Tractable Probabilistic Models

Representations Inference Learning Applications

Guy Van den Broeck

University of California, Los Angeles

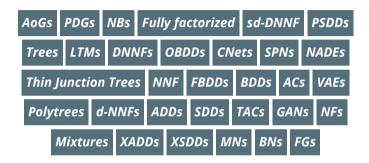
based on joint AAAI-2020 and UAI-2019 tutorials with

Antonio Vergari University of California, Los Angeles

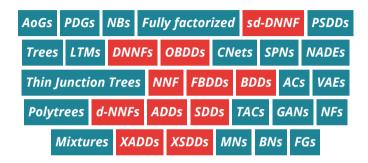
Robert Peharz TU Eindhoven **YooJung Choi** University of California, Los Angeles

Nicola Di Mauro University of Bari

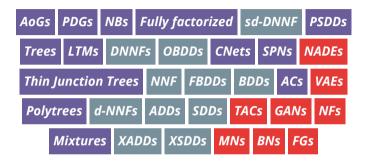
November 11, 2019 - International Spring School on "Uncertainty in AI and data management" - Santiago, Chile



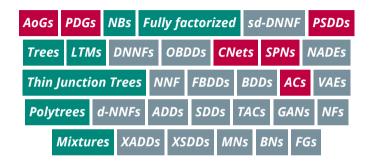
The Alphabet Soup of models in Al



Logical and Probabilistic models



Tractable and *Intractable* probabilistic models



Expressive models without compromises

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable models

Building circuits

learning them from data and compiling other models

Applications

what are circuits useful for

Why tractable inference?

or the inherent trade-off of tractability vs. expressiveness

- **q**₁: What is the probability that today is a Monday and there is a traffic jam on Herzl Str.?
- **q**₂: Which day is most likely to have a traffic jam on my route to work?

pinterest.com/pin/190417890473268205/

- **q**₁: What is the probability that today is a Monday and there is a traffic jam on Herzl Str.?
- **q**₂: Which day is most likely to have a traffic jam on my route to work?
- \implies fitting a predictive model!

pinterest.com/pin/190417890473268205/

- **q**₁: What is the probability that today is a Monday and there is a traffic jam on Herzl Str.?
- **q**₂: Which day is most likely to have a traffic jam on my route to work?
- fitting a predictive model!
 answering probabilistic *queries* on a probabilistic model of the world m

$$\mathbf{q}_1(\mathbf{m})=$$
? $\mathbf{q}_2(\mathbf{m})=$?

pinterest.com/pin/190417890473268205/

q₁: What is the probability that today is a Monday and there is a traffic jam on Herzl Str.?

$$\begin{split} \mathbf{X} &= \{\mathsf{Day},\mathsf{Time},\mathsf{Jam}_{\mathsf{Str1}},\mathsf{Jam}_{\mathsf{Str2}},\ldots,\mathsf{Jam}_{\mathsf{StrN}}\}\\ \mathbf{q}_1(\mathbf{m}) &= p_{\mathbf{m}}(\mathsf{Day}=\mathsf{Mon},\mathsf{Jam}_{\mathsf{Herzl}}=1) \end{split}$$

pinterest.com/pin/190417890473268205/

q₁: What is the probability that today is a Monday and there is a traffic jam on Herzl Str.?

$$\begin{split} \mathbf{X} &= \{\mathsf{Day},\mathsf{Time},\mathsf{Jam}_{\mathsf{Str1}},\mathsf{Jam}_{\mathsf{Str2}},\ldots,\mathsf{Jam}_{\mathsf{StrN}}\}\\ \mathbf{q}_1(\mathbf{m}) &= p_{\mathbf{m}}(\mathsf{Day}=\mathsf{Mon},\mathsf{Jam}_{\mathsf{Herzl}}=1) \end{split}$$

 \Rightarrow marginals

pinterest.com/pin/190417890473268205/

q₂: Which day is most likely to have a traffic jam on my route to work?

$$\mathbf{X} = \{\mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Str1}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}}\}$$

$$\mathbf{q}_2(\mathbf{m}) = \operatorname{argmax}_{\mathsf{d}} p_{\mathbf{m}}(\mathsf{Day} = \mathsf{d} \land \bigvee_{i \in \mathsf{route}} \mathsf{Jam}_{\mathsf{Str}i})$$

pinterest.com/pin/190417890473268205/

q₂: Which day is most likely to have a traffic jam on my route to work?

 $\mathbf{X} = \{\mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Str1}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}}\}$

$$\mathbf{q}_2(\mathbf{m}) = \operatorname{argmax}_{\mathsf{d}} p_{\mathbf{m}}(\mathsf{Day} = \mathsf{d} \land \bigvee_{i \in \mathsf{route}} \mathsf{Jam}_{\mathsf{Str}i})$$

 \Rightarrow marginals + MAP + logical events

pinterest.com/pin/190417890473268205/

A class of queries Q is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathbf{q} \in Q$ and model $\mathbf{m} \in \mathcal{M}$ **exactly** computing $\mathbf{q}(\mathbf{m})$ runs in time $O(\operatorname{poly}(|\mathbf{q}| \cdot |\mathbf{m}|))$.

A class of queries Q is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathbf{q} \in Q$ and model $\mathbf{m} \in \mathcal{M}$ **exactly** computing $\mathbf{q}(\mathbf{m})$ runs in time $O(\operatorname{poly}(|\mathbf{q}| \cdot |\mathbf{m}|))$.

⇒ often poly will in fact be linear!

A class of queries Q is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathbf{q} \in Q$ and model $\mathbf{m} \in \mathcal{M}$ **exactly** computing $\mathbf{q}(\mathbf{m})$ runs in time $O(\operatorname{poly}(|\mathbf{q}| \cdot |\mathbf{m}|))$.

⇒ often poly will in fact be linear!

 \Rightarrow think of $|\mathbf{m}|$ as the number of streets on my route to work

A class of queries Q is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathbf{q} \in Q$ and model $\mathbf{m} \in \mathcal{M}$ **exactly** computing $\mathbf{q}(\mathbf{m})$ runs in time $O(\operatorname{poly}(|\mathbf{q}| \cdot |\mathbf{m}|))$.

⇒ often poly will in fact be linear!

 \Rightarrow think of $|\mathbf{m}|$ as the number of streets on my route to work

 $\Rightarrow \text{ Note: if } \mathcal{M} \text{ and } \mathcal{Q} \text{ are compact in the number of random variables } \mathbf{X}, \\ \text{ that is, } |\mathbf{m}|, |\mathbf{q}| \in O(\mathsf{poly}(|\mathbf{X}|)), \text{ then query time is } O(\mathsf{poly}(|\mathbf{X}|)).$

Why approximate when we can do exact?

and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996] \implies But sometimes approximate inference comes with guarante

Approximate inference by exact inference in approximate model

Approximate inference (even with guarantees) can mislead learners[Kulesza et al. 2007] \Rightarrow Chaining approximations is flying with a blindfold of

Why approximate when we can do exact?

 \Rightarrow and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

 \Rightarrow But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model [Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners[Kulesza et al. 2007] \Rightarrow Chaining approximations is flying with a blindfold or

Why approximate when we can do exact?

 \Rightarrow and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

 \Rightarrow But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model [Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners[Kulesza et al. 2007] \Rightarrow Chaining approximations is flying with a blindfold or

Why approximate when we can do exact?

 \Rightarrow and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

 \Rightarrow But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model

[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners[Kulesza et al. 2007] \Rightarrow Chaining approximations is flying with a blindfold on

Stay Tuned For ...

Next:

- 1. What are classes of queries?
- 2. Are my favorite models tractable?
- 3. Are tractable models expressive?

After: We introduce **probabilistic circuits** as a unified framework for tractable probabilistic modeling

Complete evidence queries (EVI)

q₃: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Herzl Str.?

pinterest.com/pin/190417890473268205/

Complete evidence queries (EVI)

q₃: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Herzl Str.?

 $\mathbf{X} = \{\mathsf{Day}, \mathsf{Time}, \mathsf{Jam}_{\mathsf{Herzl}}, \mathsf{Jam}_{\mathsf{Str2}}, \dots, \mathsf{Jam}_{\mathsf{StrN}}\}$ $\mathbf{q}_3(\mathbf{m}) = p_{\mathbf{m}}(\mathbf{X} = \{\mathsf{Mon}, 12.00, 1, 0, \dots, 0\})$

pinterest.com/pin/190417890473268205/

Complete evidence queries (EVI)

q₃: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Herzl Str.?

$$\mathbf{X} = \{\mathsf{Day},\mathsf{Time},\mathsf{Jam}_{\mathsf{Herzl}},\mathsf{Jam}_{\mathsf{Str2}},\ldots,\mathsf{Jam}_{\mathsf{StrN}}\}$$

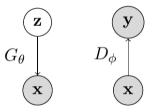
 $\mathbf{q}_3(\mathbf{m}) = p_{\mathbf{m}}(\mathbf{X} = \{\mathsf{Mon},12.00,1,0,\ldots,0\})$

...fundamental in *maximum likelihood learning* $\theta_{\mathbf{m}}^{\mathsf{MLE}} = \operatorname{argmax}_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} p_{\mathbf{m}}(\mathbf{x}; \theta)$

pinterest.com/pin/190417890473268205/

Generative Adversarial Networks

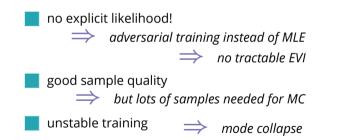
$$\min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})} \left[\log D_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log(1 - D_{\phi}(G_{\theta}(\mathbf{z}))) \right]$$

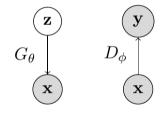


Goodfellow et al., "Generative adversarial nets", 2014

Generative Adversarial Networks

$$\min_{\theta} \max_{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\mathsf{data}}(\mathbf{x})} \left[\log D_{\phi}(\mathbf{x}) \right] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} \left[\log(1 - D_{\phi}(G_{\theta}(\mathbf{z}))) \right]$$



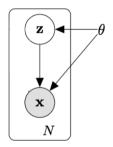


Goodfellow et al., "Generative adversarial nets", 2014

Variational Autoencoders

 $p_{\theta}(\mathbf{x}) = \int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d\mathbf{z}$

an explicit likelihood model!



