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The Alphabet Soup of probabilistic models
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Intractable and tractable models
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tractability is a spectrum
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Expressive models without compromises
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a unifying framework for tractable models
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Why tractable inference?

or expressiveness vs tractability
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Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Building circuits

learning them from data and compiling other models

Applications

what are circuits useful for
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Why tractable inference?

or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

©fineartamerica.com
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

qo: Which day is most likely to have a traffic jam on my
route to campus?
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

qo: Which day is most likely to have a traffic jam on my
route to campus?

—> fitting a predictive model!

©fineartamerica.com
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

qo: Which day is most likely to have a traffic jam on my
route to campus?
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

qo: Which day is most likely to have a traffic jam on my
route to campus?

—> answering probabilistic queries on a probabilistic
model of the world m

©fineartamerica.com

qi(m) =2 go(m) =72
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

X = {Day, Time, Jamgsy,1, Jamsy2, . . ., Jamsyn }

q(m) = pm(Day = Mon, Jamajma = 1)

©fineartamerica.com
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Alma Str.?

X = {Day, Time, Jamgsy,1, Jamsy2, . . ., Jamsyn }

q(m) = pm(Day = Mon, Jamajma = 1)

=—> marginals

©fineartamerica.com
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day, Time, Jams,1, Jamsyro, . . ., Jamsen }

qQ(m) = arginaxy pm(Day =dA \/ieroute JamStm’)

©fineartamerica.com
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day, Time, Jams,1, Jamsyro, . . ., Jamsen }

qQ(m) = arginaxy pm(Day =dA \/ieroute JamStm’)

©fineartamerica.com

=—> marginals + MAP + logical events
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢/(m) runs in time O(poly(|m])).
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢/(m) runs in time O(poly(|m])).

—> often poly will in fact be linear!

=—> Note: if M and O are compact in the number of random variables X,
thatis, |m|, |q| € O(poly(|X|)), then query time is O(poly(|X])).
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢/(m) runs in time O(poly(|m])).

—> often poly will in fact be linear!
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Why exact inference?

or “What about approximate inference?”

1. No need for approximations when we can be exact
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Why exact inference?

or “What about approximate inference?”

1. No need for approximations when we can be exact

=> do we lose some expressiveness?

11123



Why exact inference?
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2. We can do exact inference in approximate models [pechter et al. 2002; Choi
etal. 2010; Lowd et al. 2010; Sontag et al. 2011, Friedman et al. 2018]

11123



Why exact inference?

or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [pechter et al. 2002; Choi
etal. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] =>  Chaining approximations is flying with a blindfold on
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Why exact inference?

or “What about approximate inference?”

1. No need for approximations when we can be exact

2. We can do exact inference in approximate models [pechter et al. 2002; Choi
etal. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

3. Approximations shall come with guarantees

4. Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007]

5. Approximations can be intractable as well [pagum et al. 1993; Roth 1996]
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1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

We introduce probabilistic circuits as a unified

framework for tractable probabilistic modeling

12123



Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

© fineartamerica.com
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

X = {Day, Time, Jamajma, Jamsyo, . . ., Jamsyn }

qz3(m) = pp (X = {Mon, 12.00, 1,0, ...,0})
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Alma Str.?

X = {Day, Time, Jamajma, Jamsyo, . . ., Jamsyn }
qz3(m) = pp (X = {Mon, 12.00, 1,0, ...,0})

..fundamental in maximum likelihood learning
GMLE
m

— argman HXGD pm (X, 0) © fineartamerica.com
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Generative Adversarial Networks

ming maxy Exp,,,,x) [108 Dp(X)] + Egup) [log(1 — Dy(Gy(2)))]

Gy Dy

Goodfellow et al., “Generative adversarial nets”, 2014 14/123
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ming maxy Exp,,,,x) [108 Dp(X)] + Egup) [log(1 — Dy(Gy(2)))]

no explicit likelihood!
=> adversarial training instead of MLE

—> no tractable EVI Gg ng

good sample quality
—> butlots of samples needed for MC

B unstable training —> mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 15/123



Variational Autoencoders

po(x) = [ po(x | 2)p(z)dz —

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 16,123
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log Py (%) > By, (aix) [L0gpo(x | 2)] — KL(g4(2 | %)||p(2))

an explicit likelihood model! —0
B ... but computing log py(x) is intractable
=—> an infinite and uncountable mixture
=—> no tractable EVI
we need to optimize the ELBO...

=> which is “tricky” [Alemi et al. 2017, Dai —
etal. 2019; Ghosh et al. 2019]

17123



Autoregressive models

po(x) = [, po(zi | 1, 22,...,2i-1)

an explicit likelihood!

B ..asaproductof factors —>  yqctable EVII
B many neural variants
NADE [Larochelle et al. 2011],
MADE [Germain et al. 2015]

PixelCNN [Salimans et al. 2017],
PixelRNN [Oord et al. 2016]

181123



Marginal queries (MAR)

q;: What is the probability that today is a Monday e
#2068 and there is a traffic jam esk on Alma Str.?

