous
word is represented by a K-dimensional vector where K is the
number of words in a vocabulary. Each vector has exactly one
1 at the index corresponding to the word it represents, and 0’s
everywhere else. When we predict the ith word, we have a
vector v

i�j

(1  j  N) at the bottommost layer for each of
the previous N words.

Above the bottommost layer, we have a (hidden) layer of
sum nodes. There are D sum nodes H

j1 . . . HjD

for each vec-
tor v

i�j

. Each sum node H
jl

has an edge connecting it to every
entry in v

i�j

. Let the mth entry in v
i�j

be denoted by vm

i�j

,
and the weight of the edge from H

jl

to vm

i�j

be denoted by
w

lm

. We constrain each weight w
lm

to be the same for each
pair of H

jl

and vm

i�j

(1  j  N). This layer of sum nodes
can be interpreted as compressing each K-dimensional vectors
v
i�j

into a smaller continuous-valued D-dimensional feature
vector (thus gaining the same advantages of [5] as described in
Section 1). Because the weights w

lm

’s are constrained to be
the same between each pair of K-dimensional input vector and
D-dimensional feature vector, we ensure that the weights are
position independent, i.e., the same word will be compressed
into the same feature vector regardless of its position. This
also makes it easier to train the SPN by reducing the number
of weights to be learned.

Above the H
jl

layer, we have another layer of sum nodes.
In this layer, each node M

k

(1  k  K) is connected to every
H

jl

node. Moving up, we have a layer of product nodes. Each
G

k

product node is connected via two edges to an M
k

node.
Each G

k

node transforms the output from its child M
k

node by
squaring it. This helps to capture more complicated dependency
among the input words.

Moving up, we have another layer of sum nodes. Each B
k

node in this layer is connected to an M
k

node and a G
k

node in
the lower layers. Above this, there is a layer of S

k

nodes, each
of which is connected to a B

k

node and an indicator variable y
k

representing a value in our categorical query variable (i.e., the
ith word which we are predicting). y

k

= 1 if the query variable
is the kth word, and y

k

= 0 otherwise. Intuitively, the indicator
variables select which part of the SPN below an S

k

node gets
“activated”. Finally, we have an S node which connects to all
S
k

nodes. When we normalize the weights between S and the
S
k

nodes to sum to 1, S’s output is the conditional probability
of the ith word given its previous N words.

4. Experiments

4.1. Dataset

We performed our experiments on the commonly used Penn
Treebank corpus [15], and adhered to the experimental setup
used in previous work [6, 9]. We used sections 0-20, sections
21-22, and sections 23-24 respectively as training, validation
and test sets. These sections contain segments of news re-
ports from the Wall Street Journal. We treated punctuation as
words, and used the 10,000 most frequent words in the cor-
pus to create a vocabulary. All other words are regarded as
unknown and mapped to the token <unk>. The percentages
of out-of-vocabulary (<unk>) tokens in them are about 5.91%,
6.96% and 6.63% respectively. Thus only a small fraction of
the dataset consists of unknown words.

4.2. Methodology

Using the training set, we learned the weights of all sum
nodes in our SPN described in Section 3. To evaluate

Ratajczak et al., “Sum-Product Networks for Structured Prediction: Context-Specific Deep
Conditional Random Fields”, 2014
Ratajczak et al., “Sum-Product Networks for Sequence Labeling”, 2018
Cheng et al., “Language modeling with Sum-Product Networks”, 2014 93/123

MAP and MMAP : activity recognition

Exploiting part-based decomposability along pixels and time (frames).
IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 2

Fig. 1. Our approach: (a) A video is represented by the counting grid model (CG) of visual words; every grid point u is assigned a distribution of
word counts ⇡uz ; space-time windows Bb are placed across the counting grid and characterized by a Bag-of-Words model in terms of aggregate
distributions of word counts on the grid that fall within the window,

P
u2B

b

⇡uz . (b) Our activity model is the sum-product network (SPN) that
consists of levels of sum and product nodes, ending with space-time windows at terminal nodes; children nodes in the SPN can be shared by
multiple parents. (c) SPN inference amounts to parsing, and identifying foreground (green space-time windows). (d) Localization of the activity
“unloading of the trunk” in an example sequence from the VIRAT dataset [1].

where the weights correspond to the relative significance
of the component in the mixture distribution.

SPN is suitable for capturing alternative structures
of an activity, because the product nodes can encode
particular configurations of BoWs, i.e., primitives of an
activity, whereas the sum nodes can account for alter-
native configurations. Also, SPN can compactly encode
a large number of alternative arrangements of BoWs,
because SPN consists of a number of levels of sums and
products, where children nodes are shared by parents.

When a new video is encountered, we place a set
of space-time windows across the video’s regular grid.
We characterize the windows with BoWs, and use them
as terminal nodes of the SPN. SPN inference amounts
to parsing the SPN graph, i.e., selecting a subset of
optimal sum, product, and terminal nodes (i.e., BoWs)
that yields the explanation of activity occurrence Fig. 1c.
The resulting parse is a tree. The video is assigned the
label of the activity whose parse tree yields the highest
parse score. The selected subset of space-time windows
localize foreground video parts Fig. 1d.