Rezende et al., "Stochastic backprop. and approximate inference in deep generative models", 2014 Kingma et al., "Auto-Encoding Variational Bayes", 2014

Variational Autoencoders

$$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})} \left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z}) \right] - \mathbb{KL}(q_{\phi}(\mathbf{z} \mid \mathbf{x}) || p(\mathbf{z}))$$

an explicit likelihood model!

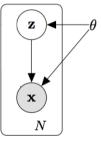
... but computing $\log p_{\theta}(\mathbf{x})$ is intractable

 \Rightarrow an infinite and uncountable mixture \Rightarrow no tractable EVI

we need to optimize the ELBO...

⇒ which is "broken"

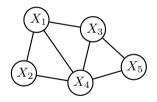
[Alemi et al. 2017; Dai et al. 2019]



Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

- Nodes: random variables
- Edges: dependencies



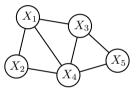
Inference:

conditioning [Darwiche 2001; Sang et al. 2005]
elimination [Zhang et al. 1994; Dechter 1998]
message passing [Yedidia et al. 2001; Dechter et al. 2002; Choi et al. 2010; Sontag et al. 2011]

PGMs: MNs and BNs

Markov Networks (MNs)

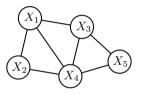
 $p(\mathbf{X}) = \frac{1}{Z} \prod_{c} \phi_{c}(\mathbf{X}_{c})$



PGMs: MNs and BNs

Markov Networks (MNs)

- $p(\mathbf{X}) = \frac{1}{Z} \prod_{c} \phi_{c}(\mathbf{X}_{c})$
- $Z = \int \prod_c \phi_c(\mathbf{X}_c) d\mathbf{X}$
 - \implies EVI queries are intractable!



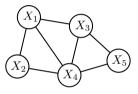
PGMs: MNs and BNs

Markov Networks (MNs)

- $p(\mathbf{X}) = \frac{1}{Z} \prod_{c} \phi_c(\mathbf{X}_c)$
- $Z = \int \prod_c \phi_c(\mathbf{X}_c) d\mathbf{X}$ \Longrightarrow EVI queries are intractable!

Bayesian Networks (BNs)

 $p(\mathbf{X}) = \prod_i p(X_i \mid \mathsf{pa}(X_i))$ \implies EVI queries are tractable!





Marginal queries (MAR)

q₁: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Herzl Str.?

pinterest.com/pin/190417890473268205/

Marginal queries (MAR)

q₁: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Herzl Str.?

$$\mathbf{q}_1(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Day} = \mathsf{Mon}, \mathsf{Jam}_{\mathsf{Herzl}} = 1)$$

Marginal queries (MAR)

q₁: What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Herzl Str.?

$$\mathbf{q}_1(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Day} = \mathsf{Mon}, \mathsf{Jam}_{\mathsf{Herzl}} = 1)$$

General: $p_{\mathbf{m}}(\mathbf{e}) = \int p_{\mathbf{m}}(\mathbf{e}, \mathbf{H}) \, d\mathbf{H}$

where $\mathbf{E} \subset \mathbf{X}$ $\mathbf{H} = \mathbf{X} \setminus \mathbf{E}$

pinterest.com/pin/190417890473268205/

Conditional queries (CON)

q₄: What is the probability that there is a traffic jam on Herzl Str. **given that** today is a Monday?

Conditional queries (CON)

q₄: What is the probability that there is a traffic jam on Herzl Str. **given that** today is a Monday?

 $\mathbf{q}_4(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Jam}_{\mathsf{Herzl}} = 1 \mid \mathsf{Day} = \mathsf{Mon})$

Conditional queries (CON)

q₄: What is the probability that there is a traffic jam on Herzl Str. **given that** today is a Monday?

$$\mathbf{q}_4(\mathbf{m}) = p_{\mathbf{m}}(\mathsf{Jam}_{\mathsf{Herzl}} = 1 \mid \mathsf{Day} = \mathsf{Mon})$$

If you can answer MAR queries, then you can also do *conditional queries* (CON):

$$p_{\mathbf{m}}(\mathbf{Q} \mid \mathbf{E}) = \frac{p_{\mathbf{m}}(\mathbf{Q}, \mathbf{E})}{p_{\mathbf{m}}(\mathbf{E})}$$

pinterest.com/pin/190417890473268205/

Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative error of $2^{n^{1-\epsilon}}$ for any fixed ϵ is *NP-hard* [Dagum et al. 1993; Roth 1996].

Treewidth: Informally, how tree-like is the graphical model **m**? Formally, the minimum width of any tree-decomposition of **m**

Fixed-parameter tractable: MAR and CON on a graphical model **m** with treewidth w take time $O(|\mathbf{X}| \cdot 2^w)$, which is linear for fixed width w [Dechter 1998; Koller et al. 2009].

what about bounding the treewidth by design?

Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

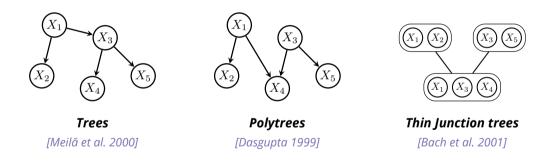
Approximation complexity: Computing MAR and COND approximately within a relative error of $2^{n^{1-\epsilon}}$ for any fixed ϵ is *NP-hard* [*Dagum et al. 1993; Roth 1996*].

Treewidth: Informally, how tree-like is the graphical model **m**? Formally, the minimum width of any tree-decomposition of **m**.

Fixed-parameter tractable: MAR and CON on a graphical model **m** with treewidth w take time $O(|\mathbf{X}| \cdot 2^w)$, which is linear for fixed width w [Dechter 1998; Koller et al. 2009].

what about bounding the treewidth by design?

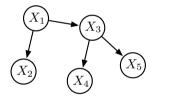
Low-treewidth PGMs



If treewidth is bounded (e.g. $\simeq 20$), exact MAR and CON inference is possible in practice

Low-treewidth PGMs: trees

A *tree-structured BN* [Meilă et al. 2000] where each $X_i \in \mathbf{X}$ has at most one parent Pa_{X_i} .



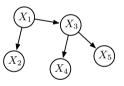
$$p(\mathbf{X}) = \prod_{i=1}^{n} p(x_i | \operatorname{Pa}_{x_i})$$

Exact querying: EVI, MAR, CON tasks *linear* for trees: $O(|\mathbf{X}|)$

Exact learning from d examples takes $O(|\mathbf{X}|^2 \cdot d)$ with the classical Chow-Liu algorithm¹

¹Chow et al., "Approximating discrete probability distributions with dependence trees", 1968 **23**/108

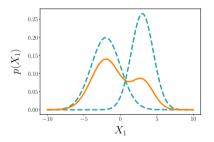
Expressiveness: Ability to compactly represent rich and complex classes of distributions



Bounded-treewidth PGMs lose the ability to represent all possible distributions ...

Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016 Martens et al., "On the Expressive Efficiency of Sum Product Networks", 2014

Mixtures as a convex combination of k (simpler) probabilistic models



$$p(X) = w_1 \cdot p_1(X) + w_2 \cdot p_2(X)$$

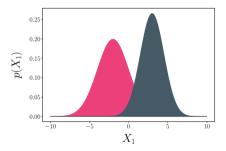
(77)

(77)

(77)

EVI, MAR, CON queries scale linearly in \boldsymbol{k}

Mixtures as a convex combination of k (simpler) probabilistic models



$$p(X) = p(Z = 1) \cdot p_1(X|Z = 1)$$
$$+ p(Z = 2) \cdot p_2(X|Z = 2)$$

Mixtures are marginalizing a *categorical latent variable* Z with k values

 \Rightarrow increased expressiveness

Expressiveness and efficiency

Expressiveness: Ability to compactly represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

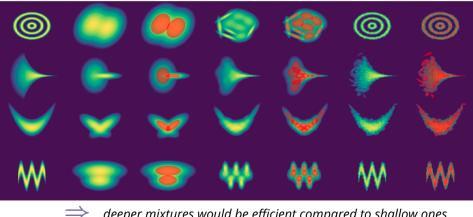
Expressive efficiency (succinctness) compares model sizes in terms of their ability to compactly represent functions

 \Rightarrow but how many components do they need?

Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016 Martens et al., "On the Expressive Efficiency of Sum Product Networks", 2014

Mixture models

Expressive efficiency



deeper mixtures would be efficient compared to shallow ones

aka Most Probable Explanation (MPE)

q₅: Which combination of roads is most likely to be jammed on Monday at 9am?

aka Most Probable Explanation (MPE)

q₅: Which combination of roads is most likely to be jammed on Monday at 9am?

$$\mathbf{q}_5(\mathbf{m}) = \operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}(\mathbf{j}_1, \mathbf{j}_2, \dots \mid \mathsf{Day} = \mathsf{M}, \mathsf{Time} = \mathbf{9})$$

pinterest.com/pin/190417890473268205/

aka Most Probable Explanation (MPE)

q₅: Which combination of roads is most likely to be jammed on Monday at 9am?

$$\mathbf{q}_{\mathbf{5}}(\mathbf{m}) = \operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}(\mathbf{j}_{1}, \mathbf{j}_{2}, \dots \mid \mathsf{Day} = \mathsf{M}, \mathsf{Time} = \mathbf{9})$$

General: $\operatorname{argmax}_{\mathbf{q}} \, p_{\mathbf{m}}(\mathbf{q} \mid \mathbf{e})$

where $\mathbf{Q} \cup \mathbf{E} = \mathbf{X}$

pinterest.com/pin/190417890473268205/

aka Most Probable Explanation (MPE)

q₅: Which combination of roads is most likely to be jammed on Monday at 9am?

...intractable for latent variable models!

$$\max_{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q} \mid \mathbf{e}) = \max_{\mathbf{q}} \sum_{\mathbf{z}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{z} \mid \mathbf{e})$$
$$\neq \sum_{\mathbf{z}} \max_{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{z} \mid \mathbf{e})$$

pinterest.com/pin/190417890473268205/

aka Bayesian Network MAP

q₆: Which combination of roads is most likely to be jammed on Monday at 9am?

aka Bayesian Network MAP

q₆: Which combination of roads is most likely to be jammed on Monday at 9am?

$$\mathbf{q}_6(\mathbf{m}) = \operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}(\mathbf{j}_1, \mathbf{j}_2, \dots \mid \mathsf{Time} = \mathbf{9})$$

pinterest.com/pin/190417890473268205/

aka Bayesian Network MAP

q₆: Which combination of roads is most likely to be jammed on Monday at 9am?

$$\mathbf{q}_6(\mathbf{m}) = \operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}(\mathbf{j}_1, \mathbf{j}_2, \dots \mid \mathsf{Time} = \mathbf{9})$$

General: $\operatorname{argmax}_{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q} \mid \mathbf{e})$ = $\operatorname{argmax}_{\mathbf{q}} \sum_{\mathbf{h}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{h} \mid \mathbf{e})$ where $\mathbf{Q} \cup \mathbf{H} \cup \mathbf{E} = \mathbf{X}$

pinterest.com/pin/190417890473268205/

aka Bayesian Network MAP

q₆: Which combination of roads is most likely to be jammed on Monday at 9am?

$$\mathbf{q}_6(\mathbf{m}) = \operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}(\mathbf{j}_1, \mathbf{j}_2, \dots \mid \mathsf{Time} = \mathbf{9})$$

- \implies NP^{PP}-complete [Park et al. 2006]
- \Rightarrow NP-hard for trees [Campos 2011]
- ⇒ NP-hard even for Naive Bayes [ibid.]

pinterest.com/pin/190417890473268205/

q₂: Which day is most likely to have a traffic jam on my route to work?

q₂: Which day is most likely to have a traffic jam on my route to work?

 $\mathbf{q}_{2}(\mathbf{m}) = \operatorname{argmax}_{\mathsf{d}} p_{\mathbf{m}}(\mathsf{Day} = \mathsf{d} \land \bigvee_{i \in \mathsf{route}} \mathsf{Jam}_{\mathsf{Str}\,i})$ $\implies marginals + MAP + logical events$

pinterest.com/pin/190417890473268205/

q₂: Which day is most likely to have a traffic jam on my route to work?

q₇: What is the probability of seeing more traffic jams in Jaffa than Marina?

pinterest.com/pin/190417890473268205/

q₂: Which day is most likely to have a traffic jam on my route to work?

q₇: What is the probability of seeing more traffic jams in Jaffa than Marina?

 \Rightarrow counts + group comparison

pinterest.com/pin/190417890473268205/

q₂: Which day is most likely to have a traffic jam on my route to work?

q₇: What is the probability of seeing more traffic jams in Jaffa than Marina?

and more:

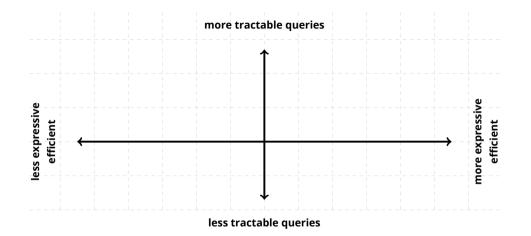
expected classification agreement [Oztok et al. 2016; Choi et al. 2017, 2018]

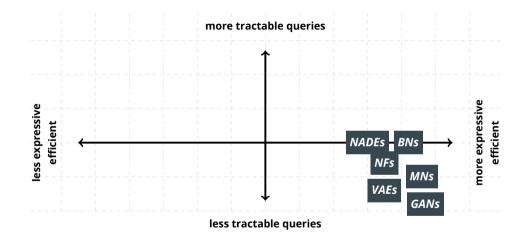
expected predictions [Khosravi et al. 2019a]

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

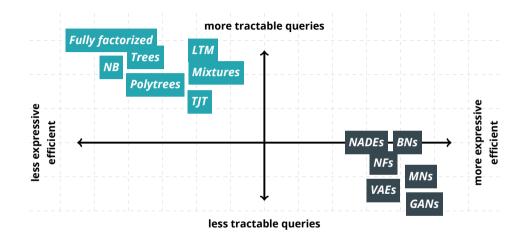
Complete evidence, marginals and MAP, MMAP inference is *linear*!

⇒ but definitely not expressive...

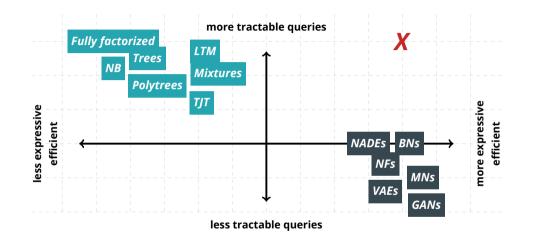




Expressive models are not very tractable...



and tractable ones are not very expressive...



probabilistic circuits are at the "sweet spot"

Probabilistic Circuits

Stay Tuned For ...

Next:

1. What are the building blocks of tractable models?

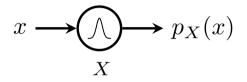
> a computational graph forming a probabilistic circuit

2. For which queries are probabilistic circuits tractable?

 \implies tractable classes induced by structural properties

After: How are probabilistic circuits related to the alphabet soup of models?

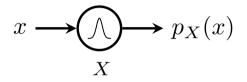
Base Case: Univariate Distributions



Generally, univariate distributions are tractable for:

- EVI: output $p(X_i)$ (density or mass)
 - MAR: output 1 (normalized) or Z (unnormalized)
 - MAP: output the mode

Base Case: Univariate Distributions



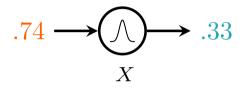
Generally, univariate distributions are tractable for:

- EVI: output $p(X_i)$ (density or mass)
 - \mid MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

 $\implies often 100\% \text{ probability for one value of a categorical random variable} \\ \implies \text{ for example, } X \text{ or } \neg X \text{ for Boolean random variable}$

Base Case: Univariate Distributions



Generally, univariate distributions are tractable for:

EVI: output $p(X_i)$ (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

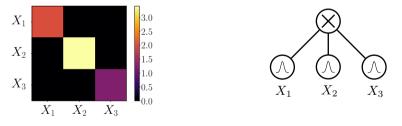
 \Rightarrow often 100% probability for one value of a categorical random variable \Rightarrow for example, X or $\neg X$ for Boolean random variable

Factorizations are products

Divide and conquer complexity

_

$$p(X_1, X_2, X_3) = p(X_1) \cdot p(X_2) \cdot p(X_3)$$



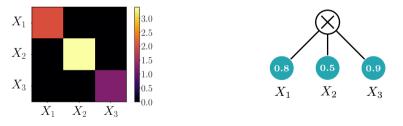
e.g. modeling a multivariate Gaussian with diagonal covariance matrix

Factorizations are products

Divide and conquer complexity

 \equiv

$$p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2) \cdot p(x_3)$$



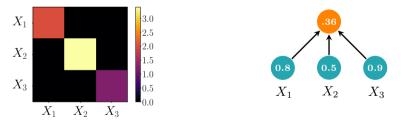
e.g. modeling a multivariate Gaussian with diagonal covariance matrix

Factorizations are products

Divide and conquer complexity

 \equiv

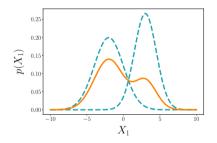
$$p(x_1, x_2, x_3) = p(x_1) \cdot p(x_2) \cdot p(x_3)$$



e.g. modeling a multivariate Gaussian with diagonal covariance matrix

Mixtures are sums

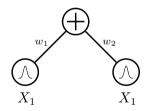
Also mixture models can be treated as a simple *computational unit* over distributions



$$\mathbf{p}(X) = w_1 \cdot \mathbf{p}_1(X) + w_2 \cdot \mathbf{p}_2(X)$$

Mixtures are sums

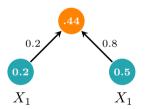
Also mixture models can be treated as a simple *computational unit* over distributions



$$p(x) = 0.2 \cdot p_1(x) + 0.8 \cdot p_2(x)$$

Mixtures are sums

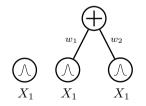
Also mixture models can be treated as a simple *computational unit* over distributions