© fineartamerica.com
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Marginal queries (MAR)

q;: What is the probability that today is a Monday e
#2068 and there is a traffic jam esk on Alma Str.?

ql(m) = pm(Day = MonaJamAlma = ]-)

© fineartamerica.com
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Marginal queries (MAR)

q;: What is the probability that today is a Monday e
#2068 and there is a traffic jam esk on Alma Str.?

ql(m) = pm(Day = MonaJamAlma = ]-)

General: py,(e) = [ pm(e, H) dH

where EC X, H=X\E

© fineartamerica.com
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Marginal queries (MAR)

q1: What is the probability that today is a Monday e
#2068 and there is a traffic jam esk on Alma Str.?

ql(m) = pm(Day = MonaJamAlma = ]-)

General: py,(e) = [ pm(e, H) dH
and if you can answer MAR queries,
then you can also do conditional queries (CON):

pm(q: )

pm(d]e) = Pm(e)

© fineartamerica.com
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Autoregressive models

po(x) = [, po(zi | 1, 22,...,2i-1)

an explicit likelihood!
B ..asaproductof factors —>  yqctable EVII

20123
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po(x) = [, po(zi | 1, 22,...,2i-1)

an explicit likelihood!
B ..asaproductof factors —>  yqctable EVII

B ... but we need to fix a variable ordering
—> only some MAR queries are tractable
for one ordering

21123



Normalizing flows

px(x) = pa(f~1(00) [det (41

an explicit likelihood —>  tractable EVII
... computing the determinant of the Jacobian f f_l

22123



mwwns ...“..-..lb J.v..-

px(x) = pa(f~(0) [aer (%))

an explicit likelihood —>  tractable EVII
... computing the determinant of the Jacobian

B MAR s generally intractable
=> unless f is a “trivial” bijection

23123



Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables

Edges: dependencies 6“@
+ () @‘@

Inference: conditioning [Darwiche 2001; Sang et al. 2005]
elimination [Zhang et al. 1994, Dechter 1998]

B message passing [vedidia et al. 2001, Dechter
et al. 2002; Choi et al. 2010; Sontag et al. 2011]

24123



Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-complete
=—>  [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately
within a relative error of 2 * for any fixed € is NP-hard
—> [Dagum et al. 1993; Roth 1996]

25123



Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical model m?
Formally, the minimum width of any tree-decomposition of m.

Fixed-parameter tractable: MAR and CON on a graphical model m with
treewidth w take time O(|X| - 2*), which is linear for fixed width w

[Dechter 1398; Koller et al. 2009)]. => what about bounding the treewidth by design?

26/123



Low-treewidth PGMs

Trees Polytrees Thin Junction trees
[Meild et al. 2000] [Dasgupta 1999] [Bach et al. 2001]

If treewidth is bounded (e.g. = 20), exact MAR and CON inference is possible in practice

27123



What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

IR

@@

Bounded-treewidth PGMs lose the ability to represent all possible distributions ...

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014

28123



Mixtures as a convex combination of £ (simpler) probabilistic models

0.15 j)(X> = W11 (X)+w2])2(X)

00

0.05

0.00

EVI, MAR, CON queries scale linearly in k

29123



Mixtures as a convex combination of £ (simpler) probabilistic models

0.20 —p Z - X|Z -
3 -B) (X2 - B

0.00

—10 -5 0 5 10
Xi
Mixtures are marginalizing a categorical latent variable 7 with k values

—> increased expressiveness
29/123



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

=> mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 30123



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions
=> mixture of Gaussians can approximate any distribution!
Expressive efficiency (succinctness) Ability to represent rich and effective classes of

functions compactly
—> but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 30123



How expressive efficient are mixture?

O b VW
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How expressive efficient are mixture?
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How expressive efficient are mixture?
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How expressive efficient are mixture?
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How expressive efficient are mixture?

=> stack mixtures like in deep generative models 31123



Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs5: Which combination of roads is most likely to be
jammed on Monday at 9am?

©fineartamerica.com
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmax; pum (1. J2, .. | Day=M, Time=9)

©fineartamerica.com
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs5: Which combination of roads is most likely to be
jammed on Monday at 9am?

-(m) = argmas; pun (i1, ja. ... | Day=M, Time =9)

General: argmax, pm(q | )

where QUE =X

©fineartamerica.com
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs5: Which combination of roads is most likely to be
jammed on Monday at 9am?

...intractable for latent variable models!

mc:;xxpm(q |e) = m(iaX;pm(q,Z | e)

#* Zméixpm(q,z | e)

©fineartamerica.com
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Marginal MAP (MMAP)

aka Bayesian Network MAP

Qg: Which combination of roads is most likely to be

jammed ew-hondey at 9am?