For our evaluation, we have compiled and annotated
a new Volleyball dataset. Our video classification and
activity localization are superior to those of the state of
the art on the benchmarks datasets, including VIRAT [1],
UT-Interactions [6], KTH [7], TRECVID MED 2011 [8],
and Volleyball [9].

Contributions:
• Activity representation that integrates SPN+CG in a

unified framework;
• Introducing new hidden random variables over the

graph connectivity of our SPN+CG model, whereas
previous approaches on SPN including our prelim-
inary work treat SPN edges deterministically.

• Bottom-up and top-down inference algorithm;
• Joint learning of SPN and CG under both weak

supervision, and supervision
• Volleyball dataset.

In the following, Sec. 2 reviews prior work; Sec. 3
specifies SPN; Sec. 5 formulates CG, and a joint model of
SPN and CG; Sections 6 and 7 specify our inference and
learning algorithms; and Sec. 8 presents our experiments.

2 PRIOR WORK
Our literature review is focused on prior work that
models activities using graphical models. Then, we relate
our work to that on aggregating counts of visual words
in the video, and non-linear deep models. Finally, we
present our contributions, and explain what is new in
this paper relative to our preliminary work of [9].

Graphical models have been successfully used for
modeling spatiotemporal structure of activities [10]–[12].
Representative models include Dynamic Bayesian Net-
works [13]–[15], hierarchical graphical models [16]–[18],
AND-OR graphs [19]–[21], and Logic Networks [22]–
[24]. Recognition rates increase even further by ground-
ing graphical models onto object-detector responses [16],
rather than raw video features (e.g., optical flow). How-
ever, graphical models relevant for activity recognition
are typically intractable. As learning algorithms use in-
ference to estimate latent variables on training data un-
der weak supervision, and generally assume exact infer-
ence, their behavior in the context of heuristic inference
is not well understood. In contrast, SPN allows exact
inference under certain conditions that are unrestrictive
for our purposes, as discussed later.

Among the above graphical models, SPNs are most
related to AND-OR graphs, which are also capable of
encoding alternative decompositions and configurations
of activities [19]–[21], [25]–[27]. AND-OR graphs typi-
cally require a manual specification of nodes and graph
connectivity, each associated with hand-picked seman-
tic meaning (with few exceptions [28]). Thus, learn-
ing AND-OR graphs usually amounts to only learning
model parameters of nodes and edges representing user-
specified activity parts. In contrast, SPN has a “deeper”

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 2

Fig. 1. Our approach: (a) A video is represented by the counting grid model (CG) of visual words; every grid point u is assigned a distribution of
word counts ⇡uz ; space-time windows Bb are placed across the counting grid and characterized by a Bag-of-Words model in terms of aggregate
distributions of word counts on the grid that fall within the window,

P
u2B

b

⇡uz . (b) Our activity model is the sum-product network (SPN) that
consists of levels of sum and product nodes, ending with space-time windows at terminal nodes; children nodes in the SPN can be shared by
multiple parents. (c) SPN inference amounts to parsing, and identifying foreground (green space-time windows). (d) Localization of the activity
“unloading of the trunk” in an example sequence from the VIRAT dataset [1].

where the weights correspond to the relative significance
of the component in the mixture distribution.

SPN is suitable for capturing alternative structures
of an activity, because the product nodes can encode
particular configurations of BoWs, i.e., primitives of an
activity, whereas the sum nodes can account for alter-
native configurations. Also, SPN can compactly encode
a large number of alternative arrangements of BoWs,
because SPN consists of a number of levels of sums and
products, where children nodes are shared by parents.

When a new video is encountered, we place a set
of space-time windows across the video’s regular grid.
We characterize the windows with BoWs, and use them
as terminal nodes of the SPN. SPN inference amounts
to parsing the SPN graph, i.e., selecting a subset of
optimal sum, product, and terminal nodes (i.e., BoWs)
that yields the explanation of activity occurrence Fig. 1c.
The resulting parse is a tree. The video is assigned the
label of the activity whose parse tree yields the highest
parse score. The selected subset of space-time windows
localize foreground video parts Fig. 1d.

For our evaluation, we have compiled and annotated
a new Volleyball dataset. Our video classification and
activity localization are superior to those of the state of
the art on the benchmarks datasets, including VIRAT [1],
UT-Interactions [6], KTH [7], TRECVID MED 2011 [8],
and Volleyball [9].

Contributions:
• Activity representation that integrates SPN+CG in a

unified framework;
• Introducing new hidden random variables over the

graph connectivity of our SPN+CG model, whereas
previous approaches on SPN including our prelim-
inary work treat SPN edges deterministically.

• Bottom-up and top-down inference algorithm;
• Joint learning of SPN and CG under both weak

supervision, and supervision
• Volleyball dataset.

In the following, Sec. 2 reviews prior work; Sec. 3
specifies SPN; Sec. 5 formulates CG, and a joint model of
SPN and CG; Sections 6 and 7 specify our inference and
learning algorithms; and Sec. 8 presents our experiments.

2 PRIOR WORK
Our literature review is focused on prior work that
models activities using graphical models. Then, we relate
our work to that on aggregating counts of visual words
in the video, and non-linear deep models. Finally, we
present our contributions, and explain what is new in
this paper relative to our preliminary work of [9].

