
Tractable
Probabilistic
Models

Representations
Inference
Learning
Applications

Guy Van den Broeck
University of California, Los Angeles

based on joint AAAI-2020 and UAI-2019 tutorials with

Antonio Vergari
University of California, Los Angeles

YooJung Choi
University of California, Los Angeles

Robert Peharz
TU Eindhoven

Nicola Di Mauro
University of Bari

November 11, 2019 - International Spring School on “Uncertainty in AI and data management” - Santiago, Chile

AoGs PDGs NBs Fully factorized sd-DNNF PSDDs

Trees LTMs DNNFs OBDDs CNets SPNs NADEs

Thin Junction Trees NNF FBDDs BDDs ACs VAEs

Polytrees d-NNFs ADDs SDDs TACs GANs NFs

Mixtures XADDs XSDDs MNs BNs FGs

The Alphabet Soup of models in AI

2/108

AoGs PDGs NBs Fully factorized sd-DNNF PSDDs

Trees LTMs DNNFs OBDDs CNets SPNs NADEs

Thin Junction Trees NNF FBDDs BDDs ACs VAEs

Polytrees d-NNFs ADDs SDDs TACs GANs NFs

Mixtures XADDs XSDDs MNs BNs FGs

Logical and Probabilisticmodels

3/108

AoGs PDGs NBs Fully factorized sd-DNNF PSDDs

Trees LTMs DNNFs OBDDs CNets SPNs NADEs

Thin Junction Trees NNF FBDDs BDDs ACs VAEs

Polytrees d-NNFs ADDs SDDs TACs GANs NFs

Mixtures XADDs XSDDs MNs BNs FGs

Tractable and Intractable
probabilistic models

4/108

AoGs PDGs NBs Fully factorized sd-DNNF PSDDs

Trees LTMs DNNFs OBDDs CNets SPNs NADEs

Thin Junction Trees NNF FBDDs BDDs ACs VAEs

Polytrees d-NNFs ADDs SDDs TACs GANs NFs

Mixtures XADDs XSDDs MNs BNs FGs

Expressivemodels without compromises

5/108

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

6/108

Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

Building circuits
learning them from data and compiling other models

Applications
what are circuits useful for

6/108

Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!

pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ? pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamHerzl = 1)

pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamHerzl = 1)

⇒ marginals

pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events

pinterest.com/pin/190417890473268205/

8/108

pinterest.com/pin/190417890473268205/

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).

9/108

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).

⇒ often poly will in fact be linear!

9/108

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).

⇒ often poly will in fact be linear!

⇒ think of |m| as the number of streets on my route to work

9/108

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).

⇒ often poly will in fact be linear!

⇒ think of |m| as the number of streets on my route to work

⇒ Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).

9/108

What about approximate inference?

Why approximate when we can do exact?
⇒ and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

⇒ But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on

10/108

What about approximate inference?

Why approximate when we can do exact?
⇒ and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

⇒ But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on

10/108

What about approximate inference?

Why approximate when we can do exact?
⇒ and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

⇒ But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on

10/108

What about approximate inference?

Why approximate when we can do exact?
⇒ and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

⇒ But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on

10/108

Stay Tuned For …

Next:

1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified framework for
tractable probabilistic modeling

11/108

Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

pinterest.com/pin/190417890473268205/

12/108

pinterest.com/pin/190417890473268205/

Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day,Time, JamHerzl, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

pinterest.com/pin/190417890473268205/

12/108

pinterest.com/pin/190417890473268205/

Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day,Time, JamHerzl, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

pinterest.com/pin/190417890473268205/

12/108

pinterest.com/pin/190417890473268205/

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 13/108

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 14/108

Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 15/108

Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “broken”

[Alemi et al. 2017; Dai et al. 2019]

16/108

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5

17/108

PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

X1

X2

X3

X4

X5

18/108

PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

Z =
∫ ∏

c ϕc(Xc)dX

⇒ EVI queries are intractable!