©fineartamerica.com
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Marginal MAP (MMAP)

aka Bayesian Network MAP

Qg: Which combination of roads is most likely to be

jammed ew-hondey at 9am?

qs(m) = argmax; pm(j1,J2,..- | Time=9)

©fineartamerica.com
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Marginal MAP (MMAP)

aka Bayesian Network MAP

Qg: Which combination of roads is most likely to be

jammed ew-hondey at 9am?
qs(m) = argmax; pm(j1,J2,..- | Time=9)

General: argmax, pm(q | )

= argman thm(q7 h | e)

where QUHUE =X

©fineartamerica.com
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Marginal MAP (MMAP)

aka Bayesian Network MAP

Qg: Which combination of roads is most likely to be

jammed ew-hondey at 9am?
qs(m) = argmax; pm(j1,J2,..- | Time=9)

=> NP-complete [Park et al. 2006]

—> NP-hard for trees [Campos 2011]

©fineartamerica.com

=—> NP-hard even for Naive Bayes [ibid.]
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Advanced queries

Qo: Which day is most likely to have a traffic jam on
my route to work?

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34n2
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Advanced queries

Qo: Which day is most likely to have a traffic jam on
my route to work?

q»(m) = argmaxy pm(Day = dAV, ¢ oute JaMstr i)

=—> marginals + MAP + logical events

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34n2
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Advanced queries

Qo: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Palo Verde than Midtown?

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34n2
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Advanced queries

Qo: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Palo Verde than Midtown?

=> counts + group comparison

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34n2
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Palo Verde than Midtown?
and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019b] ©fineartanerica.con

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 34n2
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

® © px) =T p()
®) ©

Complete evidence, marginals and MAP, MMAP inference is linear!

=—> but definitely not expressive...

35123
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more tractable queries
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less tractable queries

Expressive models are not very tractable...
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more tractable queries
Fully factorized
e % [
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less tractable queries

less expressive
efficient
e
more expressive
efficient

and tractable ones are not very expressive...
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more tractable queries

Fully factorized X
o= % [

¢ NADEs i BNs
il

less tractable queries

less expressive
efficient
e
more expressive
efficient

probabilistic circuits are at the “sweet spot”

39123



Probabilistic Circuits



Probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

41123



Probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

—> operational semantics!
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Probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

—> operational semantics!

—> by constraining the graph we can make inference tractable...

41123



1. What are the building blocks of probabilistic circuits?

=—>  How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
=> tractable classes induced by structural properties

How can probabilistic circuits be learned?

42,123



Distributions as computational graphs

X

Base case: a single node encoding a distribution
—> e.g, Gaussian PDF continuous random variable

43123



Distributions as computational graphs

- X

Base case: a single node encoding a distribution
—> e.g, indicators for X or =X for Boolean random variable

43123



Distributions as computational graphs

x —)@—) px ()
X

Simple distributions are tractable “black boxes” for:

B EVI: output p(x) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

43123



Distributions as computational graphs
1.3 —>®—> 33

X

Simple distributions are tractable “black boxes” for:
B EVI: output p(x) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

43123



Factorizations as product nodes

Divide and conquer complexity

p(X1, Xo, X3) = p(X1) - p(Xz) - p(X3)

3.0
2.5
2.0
1.5
1.0
0.5
0.0

—> e.g. modeling a multivariate Gaussian with diagonal covariance matrix...
44123



Factorizations as product nodes

Divide and conquer complexity

p(X1, Xo, X3) = p(X1) - p(Xz) - p(X3)

3.0 8

2.5

2.0

L5

o W W W
03 X, Xy Xs

X X X3

—> ...with a product node over some univariate Gaussian distribution
44123



Factorizations as product nodes

Divide and conquer complexity

(@1, 0, 23) = p(21) - p(22) - P(23)

3.0
25
2.0
15
® ©® O
05 X1 Xo X3
0.0
1 2 3

—> feedforward evaluation
44123



Factorizations as product nodes

Divide and conquer complexity

(@1, 0, 23) = p(21) - p(22) - P(23)

3.0 @
25
1N
15
0 ® ®© O
05 X1 Xo X3
0.0
X X X3

—> feedforward evaluation
44123



Mixtures as sum nodes

Enhance expressiveness

P(X) = wy-pi (X)Fwepo(X)

—> e.g. modeling a mixture of Gaussians...

45,123



Mixtures as sum nodes

Enhance expressiveness

w1 w2

p(x) =0.2:p1 () +0.8-ps(2)
X1 X1

—> ...as weighted a sum node over Gaussian input distributions

45,123



Mixtures as sum nodes

Enhance expressiveness
O% NB
p(x) =0.2:p1 () +0.8-ps(2)

=> by stacking them we increase expressive efficiency

45,123



A grammar for tractable models

Recursive semantics of probabilistic circuits
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A grammar for tractable models

Recursive semantics of probabilistic circuits

@ﬁ@

Xy X1 X
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A grammar for tractable models

Recursive semantics of probabilistic circuits

wls 2w2 S 2
X1 X1 X1 X1 X
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A grammar for tractable models

Recursive semantics of probabilistic circuits
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A grammar for tractable models

Recursive semantics of probabilistic circuits

46,123



Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however ...

PGMs Circuits
Nodes: random variables unit of computations
Edges: dependencies order of execution
Inference: g onditioning B feedforward pass
B elimination B backward pass

B message passing

=> they are computational graphs, more like neural networks

47123



Just sum, products and distributions?
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just arbitrarily compose them like a neural network!