Graphical models have been successfully used for
modeling spatiotemporal structure of activities [10]–[12].
Representative models include Dynamic Bayesian Net-
works [13]–[15], hierarchical graphical models [16]–[18],
AND-OR graphs [19]–[21], and Logic Networks [22]–
[24]. Recognition rates increase even further by ground-
ing graphical models onto object-detector responses [16],
rather than raw video features (e.g., optical flow). How-
ever, graphical models relevant for activity recognition
are typically intractable. As learning algorithms use in-
ference to estimate latent variables on training data un-
der weak supervision, and generally assume exact infer-
ence, their behavior in the context of heuristic inference
is not well understood. In contrast, SPN allows exact
inference under certain conditions that are unrestrictive
for our purposes, as discussed later.

Among the above graphical models, SPNs are most
related to AND-OR graphs, which are also capable of
encoding alternative decompositions and configurations
of activities [19]–[21], [25]–[27]. AND-OR graphs typi-
cally require a manual specification of nodes and graph
connectivity, each associated with hand-picked seman-
tic meaning (with few exceptions [28]). Thus, learn-
ing AND-OR graphs usually amounts to only learning
model parameters of nodes and edges representing user-
specified activity parts. In contrast, SPN has a “deeper”

IEEE TRANSACTIONS ON PATTERN RECOGNITION AND MACHINE INTELLIGENCE, VOL. X, NO. X, XXX 10

(a) SPN+CG (b) CG

Fig. 4. Our inference on an example video from the VIRAT dataset: (a)
A part of the parse graph using SPN+CG and the inferred foreground
(green). (b) CG is equivalent to the counting grid model of [3] which
selects all space-time windows as foreground.

Sensitivity to model parameters. Tab. 1 shows sen-
sitivity of SPN+CG to a specific choice of the number
of: (a) SPN levels, (b) counting grid points, and (c) grid
points enclosed by each space-time window. As can be
seen, we are relatively insensitive to (a)–(c) over a certain
range of their values. As the SPN height and width
increase, the results improve. However, SPN heights
above 24 levels, and widths above 10 nodes lead to
over fitting. For all our experiments, presented below,
we choose the smallest SPN height of 8 levels and width
of 10 nodes at non-terminal levels, which give equally
good performance as more complex models.

Sensitivity to Number of Training Data. Fig. 5 shows
how the number of training examples affects our av-
erage classification accuracy on the Volleyball dataset.
We examined both learning settings: SPN+CG(WS,V)
and SPN+CG(S,V). As can be seen, our performance im-
proves in both settings as the number of training exam-
ples increases, and becomes saturated when the number
of examples goes above 20. Interestingly, difference in
the performance of SPN+CG(WS,V) and SPN+CG(S,V)
is relatively small for 20 training examples. This suggests
that our approach is able to robustly learn volleyball
activity classes from a relatively small number of exam-
ples. We observed similar behavior of SPN+CG(WS,V)
and SPN+CG(S,V) on the other datasets. For the other
datasets, we did not observe overfitting, i.e., decreasing
performance for larger numbers of training examples.

Supervision vs. Weak Supervision. Tab. 2 shows
that SPN+CG(S) outperforms SPN+CG(WS) in terms of
average classification accuracy. This is expected, since
SPN+CG(S) has access to additional ground-truth an-
notations in training. But the differences in their per-
formance range between 1.6% and 3.1% on the KTH,
UT-Interactions, VIRAT, and Volleyball datasets. This
demonstrates that SPN+CG(WS) successfully relaxes the
requirement for expensive manual annotations of fore-
ground in videos. Confusion matrices of SPN+CG(WS)
and SPN+CG(S) on the four datasets are shown in Fig. 6.

Fig. 5. Average classification accuracy of SPN+CG(WS,V) and
SPN+CG(S,V) on the Volleyball dataset as a function of the number of
training examples.

Tab. 3 presents recall and precision of SPN+CG(WS)
and SPN+CG(S) on the UT-Interactions, VIRAT, and
Volleyball datasets. Both approaches achieve the highest
F-measure when they use a hierarchy of space-time win-
dows with sizes defined by varying m={2, 3, 4}. As ex-
pected, SPN+CG(WS) yields worse foreground localiza-
tion. In some error cases we observed that SPN+CG(WS)
identified informative parts of background, providing
contextual cues for recognition, as foreground. Consid-
ering that SPN+CG(WS) is trained without any access
to foreground annotations, its localization performance
is quite good in comparison to that of SPN+CG(S).

Comparisons. Tab. 2 shows that SPN+CG outper-
forms the baselines SPN+CG+Cubes(S), SPN+LR, and
CG. In particular, on the Volleyball dataset, accuracy of
SPN+CG(S) and SPN+CG(WS) is larger by 12.5% and
10.8% than that of CG, respectively, which quantifies the
advantages of grounding SPN onto the counting grid
model of [3], even when our deep model is trained under
weak supervision. As can be seen, replacing the counting
grid model with logistic regression in SPN+LR decreases
performance. Also, using the cuboid spatiotemporal fea-
tures in SPN+CG+Cubes(S) is inferior to our weakly
supervised SPN+CG(WS).