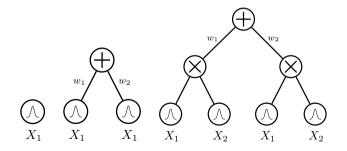


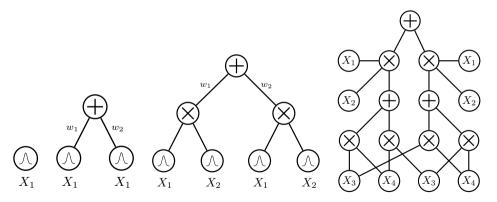
$$p(x) = 0.2 \cdot p_1(x) + 0.8 \cdot p_2(x)$$

With mixtures, we increase expressiveness

by stacking them we increase expressive efficiency







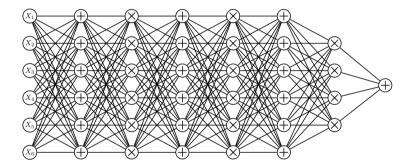
Probabilistic circuits are not PGMs!

They are *probabilistic* and *graphical*, however ...

	PGMs	Circuits
	random variables	unit of computations
Edges	dependencies	order of execution
Inference:	conditioning	feedforward pass
	elimination	backward pass
	message passing	

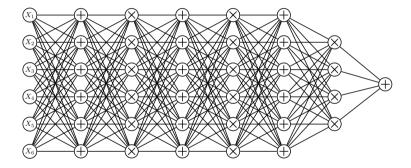
they are computational graphs, more like neural networks

Just sum, products and distributions?



just arbitrarily compose them like a neural network!

Just sum, products and distributions?



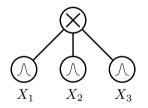
just arbitrarily compose them like a neural network!

structural constraints needed for tractability

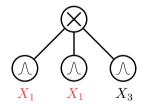
How do we ensure tractability?

A product node is decomposable if its children depend on disjoint sets of variables

 \implies just like in factorization!



decomposable circuit



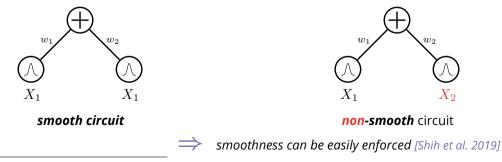
non-decomposable circuit

Darwiche et al., "A knowledge compilation map", 2002

aka completeness

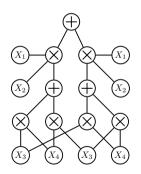
A sum node is smooth if its children depend of the same variable sets

 \Rightarrow otherwise not accounting for some variables



Darwiche et al., "A knowledge compilation map", 2002

Smoothness and decomposability enable tractable MAR/CON queries

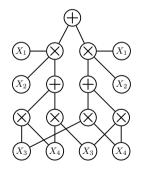


Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If $p(\mathbf{x},\mathbf{y})=p(\mathbf{x})p(\mathbf{y})$, (decomposability):

$$\int \int p(\mathbf{x}, \mathbf{y}) d\mathbf{x} d\mathbf{y} = \int \int p(\mathbf{x}) p(\mathbf{y}) d\mathbf{x} d\mathbf{y} =$$
$$= \int p(\mathbf{x}) d\mathbf{x} \int p(\mathbf{y}) d\mathbf{y}$$



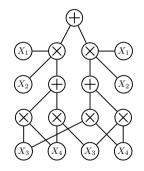
larger integrals decompose into easier ones

Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If $p(\mathbf{x}) = \sum_i w_i p_i(\mathbf{x})$, (smoothness):

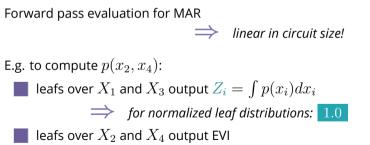
$$\int p(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} p_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int p_{i}(\mathbf{x}) d\mathbf{x}$$

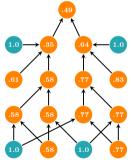


 \Rightarrow integrals are "pushed down" to children

Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries



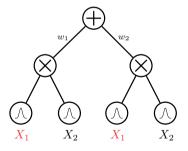


aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input \Rightarrow e.g. if their distributions have disjoint support

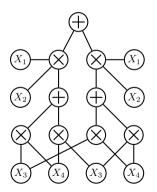
 $\begin{array}{c}
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & & & \\
 & &$

deterministic circuit



non-deterministic circuit

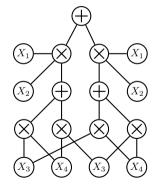
The addition of determinism enables tractable MAP queries!



The addition of determinism enables tractable MAP queries!

If $p(\mathbf{q}, \mathbf{e}) = p(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}})$ = $p(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}})p(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}})$ (*decomposable* product node):

$$\begin{aligned} \operatorname*{argmax}_{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e}) &= \operatorname*{argmax}_{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) \\ &= \operatorname*{argmax}_{\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}} p(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}) \\ &= \operatorname*{argmax}_{\mathbf{q}_{\mathbf{x}}} p(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}), \operatorname*{argmax}_{\mathbf{q}_{\mathbf{y}}} p(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}) \\ &\implies solving optimization independently \end{aligned}$$

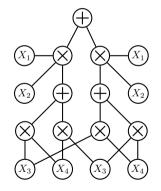


The addition of determinism enables tractable MAP queries!

If $p(\mathbf{q}, \mathbf{e}) = \sum_{i} w_i p_i(\mathbf{q}, \mathbf{e}) = \max_i w_i p_i(\mathbf{q}, \mathbf{e})$, (*deterministic* sum node):

$$\operatorname{argmax}_{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) = \operatorname{argmax}_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e})$$
$$= \operatorname{argmax}_{\mathbf{q}} \max_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e})$$
$$= \max_{i} \operatorname{argmax}_{\mathbf{q}} w_{i} p_{i}(\mathbf{q}, \mathbf{e})$$

one non-zero child term, thus sum is max

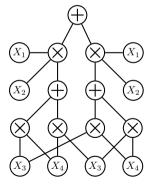


The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice: **bottom-up** and **top-down**

 \Rightarrow still

still linear in circuit size!

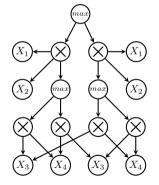


The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice: *bottom-up* and *top-down*

still linear in circuit size!

- 1. turn sum into max nodes
- 2. evaluate $p(\mathbf{e})$ bottom-up
- 3. retrieve max activations top-down
- 4. compute MAP queries at leaves

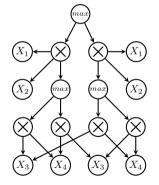


The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice: **bottom-up** and **top-down**

still linear in circuit size!

- 1. turn sum into max nodes
- 2. evaluate $p(\mathbf{e})$ bottom-up
- 3. retrieve max activations top-down
- 4. compute MAP queries at leaves



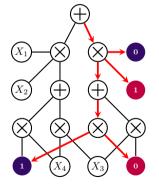
The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:

bottom-up and top-down

still linear in circuit size!

- 1. turn sum into max nodes
- 2. evaluate $p(\mathbf{e})$ bottom-up
- 3. retrieve max activations top-down
- 4. compute MAP queries at leaves

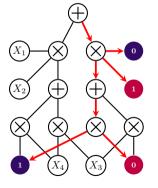


The addition of determinism enables tractable MAP gueries!

Evaluating the circuit twice: bottom-up and top-down

still linear in circuit size!

- 1. turn sum into max nodes
- 2. evaluate $p(\mathbf{e})$ bottom-up
- 3. retrieve max activations top-down
- 4. compute MAP gueries at leaves



Approximate MAP

If the probabilistic circuit is *non-deterministic*, MAP is intractable:

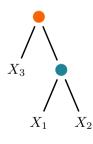
 \implies e.g. with latent variables ${f Z}$

$$\operatorname{argmax}_{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) = \operatorname{argmax}_{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \operatorname{argmax}_{\mathbf{q}} \max_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})$$

However, same two steps algorithm, still used as an approximation to MAP [Liu et al. 2013; Peharz et al. 2016]

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree



structured decomposable circuit

vtree

stronger requirement than decomposability X_1 X_2 X_1 X_2 X_1 X_2 X_1 X_2

Structured decomposability enables tractable ...

- *Entropy* of probabilistic circuit [Liang et al. 2017b]
- *Symmetric* and *group queries* (exactly-*k*, odd-number, more, etc.) *[Bekker et al. 2015]* the "right" vtree
- Probability of logical circuit event in probabilistic circuit [ibid.]
 Multiply two probabilistic circuits [Shen et al. 2016]
 KL Divergence between probabilistic circuits [Liang et al. 2017b]
 Same-decision probability [Oztok et al. 2016]
 Expected same-decision probability [Choi et al. 2017]
 Expected classifier agreement [Choi et al. 2018]
 Expected predictions [Khosravi et al. 2019b]

Structured decomposability enables tractable ...