48,123



Just sum, products and distributions?
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=—> structural constraints needed for tractability 48
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Which structural constraints
to ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
=—> just like in factorization!

(X) (X)
W @ W W @ W
X X5 X3 X1 Xy X3

decomposable circuit non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 50123



aka completeness

A sum node is smooth if its children depend of the same variable sets
—> otherwise not accounting for some variables

X4 D¢ X1 Xy

smooth circuit non-smooth circuit

=> smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 5152



Smootiness B decomposabilcy |

Computing arbitrary integrations (or summations)
=> linear in circuit size!

E.g., suppose we want to compute Z:

/p(x)dx

52123



Smootiness B decomposabilcy |

If p(x) = >, w;p;(x), (smoothness):

/p(X)dX= /Zwipz’(x)dXZ
:Zwi/pi(x)dx

—> integrals are “pushed down” to children

52123



m ol decomposability gl tractable MAR
If p(x,y,2) = p(x)p(y)p(2), (decomposability):

/// p(x,y,z)dxdydz =
/// 2)dxdydz =
- [ plox / p(y)dy / p(z)dz

=—> larger integrals decompose into easier
ones 52/123




m ol decomposability gl tractable MAR

Forward pass evaluation for MAR
=—> linear in circuit size!
E.g. to compute p(x2, T4):
B leafs over X; and X3 output Z; = [ p(x;)dz;
=—> for normalized leaf distributions:
B leafs over X5 and X output | 7///

52123



m ol decomposability gl tractable MAR

Forward pass evaluation for MAR
=—> linear in circuit size!
E.g. to compute p(x2, T4):
B leafs over X; and X3 output Z; = [ p(x;)dz;
=—> for normalized leaf distributions:
B leafs over X5 and X output | 7///

B feedforward evaluation (bottom-up)

®
VA

o-¢ 00

e/@ e\oi

& ¢ 6%

&6 oS

Xs X4 X3 Xy

52123



m d decomposability gl tractable CON

Analogously, for arbitrary conditional queries:

o) _ Pla,e)
plale)=="5

1. evaluate p(q, e) —> one feedforward pass
2. evaluate p(€) —=> another feedforward pass

—> ...still linear in circuit size!

53123



m+ decomposability gl tractable MAP

We can also decompose bottom-up a MAP query:

argmax p(q | e)
q

54,123



m ol decomposability g <:-=zt=z%/c MIAP

We cannot decompose bottom-up a MAP query:

argmax p(q | e)
q

since for a sum node we are marginalizing out a latent variable

argmax » w;p;(q,e) = argmax Zp(q, z,e) # Z argmax p(q, z, €)
q - q . " q

—> MAP for latent variable models is intractable [Conaty et al. 2017]

55/123



aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
=—> e.g. iftheir distributions have disjoint support

D ()

w1 w2

X) X (X (X)
© ©® © W OO ONOD

X <0 Xs X1 >0 X X1 X5 X, X

deterministic circuit non-deterministic circuit 56,123



ol decomposability gl tractable MAP
S

Computing maximization with arbitrary evidence e
=> linear in circuit size!

E.g., suppose we want to compute:

mgXp(q | e)

57123



ol decomposability gl tractable MAP

ifp(q,e) = >, wipi(q, e) = max; w;p;(q, e),
(deterministic sum node):

max p(q, e) = max Z w;ipi(q,e)
a a =

= max max w;p;(q, e)
q 7

= max max w;p;(q, e)
i aq

—> one non-zero child term, thus sum is max

57123



ol decomposability gl tractable MAP
S

Iif p(a,e) = p(dx, ex, Ay, €y) = P(ax, ex)P(dy, ey)
(decomposable product node):

mgxp(q le) = mgXP(qa e)
- g:z}i p(qX7 €x, qya ey)

= max p(qx, €x), max p(qy, ey)
qx qy

—> solving optimization independently 3

57123



ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!

57123



ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!

E.g. forargmax, . p(z1, 23 | T2, 74):
1. turn sum into max nodes and
distributions into max distributions
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ol decomposability gl tractable MAP

Evaluating the circuit twice: / \
bottom-up and top-down = gjjj jinear in circuit size! @_,@ @<_°
E.g., forargmax, .. p(r1, 23 | T2, 24): Xl/ ! | \Xl
1. turn sum into max nodes and ?1/‘? ?\g
@

distributions into max distributions @ @ @
N
o o ©

X3 Xy X3 Xy

2. evaluate p(z2, x4) bottom-up
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ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!

E.g. forargmax, . p(z1, 23 | T2, 74):
1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(z2, x4) bottom-up

3. retrieve max activations top-down
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ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!

E.g. forargmax, . p(z1, 23 | T2, 74):
1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(z2, x4) bottom-up

3. retrieve max activations top-down

4. compute for X7 and X3 at leaves

57123



ll decomposability gl tractable MMAP

Analogously, we could can also do a MMAP query:

argmax Zp(q, z|e)
g9 z

58,123



ll decomposability gl 2-=ctz%!c MUIAP

We cannot decompose a MMAP query!

argmax Zp(q, z|e)
g9 z

we still have latent variables to marginalize...