Tab. 2 also shows a comparison with prior work: (i)
SVM of a Bag-of-Word of SCISA features [36]; (ii) SVM
of space-time grids of local features [29]; (iii) SVM with a
kernel that accounts for spatiotemporal matches of inter-
est points [41]; (iv) pLSA and LDA models [31]; (v) Con-
volutional neural networks [37]; and (vi) Action-bank
[44]. Interestingly, even without deep learning of local
features, SPN+CG+Cubes outperforms the approaches
of [29], [31], [36], [37], [41]. The comparison with the
action-bank of [44] is unfair to us, hence our lower
performance, since the approach of [44] uses a higher
level of supervision in training for expressing human
activities in terms of simpler actions. Unlike [44], we
do not have access to annotations of simpler actions in
training.

Valid vs. Invalid Graph Structure. Tab. 4 shows
the average classification accuracy, precision and recall
of SPN+CG(S,V) and SPN+CG(S,I) on the VIRAT, UT-
Interactions, and Volleyball datasets. As can be seen,
SPN+CG(S,I) is worse for each evaluation metric. One
reason is that the graph connectivity of SPN+CG(S,I)

Amer et al., “Sum Product Networks for Activity Recognition”, 2015
Wang et al., “Hierarchical spatial sum–product networks for action recognition in still images”,
2016
Chiradeep Roy et al., “Explainable Activity Recognition in Videos using Dynamic Cutset Networks”,
2019 94/123

ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given
a distribution p over the input features

⇒ missing values at test time
⇒ exploratory classifier analysis

E
xm∼pθ(xm|xo)

[
fk
ϕ (x

m,xo)
]

Closed form moments for f and p as structured decomposable
circuits with same v-tree

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 95/123

ADV inference : preference learning

Preferences and rankings as logical
constraints

Structured decomposable circuits for
inference over structured spaces

SOTA on modeling densities over rankings

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “A Tractable Probabilistic Model for Subset Selection.”, 2017 96/123

ADV inference : routing

Decomposing complex (conditional) probability
spaces
via circuits

Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018
Shen et al., “Structured Bayesian Networks: From Inference to Learning with Routes”, 2019

97/123

Probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 98/123

and more…

fault prediction [Nath et al. 2016]

computational psychology [Joshi et al. 2018]

biology [Butz et al. 2018]

low-energy prediction [Galindez Olascoaga et al. 2019; Shah et al. 2019]

calibration of analog/RF circuits [Andraud et al. 2018]

stochastic constraint optimization [Latour et al. 2017]

neuro-symbolic learning [Xu et al. 2018]

probabilistic and symbolic reasoning integration [Li 2015]

relational learning [Broeck et al. 2011; Domingos et al. 2012; Broeck 2013; Nath et al. 2014, 2015;

Niepert et al. 2015; Van Haaren et al. 2015]

99/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

takeaway #1 tractability is a spectrum
100/123

m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

takeaway #2: you can be both tractable and expressive
101/123

×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning

102/123

Challenge #1
hybridizing tractable and intractable models

Hybridize probabilistic inference:
tractable models inside intractable loops
and intractable small boxes glued by tractable inference!

103/123

Challenge #2
scaling tractable learning

Learn tractable models
onmillions of datapoints
and thousands of features
in tractable time!

104/123

Challenge #3
advanced and automated reasoning

Move beyond single probabilistic queries
towards fully automated reasoning!

105/123

more links

github.com/arranger1044/awesome-spn

Libraries

Juice.jl a library for advanced logical and probabilistic inference with circuits in Julia SOON!

SPFlow easy and extensible python library for SPNs github.com/SPFlow/SPFlow

Libra structure learning algorithms in OCaml libra.cs.uoregon.edu

106/123

github.com/arranger1044/awesome-spn
github.com/SPFlow/SPFlow
libra.cs.uoregon.edu

Can your VAE
inpaint any
pixel patch?

t'! 107/123

Can your Flow
flawles deal
with missing values?

t'! 108/123

Can you obtain
calibrated
uncertainties
from your GAN?

t'! 109/123

t'! tractable probabilistic
inference meeting !

11 Dec. 2019 from 7pm
Room 223-224

NeurIPS 2019, Vancouver

sites.google.com/view/tprime2019

Join the discussion on the current state
of probabilistic inference
and learning at the first

relationalAI 110/123

References I
⊕ Cooper, Gregory F (1990). “The computational complexity of probabilistic inference using Bayesian belief networks”. In: Artificial intelligence 42.2-3, pp. 393–405.

⊕ Dagum, Paul and Michael Luby (1993). “Approximating probabilistic inference in Bayesian belief networks is NP-hard”. In: Artificial intelligence 60.1, pp. 141–153.

⊕ Zhang, Nevin Lianwen and David Poole (1994). “A simple approach to Bayesian network computations”. In: Proceedings of the Biennial Conference-Canadian Society for Computational
Studies of Intelligence, pp. 171–178.

⊕ Roth, Dan (1996). “On the hardness of approximate reasoning”. In: Artificial Intelligence 82.1–2, pp. 273–302.