Entropy of probabilistic circuit [Liang et al. 2017b]

Symmetric and **group queries** (exactly-*k*, odd-number, more, etc.) [Bekker et al. 2015] For the "right" vtree

- Probability of logical circuit event in probabilistic circuit [ibid.]
 - Multiply two probabilistic circuits [Shen et al. 2016]
 - KL Divergence between probabilistic circuits [Liang et al. 2017b]
 - Same-decision probability [Oztok et al. 2016]
 - Expected same-decision probability [Choi et al. 2017]
 - Expected classifier agreement [Choi et al. 2018]
 - Expected predictions [Khosravi et al. 2019b]

Stay Tuned For ...

Next:

- 1. How probabilistic circuits are related to logical ones?
 - \Rightarrow a historical perspective
- 2. How probabilistic circuits in the literature relate and differ?
 - \implies SPNs, ACs, CNets, PSDDs
- 3. How classical tractable models can be turned in a circuit?

→ Compiling low-treewidth PGMs

After: How do I build my own probabilistic circuit?

Tractability to other semi-rings

Tractable probabilistic inference exploits *efficient summation for decomposable functions* in the probability commutative semiring:

 $(\mathbb{R}, +, \times, 0, 1)$

analogously efficient computations can be done in other semi-rings:

 $(\mathbb{S},\oplus,\otimes,0_\oplus,1_\otimes)$

 \Rightarrow

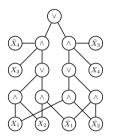
Algebraic model counting [Kimmig et al. 2017], Semi-ring

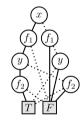
programming [Belle et al. 2016]

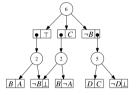
Historically, very well studied for boolean functions:

 $(\mathbb{B} = \{0, 1\}, \lor, \land, 0, 1) \implies \text{logical circuits!}$

Logical circuits







s/d-D/NNFs [Darwiche et al. 2002]

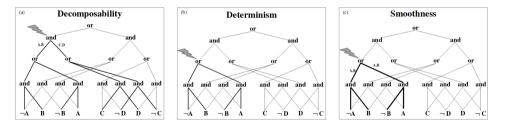
O/BDDs [Bryant 1986]

SDDs [Darwiche 2011]

Logical circuits are compact representations for boolean functions...

structural properties

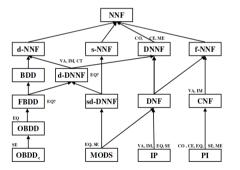
...and as probabilitistic circuits, one can define *structural properties*: (*structured*) *decomposability*, *smoothness*, *determinism* allowing for tractable computations



Darwiche et al., "A knowledge compilation map", 2002

a knowledge compilation map

...inducing *a hierarchy of tractable query classes*



Darwiche et al., "A knowledge compilation map", 2002

Logical circuits

connection to probabilistic circuits through WMC

A task called *weighted model counting* (WMC)

$$WMC(\Delta, w) = \sum_{\mathbf{x} \models \Delta} \prod_{l \in \mathbf{x}} w(l)$$

Two decades worth of connections:

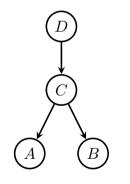
- 1. Encode probabilistic model as WMC (add variable placeholders for parameters)
- 2. Compile Δ into a d-DNNF (or OBDD, SDD, etc.)
- 3. Tractable MAR/CON by tractable WMC on circuit
- 4. Depending on the WMC encoding even tractable MAP

End result equivalent to probabilistic circuit: efficiently replace parameter variables in logical circuit by edge parameters in probabilistic circuit



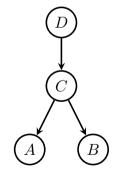
via compilation

Bottom-up *compilation*: starting from leaves...

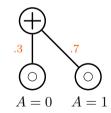


via compilation

...compile a leaf CPT

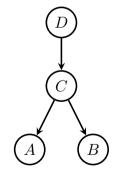


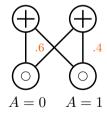
p(A|C=0)



via compilation

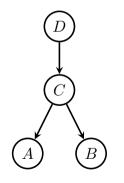
...compile a leaf CPT

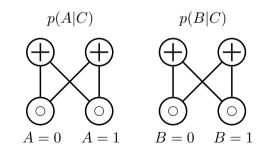




via compilation

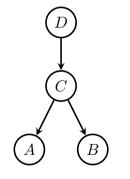
...compile a leaf CPT...for all leaves...

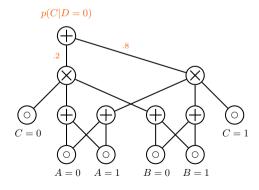




via compilation

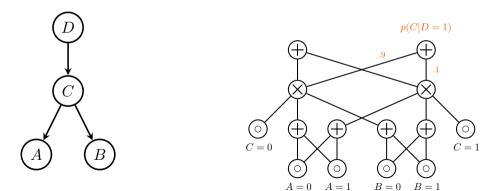
...and recurse over parents...

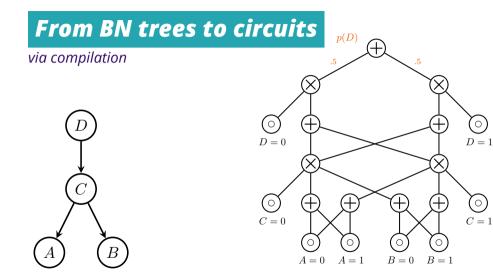




via compilation

...while reusing previously compiled nodes!...





Low-treewidh PGMs

Tree, polytrees and thin junction trees can be turned into

decomposable

smooth

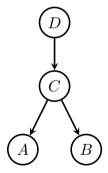
deterministic

probabilistic circuits

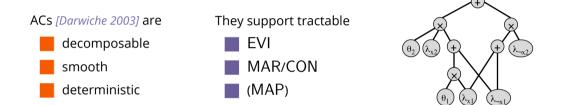
Therefore they support tractable

MAR/CON

MAP



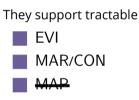
Arithmetic Circuits (ACs)

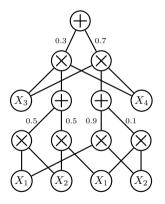


parameters attached to leaves (cf. WMC) ...can be moved to sum nodes
 Support for tractable MAP queries depends on intended WMC encoding
 Also see related AND/OR search spaces [Dechter et al. 2007]

Lowd et al., "Learning Markov Networks With Arithmetic Circuits", 2013

Sum-Product Networks (SPNs)

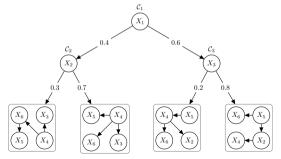




deterministic SPNs are also called selective [Peharz et al. 2014]

Cutset Networks (CNets)

A CNet [*Rahman et al. 2014*] is a *weighted model tree* [*Dechter et al. 2007*] whose leaves are tree Bayesian networks



 \Rightarrow they can be represented as probabilistic circuits

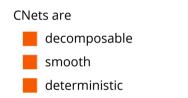
CNets as probabilistic circuits

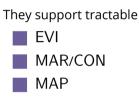
Every *decision node* in the CNet can be represented as a deterministic, smooth sum node

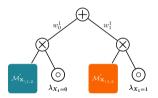
and we can recurse on each child node until a BN tree is reached

 \Rightarrow compilable into a deterministic, smooth and decomposable circuit!

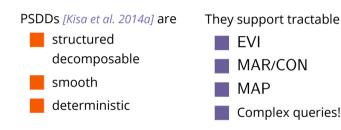
CNets as probabilistic circuits

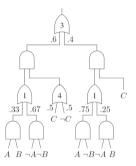




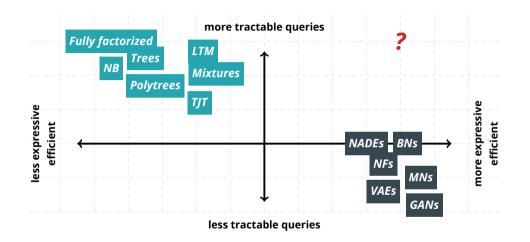


Probabilistic Sentential Decision Diagrams

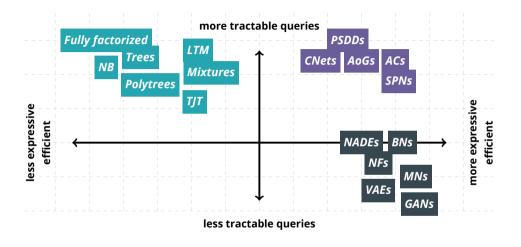




Kisa et al., "Probabilistic sentential decision diagrams", 2014 Choi et al., "Tractable learning for structured probability spaces: A case study in learning preference distributions", 2015 Shen et al., "Conditional PSDDs: Modeling and learning with modular knowledge", 2018



where are probabilistic circuits?

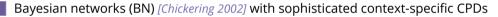


tractability vs expressive efficiency

How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:



MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., "Learning the Structure of Sum-Product Networks", 2013 Peharz et al., "Probabilistic deep learning using random sum-product networks", 2018

How expressive are probabilistic circuits?

density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	kosarek	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	bbc	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81

Building circuits

Read more in online slides about ...

Building Circuits:

1. How to learn circuit parameters?

 \Rightarrow convex optimization, EM, SGD, Bayesian learning, ...