59123



Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
=> stronger requirement than decomposability

vtree structured decomposable circuit
60/123



Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
=> stronger requirement than decomposability

vtree non structured decomposable circuit
60/123



structured decomposability &

B Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

61123



structured decomposability g

B Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]
For the “right” vtree

B Probability of logical circuit event in probabilistic circuit /ibid.]

B Multiply two probabilistic circuits [Shen et al. 2016]

B KL Divergence between probabilistic circuits /Liang et al. 2017b]

B same-decision probability [Oztok et al. 2016]

B Expected same-decision probability [Choi et al. 2017]

B Expected classifier agreement [Choi et al. 2018]

B Expected predictions [Khosravi et al. 2019¢]

61123



less expressive

efficient

more tractable queries

Fully factorized
o= % [

?

¢ NADEs i BNs
il

less tractable queries

where are probabilistic circuits?

more expressive

efficient
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less expressive

efficient

more tractable queries

Fully factorized
o 1
=
¢ NADEs i BNs
—Y e
+ m

less tractable queries

tractability vs expressive efficiency

more expressive

efficient

63123



less expressive

efficient

more tractable queries

Fully factorized PSDDs
m Trees % CNets | AoGs | ACs

SPNs

¢ NADEs i BNs
il

less tractable queries

tractability vs expressive efficiency

more expressive

efficient

64123



mooth ] decomposabie [

A structured decomposable {514

smooth dec. det. str.dec.
Arithmetic Circuits (ACs) [Darwiche 2003] l/ V V(*) X
Sum-Product Networks (SPNs) [Poon et al. 2011] |/ l/ X X
Cutset Networks (CNets) [Rahman et al. 2014] I/ ‘/ I/ X
PSDDs [Kisa et al. 2014a] ‘/ ‘/ ‘/ V
AndOrGraphs [Dechter et al. 2007] ‘/ V ‘/ ‘/

65/123



How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:
Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs
B MADEs [Germain et al. 2015]
VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
peharz2018probabilistic, peharz2018probabilistic, peharz2018probabilistic 66123



How expressive are probabilistic circuits?

density estimation benchmarks

dataset best circuit BN  MADE VAE dataset  bestcircuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09  kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12  msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -1232 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43  -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bhbhc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15  -21.72 -22.3  -25.16 ad -14.00 -18.35 -13.65 -18.81

67123



Building circuits



Learning probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized by €2

69123



Learning probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized by €2

Learning a circuit C from data D can therefore involve learning the graph
(structure) and/or its parameters

69123



Learning probabilistic circuits

Parameters Structure

N
N

N
N

Discriminative | Generative

70/123



1. How to learn circuit parameters?
—> convex optimization, EM, SGD, Bayesian learning, ...

2. How to learn the structure of circuits?

—> local search, random structures, ensembles, ...

Which applications are circuits used for?

71123



Learning circuit parameters

Let a circuit structure C be given. We aim to learn its parameters:

[ Parameters of input distributions

0= {HL}LGIeaves(C)
—> eg 0. = (u,0)ifLis Gaussian, etc.

72123



Learning circuit parameters

Let a circuit structure C be given. We aim to learn its parameters:
[ Parameters of input distributions
0= {HL}LGIeaves(C)

M Sum-weights W = {Ws }scsums(c)
—> w.lo.g, foreachS: " ws; = 1 [Peharz et al. 2015; Zhao et al. 2015]
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Learning circuit parameters

Let a circuit structure C be given. We aim to learn its parameters:
[ Parameters of input distributions
0= {HL}LGIeaves(C)

M Sum-weights W = {Ws }scsums(c)
—> we marginalize out latent variable Zs

wSz

Cs = Zp = 1| “context") Cy,

72123



Augmentation

Making latent variables explicit

(+) S

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 7323



Augmentation

Making latent variables explicit

Setting single indicators to 1 = switches on corresponding child.

Indicators —

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 73123



Augmentation

Making latent variables explicit

Yes, but we might have destroyed smoothness...

(+)s

()
Indicators — ° @
T
Zs= 1| p(X | Zs =1, ctx)

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016

73123



Augmentation

Making latent variables explicit

This is an example of smoothing.

73123

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



Augmentation

Making latent variables explicit

Thus, sum weights have sound probabilistic semantics.

73123
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016



Expectation-Maximization

Given a probabilistic circuit C and a dataset D, the standard EM update is:

erD IP[Ct.’L'Z =1 N Zz = j |X, WOld]
wi > xep Pletr; = 1] x, wold]

new __

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 74123



Expectation-Maximization

Given a probabilistic circuit C and a dataset D, the standard EM update is:

erD IP[Ct.’L'Z =1 N Zz = j ‘ X, WOld]
wi > xep Pletr; = 1] x, wold]

new __

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

~ o 1 0C(x
Pletr; = 1N Zi = j|x, w*] = C(x) 86.((X))

C;(x)wi'

,J

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 74123



Expectation-Maximization

Given a probabilistic circuit C and a dataset D, the standard EM update is:

new __

erD IP[Ct.’L'Z =1 N Zz = j ‘ X, WOld]
wi > xep Pletr; = 1] x, wold]

These expected statistics can be computed efficiently with backprop [Darwiche 2003]:

1 0C(x)

Pletr; = 1A Z; = j | x,w] = ) 90, () () wit

—> This also works with missing values in X!
=> Similar updates for leaves, when in exponential family.