⊕ Dechter, Rina (1998). “Bucket elimination: A unifying framework for probabilistic inference”. In: Learning in graphical models. Springer, pp. 75–104.

⊕ Dasgupta, Sanjoy (1999). “Learning polytrees”. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 134–141.

⊕ Meilă, Marina and Michael I. Jordan (2000). “Learning with mixtures of trees”. In: Journal of Machine Learning Research 1, pp. 1–48.

⊕ Bach, Francis R. and Michael I. Jordan (2001). “Thin Junction Trees”. In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.

⊕ Darwiche, Adnan (2001). “Recursive conditioning”. In: Artificial Intelligence 126.1-2, pp. 5–41.

⊕ Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). “Generalized belief propagation”. In: Advances in neural information processing systems, pp. 689–695.

⊕ Chickering, Max (2002). “The WinMine Toolkit”. In: Microsoft, Redmond.

⊕ Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264. 111/123

References II
⊕ Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). “Iterative join-graph propagation”. In: Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan

Kaufmann Publishers Inc., pp. 128–136.

⊕ Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM.

⊕ Sang, Tian, Paul Beame, and Henry A Kautz (2005). “Performing Bayesian inference by weighted model counting”. In: AAAI. Vol. 5, pp. 475–481.

⊕ Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). “Compiling relational Bayesian networks for exact inference”. In: International Journal of Approximate Reasoning 42.1-2,
pp. 4–20.

⊕ Park, James D and Adnan Darwiche (2006). “Complexity results and approximation strategies for MAP explanations”. In: Journal of Artificial Intelligence Research 21, pp. 101–133.

⊕ De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). “ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.”. In: IJCAI. Vol. 7. Hyderabad, pp. 2462–2467.

⊕ Dechter, Rina and Robert Mateescu (2007). “AND/OR search spaces for graphical models”. In: Artificial intelligence 171.2-3, pp. 73–106.

⊕ Kulesza, A. and F. Pereira (2007). “Structured Learning with Approximate Inference”. In: Advances in Neural Information Processing Systems 20. MIT Press, pp. 785–792.

⊕ Riguzzi, Fabrizio (2007). “A top down interpreter for LPAD and CP-logic”. In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109–120.

⊕ Lowd, Daniel and Pedro Domingos (2008). “Learning Arithmetic Circuits”. In: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence. UAI’08. Helsinki,
Finland: AUAI Press, pp. 383–392. ISBN: 0-9749039-4-9. URL: http://dl.acm.org/citation.cfm?id=3023476.3023522.

112/123

http://dl.acm.org/citation.cfm?id=3023476.3023522

References III
⊕ Olteanu, Dan and Jiewen Huang (2008). “Using OBDDs for efficient query evaluation on probabilistic databases”. In: International Conference on Scalable Uncertainty Management.

Springer, pp. 326–340.

⊕ Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

⊕ Choi, Arthur and Adnan Darwiche (2010). “Relax, compensate and then recover”. In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167–180.

⊕ Lowd, Daniel and Pedro Domingos (2010). “Approximate inference by compilation to arithmetic circuits”. In: Advances in Neural Information Processing Systems, pp. 1477–1485.

⊕ Broeck, Guy Van den et al. (2011). “Lifted probabilistic inference by first-order knowledge compilation”. In: Proceedings of the Twenty-Second international joint conference on Artificial
Intelligence. AAAI Press/International Joint Conferences on Artificial Intelligence; Menlo …, pp. 2178–2185.

⊕ Campos, Cassio Polpo de (2011). “New complexity results for MAP in Bayesian networks”. In: IJCAI. Vol. 11, pp. 2100–2106.

⊕ Larochelle, Hugo and Iain Murray (2011). “The Neural Autoregressive Distribution Estimator”. In: International Conference on Artificial Intelligence and Statistics, pp. 29–37.

⊕ Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

⊕ Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). “Introduction to dual decomposition for inference”. In: Optimization for Machine Learning 1, pp. 219–254.

⊕ Domingos, Pedro and William Austin Webb (2012). “A tractable first-order probabilistic logic”. In: Twenty-Sixth AAAI Conference on Artificial Intelligence.

⊕ Gens, Robert and Pedro Domingos (2012). “Discriminative Learning of Sum-Product Networks”. In: Advances in Neural Information Processing Systems 25, pp. 3239–3247. 113/123

References IV
⊕ Broeck, Guy Van den (2013). “Lifted inference and learning in statistical relational models”. PhD thesis. Ph. D. Dissertation, KU Leuven.

⊕ Gens, Robert and Pedro Domingos (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

⊕ Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With Arithmetic Circuits”. In: Proceedings of the 16th International Conference on Artificial
Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.

⊕ Peharz, Robert, Bernhard Geiger, and Franz Pernkopf (2013). “Greedy Part-Wise Learning of Sum-Product Networks”. In: ECML-PKDD 2013.

⊕ Cheng, Wei-Chen et al. (2014). “Language modeling with Sum-Product Networks”. In: INTERSPEECH 2014, pp. 2098–2102.

⊕ Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural information processing systems, pp. 2672–2680.

⊕ Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014.

⊕ Kisa, Doga et al. (July 2014a). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning
(KR). Vienna, Austria.

⊕ — (July 2014b). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR).
Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.