2. How to learn the structure of circuits?

 \Rightarrow local search, random structures, ensembles, ...

3. How to compile other models to circuits?

 \Rightarrow PGM compilation, probabilistic databases, probabilistic programming

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf

Tractable Learning

A learner L is a tractable learner for a class of queries Q iff (1) for any dataset D, learner L(D) runs in time O(poly(|D|)), and (2) outputs a probabilistic model that is tractable for queries Q.

Tractable Learning

A learner L is a tractable learner for a class of queries \mathcal{Q} iff (1) for any dataset \mathcal{D} , learner $L(\mathcal{D})$ runs in time $O(\operatorname{poly}(|\mathcal{D}|))$, and

 \implies Guarantees learned model has size $O(\mathsf{poly}(|\mathcal{D}|))$

 \implies Guarantees learned model has size $O(\mathsf{poly}(|\mathbf{X}|))$

(2) outputs a probabilistic model that is tractable for queries Q.

Tractable Learning

A learner L is a tractable learner for a class of queries \mathcal{Q} iff (1) for any dataset \mathcal{D} , learner $L(\mathcal{D})$ runs in time $O(\operatorname{poly}(|\mathcal{D}|))$, and

 \implies Guarantees learned model has size $O(\operatorname{poly}(|\mathcal{D}|))$

 \implies Guarantees learned model has size $O(\mathsf{poly}(|\mathbf{X}|))$

(2) outputs a probabilistic model that is tractable for queries Q.

 \Rightarrow Guarantees efficient querying for \mathcal{Q} in time $O(\mathsf{poly}(|\mathbf{X}|))$

Stay Tuned For ...

Next:

1. How to learn circuit parameters?

⇒ convex optimization, EM, SGD, Bayesian learning, ...

2. How to learn the structure of circuits?

 \Rightarrow local search, random structures, ensembles, ...

After: What is this used for?

Learning circuit parameters

The parameters of a probabilistic circuit are

sum node parameters $oldsymbol{w}+$ input distributions' parameters $oldsymbol{ heta}$

 \Rightarrow e.g., parameters of Bernoulli or Gaussian leaves

Recall that if a sum node is **non-deterministic**, it marginalizes out latent variables Z... \implies *i.e., we are training a mixture model*

Learning circuit parameters

 \Rightarrow

deterministic circuits

non- deterministic

circuits

closed-form, convex optimization [Kisa et al. 2014b; Liang et al. 2019]

SGD [Peharz et al. 2018]

soft/hard EM [Poon et al. 2011; Peharz 2015]

bayesian moment matching [Jaini et al. 2016]

collapsed variational Bayes [Zhao et al. 2016a]

CCCP [Zhao et al. 2016b]

Extended Baum-Welch [Rashwan et al. 2018]

Deterministic circuits

Given a deterministic circuit ${\mathcal C}$ and a complete dataset ${\mathbf D}$, the likelihood of ${\mathcal C}$ given ${\mathbf D}$ is

$$L(oldsymbol{w};\mathbf{D}) = \prod_{\mathbf{x}\in\mathbf{D}} p_{\mathcal{C}}(\mathbf{x};oldsymbol{w})$$

as it decomposes as in BNs, the MLE parameters are computable as

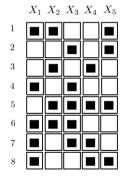
$$w_{i,j}^{\mathsf{MLE}} = \frac{\sum_{d \in \mathbf{D}} \mathbbm{1}\{\mathbf{x} \models [i \land j]\}}{\sum_{d \in \mathbf{D}} \mathbbm{1}\{\mathbf{x} \models [i]\}}$$

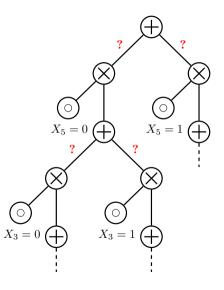
 \Rightarrow compute sufficient statistics (just count) in a single pass of ${
m D}$

Kisa et al., "Probabilistic sentential decision diagrams", 2014 Liang et al., "Learning Logistic Circuits", 2019

Deterministic circuits

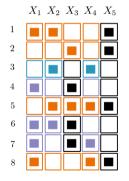
An example

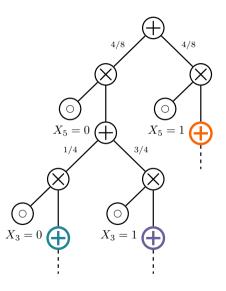




Deterministic circuits

An example





Non-deterministic circuits

Gradient Descent

Computing the likelihood gradient and optimize by GD

	Δw_{pc}
Soft Gradient	
Generative ($ abla_{w_{pc}}S(\mathbf{x})$)	$\frac{S_c(\mathbf{x}) \nabla_{S_p(\mathbf{x})} S(\mathbf{x})}{\nabla_{w_{pc}} S(\mathbf{y} \mathbf{x})} - \frac{\nabla_{w_{pc}} S(\mathbf{x} \mathbf{x})}{\nabla_{w_{pc}} S(\mathbf{x} \mathbf{x})}$
Discriminative ($ abla_{w_{pc}} \log S(\mathbf{y} \mathbf{x})$)	$\frac{\nabla_{wpc} S(\mathbf{y} \mathbf{x})}{S(\mathbf{y} \mathbf{x})} - \frac{\nabla_{wpc} S(* \mathbf{x})}{S(* \mathbf{x})}$
Hard Gradient	
Generative ($ abla_{w_{pc}}\log M(\mathbf{x})$)	$\frac{\#\{w_{pc}\in W_{\mathbf{x}}\}}{w_{pc}}$
Discriminative ($ abla_{w_{pc}} \log M(\mathbf{y} \mathbf{x})$)	$\frac{\#\{w_{pc} \in W_{(\mathbf{y} \mathbf{x})}\}}{w_{pc}} = \#\{w_{pc} \in W_{(1 \mathbf{x})}\}}$

Gens et al., "Discriminative Learning of Sum-Product Networks", 2012

Non-deterministic circuits

Expectation Maximization

... or using EM by considering each sum node as the marginalization of a hidden variable

Soft Posterior ($p(H_p = c \mathbf{x})$)	$\propto rac{1}{S(\mathbf{x})} rac{\partial S(\mathbf{x})}{\partial S_p(\mathbf{x})} S_c(\mathbf{x}) w_{pc}$
Hard Posterior ($p(H_p = c \mathbf{x})$)	$ \propto \frac{1}{S(\mathbf{x})} \frac{\partial S(\mathbf{x})}{\partial S_p(\mathbf{x})} S_c(\mathbf{x}) w_{pc} \\ = \begin{cases} 1 \text{ if } w_{pc} \in W_{\mathbf{x}} \\ 0 \text{ otherwise} \end{cases} $

Peharz et al., "On the Latent Variable Interpretation in Sum-Product Networks", 2016

Bayesian Parameter Learning

Bayesian Learning starts by expressing a prior $p(\mathbf{w})$ over the weights

 \Rightarrow learning corresponds to computing the posterior based on the data

 $p(\mathbf{w}|\mathcal{D}) \propto p(\mathbf{w})p(\mathcal{D}|\mathbf{w})$

Moment matching (oBMM) [Rashwan et al. 2016]

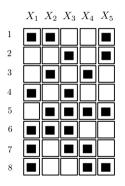
oBMM extended with Gaussian distributions [Jaini et al. 2016]

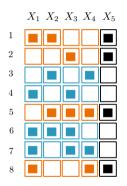
collapsed variational inference algorithm [Zhao et al. 2016b]

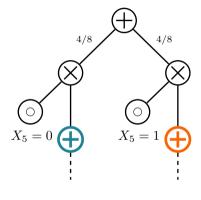
Structure learning

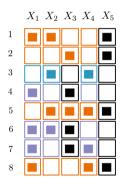
greedy top-down: LearnSPN and variants

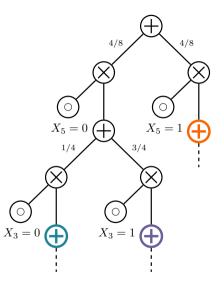
- **hill climbing**: LearnPSDD and variants
- random structures: RAT-SPNs, XCNets, ...
- ensembles of circuits: EM, bagging, boosting,...











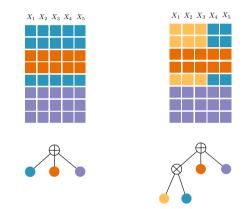
Di Mauro et al., "Learning Accurate Cutset Networks by Exploiting Decomposability", 2015

Learning both structure and parameters of a circuit by starting from a data matrix

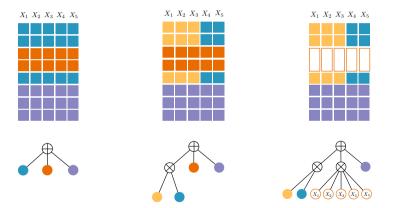
Gens et al., "Learning the Structure of Sum-Product Networks", 2013

 $X_1 \ X_2 \ X_3 \ X_4 \ X_5$

Looking for sub-population in the data—*clustering*—to introduce sum nodes...