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 74123



Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit C and a complete dataset D, the maximum-likelihood

sum-weights are:
MLe _ 2xep H{X E A ]}

Yo Yen Hx E i}

w

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75123



Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit C and a complete dataset D, the maximum-likelihood
sum-weights are:
MLE __ erD Hx = [ Aj]} # samples activating node j

Yo Yen Hx E i}

w

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75123



Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit C and a complete dataset D, the maximum-likelihood
sum-weights are:

MLE _ erD H{x = [t Aj]} # samples activating node

w;' ,
7 > xep U{x = [i]} # samples activating node ¢

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75123



Deterministic Circuits

Exact Maximum Likelihood

Given a deterministic circuit C and a complete dataset D, the maximum-likelihood
sum-weights are:

MLE _ erD H{x = [t Aj]} # samples activating node

w;' ,
7 > xep U{x = [i]} # samples activating node ¢

=—> global maximum with single pass over D
=—> regularization, e.g. Laplace-smoothing, to avoid divide by zero
—> when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 75123



Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
=—> circuits are differentiable!

B backprop + your favorite gradient-based optimizer
B need to reparametrize sum node weights ... => eg. by (log-)softmax
B ...or project them to their constraint set /Duchi2008]

B analogously for input distribution parameters
—> eg o > 0in Gaussians: use softplus or clipping

76,123



Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
=—> circuits are differentiable!

B backprop + your favorite gradient-based optimizer
B need to reparametrize sum node weights ... => eg. by (log-)softmax
B ...or project them to their constraint set /Duchi2008]

B analogously for input distribution parameters
—> eg o > 0in Gaussians: use softplus or clipping

pros:

B Etasy to implement and combine

with other cost functions
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Gradient descent

In alternative to EM, just descent the negative (log-)likelihood by (S)GD
=—> circuits are differentiable!

B backprop + your favorite gradient-based optimizer
B need to reparametrize sum node weights ... => eg. by (log-)softmax
B ...or project them to their constraint set /Duchi2008]
B analogously for input distribution parameters
—> eg o > 0in Gaussians: use softplus or clipping
pros: cons:

[ Easy to implement and combine  [Jl| (S)GD converges slowly
with other cost functions

76,123



Bayesian parameter learning

Formulate a prior p(w, @) over sum-weights and leaf-parameters and perform posterior
inference:

p(w,8|D) o< p(w,0) p(D|w, 0)

I Moment matching (0BMM) [jaini et al. 2016; Rashwan et al. 2016]
B Collapsed variational inference algorithm [Zhao et al. 2016b]
B Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]

77123



Learning probabilistic circuits

Parameters Structure

o deterministic
2> closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a]
*&' non-deterministic
; EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a] ,
§ SGD [Sharir et al. 2016, Peharz et al. 2019] L]
O Bayesian [Jaini et al. 2016, Rashwan et al. 2016]

[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019]
L
=
1~
S
N
£ ? ?
: [ ] [ ]
L%
n
—
Q
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X1 X Xy X4 X5

O CE

® e o

Learning both structure and parameters of a circuit by starting from a data matrix

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79123



X1 Xo X3 X4 X5

Looking for sub-population in the data—clustering—to introduce sum nodes...

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 7923



X1 Xo X3 X4 X5 Xy Xy X3 Xy X5

...seeking independencies among sets of RVs to factorize into product nodes

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79123



X1 Xo X3 Xy X5 X1 Xo X3 Xy X5

..learning smaller estimators as a a recursive data crawler

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 79123



Randomized structure learning

P !
DS| B DB
BapE BB

10X (X [X2) (X5} {5 Xs) (A7) (0.6 (XX}

Randomly generate a region graph = hierarchical partitioning of variables
Then, populate each region with tensorized circuit nodes = competitive with SOTA

Peharz et al., "Random Sum-Product Networks: A Simple and Effective Approach to Probabilistic
Deep Learning”, 2019 80,123



Learning probabilistic circuits

Parameters Structure

o deterministic greedy
> closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a] top-down [Gens et al. 2013; Rooshenas et al. 2014]
*&' non-deterministic [Rahman et al. 2014; Vergari et al. 2015]
; EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a] bottom-up [Peharz et al. 2013]
§ SGD [Sharir et al. 2016; Peharz et al. 2019] hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014a]
O Bayesian [Jaini et al. 2016, Rashwan et al. 2016] [Dennis et al. 2015, Liang et al. 2017a]

[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019] ~ random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]
L
=
1~
£
£ ? ?
: [ ] [ ]
L%
n
—
Q
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Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data...
Solution: ensembles of circuits!