⊕ Martens, James and Venkatesh Medabalimi (2014). “On the Expressive Efficiency of Sum Product Networks”. In: CoRR abs/1411.7717.

⊕ Nath, Aniruddh and Pedro Domingos (2014). “Learning Tractable Statistical Relational Models”. In: Workshop on Learning Tractable Probabilistic Models, ICML 2014. 114/123

http://starai.cs.ucla.edu/papers/KisaKR14.pdf

References V
⊕ Peharz, Robert, Robert Gens, and Pedro Domingos (2014a). “Learning Selective Sum-Product Networks”. In: Workshop on Learning Tractable Probabilistic Models. LTPM.

⊕ Peharz, Robert et al. (2014b). “Modeling speech with sum-product networks: Application to bandwidth extension”. In: ICASSP2014.

⊕ Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees”. In:
Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.

⊕ Ratajczak, Martin, S Tschiatschek, and F Pernkopf (2014). “Sum-Product Networks for Structured Prediction: Context-Specific Deep Conditional Random Fields”. In: Proc Workshop
on Learning Tractable Probabilistic Models 1, pp. 1–10.

⊕ Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backprop. and approximate inference in deep generative models”. In: arXiv preprint
arXiv:1401.4082.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML 2014.

⊕ Amer, Mohamed and Sinisa Todorovic (2015). “Sum Product Networks for Activity Recognition”. In: Pattern Analysis and Machine Intelligence, IEEE Transactions on.

⊕ Bekker, Jessa et al. (2015). “Tractable Learning for Complex Probability Queries”. In: Advances in Neural Information Processing Systems 28 (NIPS).

⊕ Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (2015). “Importance weighted autoencoders”. In: arXiv preprint arXiv:1509.00519.

⊕ Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015). “Tractable learning for structured probability spaces: A case study in learning preference distributions”. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI). 115/123

References VI
⊕ Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. ISBN:

978-1-57735-738-4.

⊕ Fierens, Daan et al. (May 2015). “Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”. In: Theory and Practice of Logic Programming 15 (03),
pp. 358–401. ISSN: 1475-3081. DOI: 10.1017/S1471068414000076. URL: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.

⊕ Germain, Mathieu et al. (2015). “MADE: Masked Autoencoder for Distribution Estimation”. In: CoRR abs/1502.03509.

⊕ Li, Weizhuo (2015). “Combining sum-product network and noisy-or model for ontology matching.”. In: OM, pp. 35–39.

⊕ Nath, Aniruddh and Pedro Domingos (2015). “Learning Relational Sum-Product Networks”. In: Proceedings of the AAAI Conference on Artificial Intelligence.

⊕ Niepert, Mathias and Pedro Domingos (2015). “Learning and inference in tractable probabilistic knowledge bases”. In: AUAI Press.

⊕ Peharz, Robert (2015). “Foundations of Sum-Product Networks for Probabilistic Modeling”. PhD thesis. Graz University of Technology, SPSC.

⊕ Peharz, Robert et al. (2015). “On Theoretical Properties of Sum-Product Networks”. In: The Journal of Machine Learning Research.

⊕ Van Haaren, Jan et al. (2015). “Lifted Generative Learning of Markov Logic Networks”. In: Machine Learning 103.1, pp. 27–55. DOI: 10.1007/s10994-015-5532-x.

⊕ Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In: ECML-PKDD 2015.

⊕ Vlasselaer, Jonas et al. (2015). “Anytime Inference in Probabilistic Logic Programs with Tp-compilation”. In: Proceedings of 24th International Joint Conference on Artificial Intelligence
(IJCAI). URL: http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf. 116/123

https://doi.org/10.1017/S1471068414000076
http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf
https://doi.org/10.1007/s10994-015-5532-x
http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf

References VII
⊕ Zhao, Han, Mazen Melibari, and Pascal Poupart (2015). “On the Relationship between Sum-Product Networks and Bayesian Networks”. In: ICML.

⊕ Zohrer, Matthias, Robert Peharz, and Franz Pernkopf (2015). “Representation learning for single-channel source separation and bandwidth extension”. In: Audio, Speech, and
Language Processing, IEEE/ACM Transactions on 23.12, pp. 2398–2409.

⊕ Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). “On the expressive power of deep learning: A tensor analysis”. In: Conference on Learning Theory, pp. 698–728.

⊕ Friesen, Abram L and Pedro Domingos (2016). “Submodular Sum-product Networks for Scene Understanding”. In:

⊕ Jaini, Priyank et al. (2016). “Online Algorithms for Sum-Product Networks with Continuous Variables”. In: Probabilistic Graphical Models - Eighth International Conference, PGM 2016,
Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228–239. URL: http://jmlr.org/proceedings/papers/v52/jaini16.html.

⊕ Nath, Aniruddh and Pedro M. Domingos (2016). “Learning Tractable Probabilistic Models for Fault Localization”. In: CoRR abs/1507.01698. URL:
http://arxiv.org/abs/1507.01698.

⊕ Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel recurrent neural networks”. In: arXiv preprint arXiv:1601.06759.

⊕ Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). “Solving PP-PP-complete problems using knowledge compilation”. In: Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning.

⊕ Peharz, Robert et al. (2016). “On the Latent Variable Interpretation in Sum-Product Networks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. URL:
http://arxiv.org/abs/1601.06180.