...seeking independencies among sets of RVs to factorize into product nodes



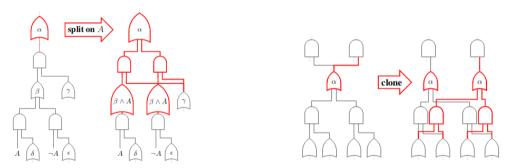
...learning smaller estimators as a *a recursive data crawler*

LearnSPN variants

- ID-SPN [Rooshenas et al. 2014]
- LearnSPN-b/T/B [Vergari et al. 2015]
- for heterogeneous data [Bueff et al. 2018; Molina et al. 2018]
- using **k-means** [Butz et al. 2018] or **SVD** splits [Adel et al. 2015]
 - learning DAGs [Dennis et al. 2015; Jaini et al. 2018]
 - approximating independence tests [Di Mauro et al. 2018]

LearnPSDD

Vtree learning + hill climbing



local search (split /clone) to maximise a penalized likelihood score

Randomized structure learning

Random Tensorized SPNs (RAT-SPNs) [Peharz et al. 2018]

- SPNs are obtained by first constructing a random region graph
- subsequently populating the region graph with tensors of SPN nodes
- discriminative+generative parameter learning (SGD/EM + dropout)

Extremely Randomized CNets (XCNets) [Di Mauro et al. 2017]

- top-down random conditioning
- learning Chow-Liu trees at the leaves

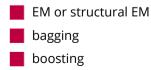
Ensembles of probabilistic circuits

Single circuits might be not accurate enough or **overfit** training data... Solution: *ensembles of circuits*!

⇒ non-deterministic mixture models: another sum node!

$$p(\mathbf{X}) = \sum_{i=1}^{K} \lambda_i C_i(\mathbf{X}), \quad \lambda_i \ge 0 \quad \sum_{i=1}^{K} \lambda_i = 1$$

Ensemble weights and components can be learned separately or jointly



more efficient than EM

mixture coefficients are set equally probable

mixture components can be learned independently on different *bootstraps*

Adding random subspace projection to bagged networks (like for CNets)

more efficient than bagging

Di Mauro et al., "Learning Accurate Cutset Networks by Exploiting Decomposability", 2015 Di Mauro et al., "Learning Bayesian Random Cutset Forests", 2015

Boosting

Boosting Probabilistic Circuits

BDE: boosting density estimation

sequentially grows the ensemble, adding a weak base learner at each stage at each boosting step m, find a weak learner c_m and a coefficient η_m maximizing the weighted LL of the new model

$$f_m = (1 - \eta_m) f_{m-1} + \eta_m c_m$$

GBDE: a kernel based generalization of BDE—AdaBoost style algorithm sequential EM

at each step m, jointly optimize η_m and c_m keeping f_{m-1} fixed

Applications

Read more in online slides about ...

Applications:

1. How to compile other models to circuits?

 \Rightarrow PGM compilation, probabilistic databases, probabilistic programming

2. what have probabilistic circuits been used for?

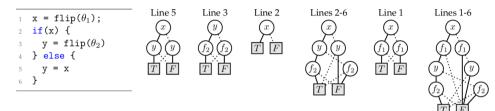
 \Rightarrow computer vision, sop, speech, planning, ...

3. what are the current trends and challenges?

 \Rightarrow hybrid models, benchmarks, scaling, reasoning

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf

Probabilistic programming



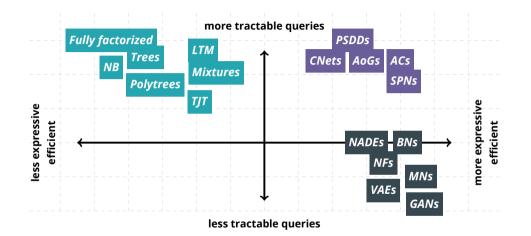
Chavira et al., "Compiling relational Bayesian networks for exact inference", 2006 Holtzen et al., "Symbolic Exact Inference for Discrete Probabilistic Programs", 2019 De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery."; "A top down interpreter for LPAD and CP-logic"; "Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas"; "Anytime Inference in Probabilistic Logic Programs with Tp-compilation", 2007; 2007; 2015; 2015 Olteanu et al.; Van den Broeck et al., "Using OBDDs for efficient query evaluation on probabilistic databases"; Query Processing on Probabilistic Data: A Survey, 2008; 2017 Vlasselaer et al., "Exploiting Local and Repeated Structure in Dynamic Bayesian Networks", 2016

The Logical Conclusions

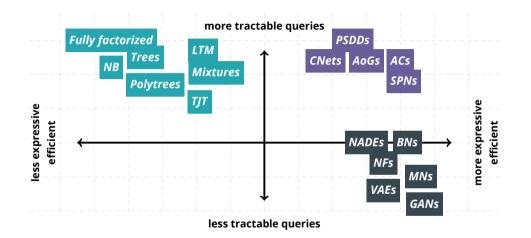
- Logical roots of probabilistic circuits
- Probabilistic circuits bridge between logic and deep learning
- Bring back world models!
- Powerful general reasoning tool

 \Rightarrow for example in probabilistic programming

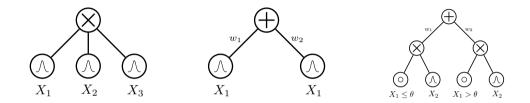
Elegant knowledge representation formalism



takeaway #1 tractability is a spectrum



takeaway #2: you can be both tractable and expressive



takeaway #3: probabilistic circuits are a foundation for tractable inference and learning

We will soon release Juice v0.1: The Julia Circuit Empanada

Learning probabilistic circuits from data and choose to be

decomposable - deterministic - structured decomposable

Evaluate tractable queries

EVI – MAR, COND – MAP – Complex queries, expectations, etc.

Easily compile logical and probabilistic circuits from other representations

Highly efficient using Julia's SIMD processing capabilities

Tractable Probabilistic Models

Representations Inference Learning Applications

Guy Van den Broeck

University of California, Los Angeles

based on joint AAAI-2020 and UAI-2019 tutorials with

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven **YooJung Choi** University of California, Los Angeles

Nicola Di Mauro University of Bari

November 11, 2019 - International Spring School on "Uncertainty in AI and data management" - Santiago, Chile

References I

- Chow, C and C Liu (1968). "Approximating discrete probability distributions with dependence trees". In: IEEE Transactions on Information Theory 14.3, pp. 462–467.
- Bryant, R (1986). "Graph-based algorithms for boolean manipulation". In: IEEE Transactions on Computers, pp. 677–691.
- Cooper, Gregory F (1990). "The computational complexity of probabilistic inference using Bayesian belief networks". In: Artificial intelligence 42.2-3, pp. 393–405.
- Dagum, Paul and Michael Luby (1993). "Approximating probabilistic inference in Bayesian belief networks is NP-hard". In: Artificial intelligence 60.1, pp. 141–153.
- Chang, Nevin Lianwen and David Poole (1994). "A simple approach to Bayesian network computations". In: Proceedings of the Biennial Conference-Canadian Society for Computational Studies of Intelligence, pp. 171–178.
- Both, Dan (1996). "On the hardness of approximate reasoning". In: Artificial Intelligence 82.1–2, pp. 273–302.
- Dechter, Rina (1998). "Bucket elimination: A unifying framework for probabilistic inference". In: Learning in graphical models. Springer, pp. 75–104.
- Dasgupta, Sanjoy (1999). "Learning polytrees". In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 134–141.
- 🕀 Meilă, Marina and Michael I. Jordan (2000). "Learning with mixtures of trees". In: Journal of Machine Learning Research 1, pp. 1–48.
- Bach, Francis R. and Michael I. Jordan (2001). "Thin Junction Trees". In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.
- Darwiche, Adnan (2001). "Recursive conditioning". In: Artificial Intelligence 126.1-2, pp. 5–41.
- 9 Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). "Generalized belief propagation". In: Advances in neural information processing systems, pp. 689–695.

References II

- Chickering, Max (2002). "The WinMine Toolkit". In: Microsoft, Redmond.
- Darwiche, Adnan and Pierre Marquis (2002). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229–264.
- Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). "Iterative join-graph propagation". In: Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 128–136.
- Darwiche, Adnan (2003). "A Differential Approach to Inference in Bayesian Networks". In: J.ACM.
- 🕀 Sang, Tian, Paul Beame, and Henry A Kautz (2005). "Performing Bayesian inference by weighted model counting". In: AAAI. Vol. 5, pp. 475–481.
- Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). "Compiling relational Bayesian networks for exact inference". In: International Journal of Approximate Reasoning 42.1-2, pp. 4–20.
- Park, James D and Adnan Darwiche (2006). "Complexity results and approximation strategies for MAP explanations". In: Journal of Artificial Intelligence Research 21, pp. 101–133.
- 🕀 De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.". In: IJCAI. Vol. 7. Hyderabad, pp. 2462–2467.
- Dechter, Rina and Robert Mateescu (2007). "AND/OR search spaces for graphical models". In: Artificial intelligence 171.2-3, pp. 73–106.
- Harring Kulesza, A. and F. Pereira (2007). "Structured Learning with Approximate Inference". In: Advances in Neural Information Processing Systems 20. MIT Press, pp. 785–792.
- Biguzzi, Fabrizio (2007). "A top down interpreter for LPAD and CP-logic". In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109–120.