—> non-deterministic mixture models: another sum node!

K K
p(X) =D ACi(X), A=0 > A=1
=1 =1

Ensemble weights and components can be learned separately or jointly
B EM or structural EM [Liang et al. 2017a]
B bagging [Vergari et al. 2015; Rahman et al. 2016; Di Mauro et al. 2017]

B boosting [Rahman et al. 2016]
821123



Learning probabilistic circuits

Parameters Structure
o deterministic greedy
> closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014a] top-down [Gens et al. 2013; Rooshenas et al. 2014]
*&' non-deterministic [Rahman et al. 2014; Vergari et al. 2015]
; EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016a] bottom-up [Peharz et al. 2013]
§ SGD [Sharir et al. 2016, Peharz et al. 2019] hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014a]
O Bayesian [Jaini et al. 2016, Rashwan et al. 2016] [Dennis et al. 2015, Liang et al. 2017a]
[Zhao et al. 2016b; Trapp et al. 2019; Vergari et al. 2019] ~ random RAT-SPNs [Peharz et al. 2019] XCNet [Di Mauro et al. 2017]
Q
E deterministic
g convex-opt MLE {Llang etal 2019] greedy
=  non-deterministic o [Shao et al. 2019
§ EM [Rashwan et al. 2018] to.p c.an. h ’ ’
S SGD [Gens et al. 2012; Sharir et al. 2016] hilt climbing [Rooshenas et al. 2016]
'g [Peharz et al. 2019]
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Applications



1. what have been probabilistic circuits used for?

=> computer vision, sop, speech, planning, ..

2. what are the current trends in tractable learning?
=>  hybrid models, probabilistic programming, ...

3. what are the current challenges?
—>  benchmarks, scaling, reasoning

Conclusions

85/123



EVI inference }

density estimation

dataset single models  ensembles dataset  single models ensembles
nltcs -5.99 sy -5.99 pearnpsooss  dna -79.88 seamy -80.07 spn-bity
msnbc -6.04 [prometheus) -6.04 pearmpsons)  kosarek -10.59 (prometheus) -10.52 frearnpsoos]
kdd -2.12 (prometheus] -2.12 pearnpsopss  msweb -9.73 m-seny -9.62 pxenetss
plants -12.54 jip-seny -11.84 penes) book -34.14 jip-sen -33.82 spn-bity
audio -39.77 (snp-sen -39.39 pxenets) movie -51.49 jprometheus] -50.34 pxcnets)
jester -52.42 snp-senp -51.29 pearnpsopss  webkb -151.84 io-seny -149.20 pxcnetst
netflix -56.36 o-spy) -55.71 tearnpsops)  €r52 -83.35 ip-seny -81.87 ixcwers)
accidents  -26.89 ispom; -29.10 peners) c20ng -151.47 po-seny -151.02 pxenerss
retail -10.85 1o-spny -10.72 jearnpsonsi  bbc -248.5 [prometheus] -229.27 pxcnetst
pumbs* -22.15 rseam -22.67 spn-biv] ad -15.40 (cnecxor -14.00 pxcnets)
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Hybrid intractable gJ tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

IWAE vs SP-IWAE (Continuous Models) IWAE vs SP-IWAE (Discrete Models)
i B e e T S0 4 =5
2500 * - 4000 v -4

-6000- |
8000

10000 -

Test Set ELBO

~12000 -

-14000

16000 -

08 0o

04 05 04 0
Fraction of Training Set Fraction of Training Set

=—> decomposing a joint ELBO: better lower-bounds than a single VAE
=> more expressive efficient and less data hungry

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 87n2



Tractable MAR 4 scene understanding

/a:ves

— suPaR
~—— SuPAIR wio bg 0.25 —— SuPAIR w0 bg
— AR

— AR

count accuracy
s o r

2 S B

2 3 8

=3

3

count accuracy
o
I
s

°
N
b

)
o
8

0.00

input 100 200 300 50 100 150 200 25
time (s) time (s)
SUPAIR (a) MNIST (b) Sprites
result 1.00 1.00
> >
9 9
SUPAIR gors gors /_/—
recon- 3 3
struction & 050 ® 050
€ — SuPAIR € — SuPAIR
5 5
3 3
S S

°
5

0.25 —— SUPAIR W/o bg

AR —— SUPAIR /o by

result — AR — AR
0.00 0.00
100 200 300 400 100 200 300 400
AIR time (s) time (s)
recon-
struction (c) Noisy MNIST (d) Grid MNIST

=> making the AIR model faster and more accurate by using a PC

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 88n23



Tractable MAR X

( Learning (@ Inference
@rixy), 8

® Annotated
rining graphs = @ sub-graphs = OTempinc
) )

Hierarchical planning robot executions

Scenes and maps decompose along circuit
o structures

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016
Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning
in large-scale environments”, 2017

Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”, 89
2018 1123



MAP inference § image inpainting

Original

Predicting arbitrary patches
given a single circuit
First SPN paper in 2011...