⊕ Pronobis, A. and R. P. N. Rao (2016). “Learning Deep Generative Spatial Models for Mobile Robots”. In: ArXiv e-prints. arXiv: 1610.02627 [cs.RO]. 117/123

http://jmlr.org/proceedings/papers/v52/jaini16.html
http://arxiv.org/abs/1507.01698
http://arxiv.org/abs/1601.06180
https://arxiv.org/abs/1610.02627

References VIII
⊕ Rahman, Tahrima and Vibhav Gogate (2016). “Learning Ensembles of Cutset Networks”. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix,

Arizona: AAAI Press, pp. 3301–3307. URL: http://dl.acm.org/citation.cfm?id=3016100.3016365.

⊕ Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). “Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks”. In: Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2016). “Discriminative Structure Learning of Arithmetic Circuits”. In: Proceedings of the 19th International Conference on Artificial
Intelligence and Statistics, pp. 1506–1514.

⊕ Sguerra, Bruno Massoni and Fabio G Cozman (2016). “Image classification using sum-product networks for autonomous flight of micro aerial vehicles”. In: 2016 5th Brazilian
Conference on Intelligent Systems (BRACIS). IEEE, pp. 139–144.

⊕ Sharir, Or et al. (2016). “Tractable generative convolutional arithmetic circuits”. In: arXiv preprint arXiv:1610.04167.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). “Tractable Operations for Arithmetic Circuits of Probabilistic Models”. In: Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936–3944.

⊕ Vlasselaer, Jonas et al. (Mar. 2016). “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”. In: Artificial Intelligence 232, pp. 43 –53. ISSN: 0004-3702. DOI:
10.1016/j.artint.2015.12.001.

⊕ Wang, Jinghua and Gang Wang (2016). “Hierarchical spatial sum–product networks for action recognition in still images”. In: IEEE Transactions on Circuits and Systems for Video
Technology 28.1, pp. 90–100.

⊕ Yuan, Zehuan et al. (2016). “Modeling spatial layout for scene image understanding via a novel multiscale sum-product network”. In: Expert Systems with Applications 63, pp. 231–240.118/123

http://dl.acm.org/citation.cfm?id=3016100.3016365
https://doi.org/10.1016/j.artint.2015.12.001

References IX
⊕ Zhao, Han, Pascal Poupart, and Geoffrey J Gordon (2016a). “A Unified Approach for Learning the Parameters of Sum-Product Networks”. In: Advances in Neural Information

Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433–441.

⊕ Zhao, Han et al. (2016b). “Collapsed Variational Inference for Sum-Product Networks”. In: In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.

⊕ Alemi, Alexander A et al. (2017). “Fixing a broken ELBO”. In: arXiv preprint arXiv:1711.00464.

⊕ Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). “Optimal feature selection for decision robustness in Bayesian networks”. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI).

⊕ Conaty, Diarmaid, Denis Deratani Mauá, and Cassio Polpo de Campos (2017). “Approximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks”. In:
Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence. Ed. by Gal Elidan and Kristian Kersting. AUAI Press, pp. 322–331.

⊕ Di Mauro, Nicola et al. (2017). “Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks”. In: ECML-PKDD 2017.

⊕ Latour, Anna et al. (Aug. 2017). “Combining Stochastic Constraint Optimization and Probabilistic Programming: From Knowledge Compilation to Constraint Solving”. In: Proceedings
of the 23rd International Conference on Principles and Practice of Constraint Programming (CP). DOI: 10.1007/978-3-319-66158-2_32.

⊕ Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017a). “Learning the structure of probabilistic sentential decision diagrams”. In: Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence (UAI).

⊕ Liang, Yitao and Guy Van den Broeck (Aug. 2017b). “Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams”. In: IJCAI 2017
Workshop on Explainable Artificial Intelligence (XAI). URL: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf. 119/123

https://doi.org/10.1007/978-3-319-66158-2_32
http://starai.cs.ucla.edu/papers/LiangXAI17.pdf

References X
⊕ Pronobis, Andrzej, Francesco Riccio, and Rajesh PN Rao (2017). “Deep spatial affordance hierarchy: Spatial knowledge representation for planning in large-scale environments”. In:

ICAPS 2017 Workshop on Planning and Robotics, Pittsburgh, PA, USA.

⊕ Rathke, Fabian, Mattia Desana, and Christoph Schnörr (2017). “Locally adaptive probabilistic models for global segmentation of pathological oct scans”. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184.

⊕ Salimans, Tim et al. (2017). “PixelCNN++: Improving the PixelCNN with discretized logistic mixture likelihood and other modifications”. In: arXiv preprint arXiv:1701.05517.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2017). “A Tractable Probabilistic Model for Subset Selection.”. In: UAI.

⊕ Van den Broeck, Guy and Dan Suciu (Aug. 2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. DOI:
10.1561/1900000052. URL: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.

⊕ Andraud, Martin et al. (2018). “On the use of Bayesian Networks for Resource-Efficient Self-Calibration of Analog/RF ICs”. In: 2018 IEEE International Test Conference (ITC). IEEE,
pp. 1–10.