References III

- Olteanu, Dan and Jiewen Huang (2008). "Using OBDDs for efficient query evaluation on probabilistic databases". In: International Conference on Scalable Uncertainty Management. Springer, pp. 326–340.
- Holler, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.
- Choi, Arthur and Adnan Darwiche (2010). "Relax, compensate and then recover". In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167–180.
- Dowd, Daniel and Pedro Domingos (2010). "Approximate inference by compilation to arithmetic circuits". In: Advances in Neural Information Processing Systems, pp. 1477–1485.
- Gampos, Cassio Polpo de (2011). "New complexity results for MAP in Bayesian networks". In: IJCAI. Vol. 11, pp. 2100–2106.
- Darwiche, Adnan (2011). "SDD: A New Canonical Representation of Propositional Knowledge Bases". In: Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two. IJCAI'11. Barcelona, Catalonia, Spain. ISBN: 978-1-57735-514-4.
- Poon, Hoifung and Pedro Domingos (2011). "Sum-Product Networks: a New Deep Architecture". In: UAI 2011.
- Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). "Introduction to dual decomposition for inference". In: Optimization for Machine Learning 1, pp. 219–254.
- Gens, Robert and Pedro Domingos (2012). "Discriminative Learning of Sum-Product Networks". In: Advances in Neural Information Processing Systems 25, pp. 3239–3247.
- Liu, Qiang and Alexander Ihler (2013). "Variational algorithms for marginal MAP". In: The Journal of Machine Learning Research 14.1, pp. 3165–3200.

References IV

- Lowd, Daniel and Amirmohammad Rooshenas (2013). "Learning Markov Networks With Arithmetic Circuits". In: Proceedings of the 16th International Conference on Artificial Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.
- Goodfellow, Ian et al. (2014). "Generative adversarial nets". In: Advances in neural information processing systems, pp. 2672–2680.
- Hingma, Diederik P and Max Welling (2014). "Auto-Encoding Variational Bayes". In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014.
- Kisa, Doga et al. (July 2014a). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria.
- (July 2014b). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.
- Hartens, James and Venkatesh Medabalimi (2014). "On the Expressive Efficiency of Sum Product Networks". In: CoRR abs/1411.7717.
- Peharz, Robert, Robert Gens, and Pedro Domingos (2014). "Learning Selective Sum-Product Networks". In: Workshop on Learning Tractable Probabilistic Models. LTPM.
- Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). "Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees". In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.
- Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). "Stochastic backprop. and approximate inference in deep generative models". In: arXiv preprint arXiv:1401.4082.
- B Rooshenas, Amirmohammad and Daniel Lowd (2014). "Learning Sum-Product Networks with Direct and Indirect Variable Interactions". In: Proceedings of ICML 2014.

References V

- 🕀 🛛 Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). "Learning the Structure of Sum-Product Networks via an SVD-based Algorithm". In: Uncertainty in Artificial Intelligence.
- Bekker, Jessa et al. (2015). "Tractable Learning for Complex Probability Queries". In: Advances in Neural Information Processing Systems 28 (NIPS).
- Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (2015). "Importance weighted autoencoders". In: arXiv preprint arXiv:1509.00519.
- Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015). "Tractable learning for structured probability spaces: A case study in learning preference distributions". In: Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI).
- Dennis, Aaron and Dan Ventura (2015). "Greedy Structure Search for Sum-product Networks". In: IJCAI'15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. ISBN: 978-1-57735-738-4.
- 🕀 Di Mauro, Nicola, Antonio Vergari, and Floriana Esposito (2015a). "Learning Accurate Cutset Networks by Exploiting Decomposability". In: Proceedings of AIXIA. Springer, pp. 221–232.
- Di Mauro, Nicola, Antonio Vergari, and Teresa M.A. Basile (2015b). "Learning Bayesian Random Cutset Forests". In: Proceedings of ISMIS. Springer, pp. 122–132.
- Fierens, Daan et al. (May 2015). "Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas". In: Theory and Practice of Logic Programming 15 (03), pp. 358-401. ISSN: 1475-3081. DOI: 10.1017/S1471068414000076. URL: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.
- Germain, Mathieu et al. (2015). "MADE: Masked Autoencoder for Distribution Estimation". In: CoRR abs/1502.03509.
- Peharz, Robert (2015). "Foundations of Sum-Product Networks for Probabilistic Modeling". PhD thesis. Graz University of Technology, SPSC.
- 🕀 Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). "Simplifying. Regularizing and Strengthening Sum-Product Network Structure Learning". In: ECML-PKDD 2015. 104/108

References VI

- Vlasselaer, Jonas et al. (2015). "Anytime Inference in Probabilistic Logic Programs with Tp-compilation". In: Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). URL: http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf.
- Belle, Vaishak and Luc De Raedt (2016). "Semiring Programming: A Framework for Search, Inference and Learning". In: arXiv preprint arXiv:1609.06954.
- Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). "On the expressive power of deep learning: A tensor analysis". In: Conference on Learning Theory, pp. 698–728.
- Jaini, Priyank et al. (2016). "Online Algorithms for Sum-Product Networks with Continuous Variables". In: Probabilistic Graphical Models Eighth International Conference, PGM 2016, Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228–239. URL: http://jmlr.org/proceedings/papers/v52/jaini16.html.
- Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). "Solving PP-PP-complete problems using knowledge compilation". In: Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning.
- Peharz, Robert et al. (2016). "On the Latent Variable Interpretation in Sum-Product Networks". In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. URL: http://arxiv.org/abs/1601.06180.
- Rahman, Tahrima and Vibhav Gogate (2016). "Learning Ensembles of Cutset Networks". In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI'16. Phoenix, Arizona: AAAI Press, pp. 3301–3307. URL: http://dl.acm.org/citation.cfm?id=3016100.3016365.
- Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). "Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks". In: Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.
- Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). "Tractable Operations for Arithmetic Circuits of Probabilistic Models". In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936–3944.

References VII

- Vlasselaer, Jonas et al. (Mar. 2016). "Exploiting Local and Repeated Structure in Dynamic Bayesian Networks". In: Artificial Intelligence 232, pp. 43 –53. ISSN: 0004-3702. DOI: 10.1016/j.artint.2015.12.001.
- 2hao, Han, Pascal Poupart, and Geoffrey J Gordon (2016a). "A Unified Approach for Learning the Parameters of Sum-Product Networks". In: Advances in Neural Information Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433–441.
- Thao, Han et al. (2016b). "Collapsed Variational Inference for Sum-Product Networks". In: In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.
- Alemi, Alexander A et al. (2017). "Fixing a broken ELBO". In: arXiv preprint arXiv:1711.00464.
- Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). "Optimal feature selection for decision robustness in Bayesian networks". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI).
- Di Mauro, Nicola et al. (2017). "Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks". In: ECML-PKDD 2017.
- Himmig, Angelika, Guy Van den Broeck, and Luc De Raedt (2017). "Algebraic model counting". In: Journal of Applied Logic 22, pp. 46–62.
- Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017a). "Learning the structure of probabilistic sentential decision diagrams". In: Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI).
- Liang, Yitao and Guy Van den Broeck (Aug. 2017b). "Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams". In: IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI). URL: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.

References VIII

- Van den Broeck, Guy and Dan Suciu (Aug. 2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. DOI: 10.1561/1900000052. URL: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.
- 🕀 Bueff, Andreas, Stefanie Speichert, and Vaishak Belle (2018). "Tractable Querying and Learning in Hybrid Domains via Sum-Product Networks". In: arXiv preprint arXiv:1807.05464.
- Butz, Cory J et al. (2018). "An Empirical Study of Methods for SPN Learning and Inference". In: International Conference on Probabilistic Graphical Models, pp. 49–60.
- 🕀 Choi, YooJung and Guy Van den Broeck (2018). "On robust trimming of Bayesian network classifiers". In: arXiv preprint arXiv:1805.11243.
- Di Mauro, Nicola et al. (2018). "Sum-Product Network structure learning by efficient product nodes discovery". In: Intelligenza Artificiale 12.2, pp. 143–159.
- Friedman, Tal and Guy Van den Broeck (Dec. 2018). "Approximate Knowledge Compilation by Online Collapsed Importance Sampling". In: Advances in Neural Information Processing Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.
- Jaini, Priyank, Amur Ghose, and Pascal Poupart (2018). "Prometheus: Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks". In: International Conference on Probabilistic Graphical Models, pp. 181–192.
- Holina, Alejandro et al. (2018). "Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains". In: AAAI.
- Peharz, Robert et al. (2018). "Probabilistic deep learning using random sum-product networks". In: arXiv preprint arXiv:1806.01910.
- Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018). "Discriminative Training of Sum-Product Networks by Extended Baum-Welch". In: International Conference on Probabilistic Graphical Models, pp. 356–367.

References IX

- 🕀 Shen, Yujia, Arthur Choi, and Adnan Darwiche (2018). "Conditional PSDDs: Modeling and learning with modular knowledge". In: Thirty-Second AAAI Conference on Artificial Intelligence.
- Dai, Bin and David Wipf (2019). "Diagnosing and enhancing vae models". In: arXiv preprint arXiv:1903.05789.
- Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). "Symbolic Exact Inference for Discrete Probabilistic Programs". In: arXiv preprint arXiv:1904.02079.
- Hosravi, Pasha et al. (2019a). "What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features". In: arXiv preprint arXiv:1903.01620.
- Khosravi, Pasha et al. (2019b). "What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features". In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI).
- Liang, Yitao and Guy Van den Broeck (2019). "Learning Logistic Circuits". In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI).
- Bhih, Andy et al. (2019). "Smoothing Structured Decomposable Circuits". In: arXiv preprint arXiv:1906.00311.