Covered

BACK-ORIG

SUM

BACK-MPE

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011

Sguerra et al., “lmage classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 901123



MAP inference 3§ image segmentation

Input Image Multiscale Unary Potential Multiscale sum-product Superpixel-based refine
network

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017

Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016

Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 91n2s




MAP inference {§ Speech reconstruction
Probabilistic circuits to model the joint pdf of observables in HMMs (HMM-SPNs),

again leveraging tractable inference: MAR and MAP

(b) Reconstruction HMM-LP (¢) Reconstruction HMM-GMM (d) Reconstruction HMM-SPN

State-of-the-art high frequency reconstruction (MAP inference)

Peharz et al., “Modeling speech with sum-product networks: Application to bandwidth extension”,

2014

Zohrer et al., “Representation learning for single-channel source separation and bandwidth

extension”, 2015 92123



MAP inference 9§ Sequence labeling
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Ratajczak et al., “Sum-Product Networks for Structured Prediction: Context-Specific Deep
Conditional Random Fields”, 2014

Ratajczak et al., “Sum-Product Networks for Sequence Labeling”, 2018
Cheng et al., “Language modeling with Sum-Product Networks”, 2014
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MAP and MMAP 4 activity recognition

Exploiting part-based decomposability along pixels and time (frames).

Point distribution Video

il
il
z

Bow BoW

RAW

Amer et al., “Sum Product Networks for Activity Recognition”, 2015

Wang et al., “Hierarchical spatial sum-product networks for action recognition in still images”,
2016

Chiradeep Roy et al., “Explainable Activity Recognition in Videos using Dynamic Cutset Networks”, o4
2019 /123



expected predictions

Abalone le-4  Delta

Median
5 Sample
= M1 (ours)

Reasoning about the output of a classifier or regressor f given
a distribution p over the input features
missing values at test time
= exploratory classifier analysis

100

50
% Missing

50
% Missing
1led Insurance 1e—2 Elevators

[£5 (™, x)]

mepﬂ (xmlxo)

Closed form moments for f and p as structured decomposable

50 10
% Missing circuits with same v-tree

50 100 0
% Missing

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 95n23



ADV inference 4 preference learning

13, sushi

|
=

Preferences and rankings as logical
constraints

average log-likelihood
|

: Structured decomposable circuits for
gl inference over structured spaces
— psdd

2

50 15
# of mixture components

SOTA on modeling densities over rankings

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015

Shen et al., “A Tractable Probabilistic Model for Subset Selection.”, 2017
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Probabilistic programming

. x = flip(6); Line 5 Line 3 Line 2 Lines 2-6
s i 1
y = £lip(6) A 17
1+ } else { i
5 y =X
6}

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019

De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007, 2007, 2015; 2015

Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017

Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 9823



and more...

fault prediction [Nath et al. 2016]

computational psychology [joshi et al. 2018]

biology [Butz et al. 2018]

low-energy prediction [Galindez Olascoaga et al. 2019; Shah et al. 2019]

calibration of analog/RF circuits [Andraud et al. 2018]

stochastic constraint optimization [Latour et al. 2017]

neuro-symbolic learning [Xu et al. 2018]

probabilistic and symbolic reasoning integration [Li 2015]

relational learning [Broeck et al. 2011; Domingos et al. 2012; Broeck 2013; Nath et al. 2014, 2015;
Niepert et al. 2015, Van Haaren et al. 2015]
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less expressive

efficient

more tractable queries

Fully factorized
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less tractable queries

takeaway #1 tractability is a spectrum

more expressive

efficient
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more tractable queries

Fully factorized PSDDs
m Trees % T CNets | AoGs | Acs
¢ NADEs i BNs

NFs m
4 m

less tractable queries

less expressive
efficient
e
efficient

more expressive

takeaway #2: you can be both tractable and expressive
101123



X1 X2 X3 Xl Xl

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning

1021123



hybridizing tractable and intractable models

Hybridize probabilistic inference:
tractable models inside intractable loops
and intractable small boxes glued by tractable inference!

103123



scaling tractable learning

Learn tractable models

on millions of datapoints
and thousands of features
in tractable time!

104123



advanced and automated reasoning

Move beyond single probabilistic queries
towards fully automated reasoning!

105123



github.com/arranger1044/awesome-spn

Juice.jl a library for advanced logical and probabilistic inference with circuits in Julia SOON!
SPFlow easy and extensible python library for SPNs  github.com/SPFlow/SPFlow
Libra structure learning algorithms in OCaml libra.cs.uoregon.edu

106/123


github.com/arranger1044/awesome-spn
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Can your VAE
inpaint any

pixel patch?




Can your Flow
flawles deal
with missing values?

t’



Can you obtain
calibrated
uncertainties
from your GAN?

t’



Join the discussion on the current state
of probabilistic inference

11 Dec. 20719 from 7pm
and learning at the first

Room 223-224
NeurlIPS 2019, Vancouver

t Ij tractahle probabilistic
e inference meeting!

sites.google.com/view/tprime2019

relationalAl Uber
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