⊕ Butz, Cory J et al. (2018). “Efficient Examination of Soil Bacteria Using Probabilistic Graphical Models”. In: International Conference on Industrial, Engineering and Other Applications of
Applied Intelligent Systems. Springer, pp. 315–326.

⊕ Choi, YooJung and Guy Van den Broeck (2018). “On robust trimming of Bayesian network classifiers”. In: arXiv preprint arXiv:1805.11243.

⊕ Friedman, Tal and Guy Van den Broeck (Dec. 2018). “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”. In: Advances in Neural Information Processing
Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf. 120/123

https://doi.org/10.1561/1900000052
http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf

References XI
⊕ Joshi, Himanshu, Paul S Rosenbloom, and Volkan Ustun (2018). “Exact, tractable inference in the Sigma cognitive architecture via sum-product networks”. In: Advances in Cognitive

Systems.

⊕ Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018). “Discriminative Training of Sum-Product Networks by Extended Baum-Welch”. In: International Conference on
Probabilistic Graphical Models, pp. 356–367.

⊕ Ratajczak, Martin, Sebastian Tschiatschek, and Franz Pernkopf (2018). “Sum-Product Networks for Sequence Labeling”. In: arXiv preprint arXiv:1807.02324.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2018). “Conditional PSDDs: Modeling and learning with modular knowledge”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

⊕ Xu, Jingyi et al. (July 2018). “A Semantic Loss Function for Deep Learning with Symbolic Knowledge”. In: Proceedings of the 35th International Conference on Machine Learning (ICML).

⊕ Zheng, Kaiyu, Andrzej Pronobis, and Rajesh PN Rao (2018). “Learning graph-structured sum-product networks for probabilistic semantic maps”. In: Thirty-Second AAAI Conference on
Artificial Intelligence.

⊕ Chiradeep Roy, Tahrima Rahman and Vibhav Gogate (2019). “Explainable Activity Recognition in Videos using Dynamic Cutset Networks”. In: TPM2019.

⊕ Dai, Bin and David Wipf (2019). “Diagnosing and enhancing vae models”. In: arXiv preprint arXiv:1903.05789.

⊕ Galindez Olascoaga, Laura Isabel et al. (2019). “Towards Hardware-Aware Tractable Learning of Probabilistic Models”. In: Proceedings of the ICML Workshop on Tractable Probabilistic
Modeling (TPM). URL: http://starai.cs.ucla.edu/papers/GalindezTPM19.pdf.

⊕ Ghosh, Partha et al. (2019). “From variational to deterministic autoencoders”. In: arXiv preprint arXiv:1903.12436. 121/123

http://starai.cs.ucla.edu/papers/GalindezTPM19.pdf

References XII
⊕ Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). “Symbolic Exact Inference for Discrete Probabilistic Programs”. In: arXiv preprint arXiv:1904.02079.

⊕ Khosravi, Pasha et al. (2019a). “On Tractable Computation of Expected Predictions”. In: Advances in Neural Information Processing Systems, pp. 11167–11178.

⊕ Khosravi, Pasha et al. (2019b). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: arXiv preprint arXiv:1903.01620.

⊕ Khosravi, Pasha et al. (2019c). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI).

⊕ Kossen, Jannik et al. (2019). “Structured Object-Aware Physics Prediction for Video Modeling and Planning”. In: arXiv preprint arXiv:1910.02425.

⊕ Liang, Yitao and Guy Van den Broeck (2019). “Learning Logistic Circuits”. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI).

⊕ Peharz, Robert et al. (2019). “Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic Deep Learning”. In: Uncertainty in Artificial Intelligence.

⊕ Shah, Nimish et al. (2019). “ProbLP: A framework for low-precision probabilistic inference”. In: Proceedings of the 56th Annual Design Automation Conference 2019. ACM, p. 190.

⊕ Shao, Xiaoting et al. (2019). “Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures”. In: arXiv preprint arXiv:1905.08550.

⊕ Shen, Yujia et al. (2019). “Structured Bayesian Networks: From Inference to Learning with Routes”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI).

⊕ Shih, Andy et al. (2019). “Smoothing Structured Decomposable Circuits”. In: arXiv preprint arXiv:1906.00311.

122/123

References XIII

⊕ Stelzner, Karl, Robert Peharz, and Kristian Kersting (2019). “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”. In: Proceedings of the 36th International Conference on
Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR,
pp. 5966–5975. URL: http://proceedings.mlr.press/v97/stelzner19a.html.

⊕ Tan, Ping Liang and Robert Peharz (2019). “Hierarchical Decompositional Mixtures of Variational Autoencoders”. In: Proceedings of the 36th International Conference on Machine
Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 6115–6124. URL:
http://proceedings.mlr.press/v97/tan19b.html.

⊕ Trapp, Martin et al. (2019). “Bayesian Learning of Sum-Product Networks”. In: Advances in neural information processing systems (NeurIPS).

⊕ Vergari, Antonio et al. (2019). “Automatic Bayesian density analysis”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33, pp. 5207–5215.

123/123

http://proceedings.mlr.press/v97/stelzner19a.html
http://proceedings.mlr.press/v97/tan19b.html

	Why tractable inference?
	Probabilistic Circuits
	Building circuits
	Applications
	References