X1

X2

X3

X4

X5

18/108

PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

Z =
∫ ∏

c ϕc(Xc)dX

⇒ EVI queries are intractable!

Bayesian Networks (BNs)

p(X) =
∏

i p(Xi | pa(Xi))

⇒ EVI queries are tractable!

X1

X2

X3

X4

X5

X1

X2

X3

X4

X5

18/108

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

pinterest.com/pin/190417890473268205/

19/108

pinterest.com/pin/190417890473268205/

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

q1(m) = pm(Day = Mon, JamHerzl = 1)

pinterest.com/pin/190417890473268205/

19/108

pinterest.com/pin/190417890473268205/

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

q1(m) = pm(Day = Mon, JamHerzl = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X

H = X \ E

pinterest.com/pin/190417890473268205/

19/108

pinterest.com/pin/190417890473268205/

Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

pinterest.com/pin/190417890473268205/

20/108

pinterest.com/pin/190417890473268205/

Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(JamHerzl = 1 | Day = Mon)

pinterest.com/pin/190417890473268205/

20/108

pinterest.com/pin/190417890473268205/

Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(JamHerzl = 1 | Day = Mon)

If you can answer MAR queries,
then you can also do conditional queries (CON):

pm(Q | E) = pm(Q,E)

pm(E)

pinterest.com/pin/190417890473268205/

20/108

pinterest.com/pin/190417890473268205/

Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative
error of 2n

1−ϵ
for any fixed ϵ is NP-hard [Dagum et al. 1993; Roth 1996].

Treewidth: Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with treewidthw
take timeO(|X| · 2w), which is linear for fixed widthw [Dechter 1998; Koller et al. 2009].

⇒ what about bounding the treewidth by design?

21/108

Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative
error of 2n

1−ϵ
for any fixed ϵ is NP-hard [Dagum et al. 1993; Roth 1996].

Treewidth: Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with treewidthw
take timeO(|X| · 2w), which is linear for fixed widthw [Dechter 1998; Koller et al. 2009].

⇒ what about bounding the treewidth by design?

21/108

Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

22/108

Low-treewidth PGMs: trees

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 23/108

What do we lose?

Expressiveness: Ability to compactly represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 24/108

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k

25/108

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1) · p1(X|Z = 1)

+ p(Z = 2) · p2(X|Z = 2)

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

25/108

Expressiveness and efficiency

Expressiveness: Ability to compactly represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) compares model sizes in terms of their ability to
compactly represent functions

⇒ but how many components do they need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 26/108

Mixture models
Expressive efficiency

⇒ deeper mixtures would be efficient compared to shallow ones 27/108

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

pinterest.com/pin/190417890473268205/

28/108

pinterest.com/pin/190417890473268205/

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

pinterest.com/pin/190417890473268205/

28/108

pinterest.com/pin/190417890473268205/

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X
pinterest.com/pin/190417890473268205/

28/108

pinterest.com/pin/190417890473268205/

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e) pinterest.com/pin/190417890473268205/

28/108

pinterest.com/pin/190417890473268205/

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

pinterest.com/pin/190417890473268205/

29/108

pinterest.com/pin/190417890473268205/

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

pinterest.com/pin/190417890473268205/

29/108

pinterest.com/pin/190417890473268205/

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X

pinterest.com/pin/190417890473268205/

29/108

pinterest.com/pin/190417890473268205/

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]

pinterest.com/pin/190417890473268205/

29/108

pinterest.com/pin/190417890473268205/

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30/108

pinterest.com/pin/190417890473268205/

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30/108

pinterest.com/pin/190417890473268205/

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30/108

pinterest.com/pin/190417890473268205/

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

⇒ counts + group comparison

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30/108

pinterest.com/pin/190417890473268205/

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019a]

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30/108

pinterest.com/pin/190417890473268205/

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

31/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

32/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
33/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

and tractable ones are not very expressive…
34/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
35/108

Probabilistic Circuits

Stay Tuned For …

Next:

1. What are the building blocks of tractable models?
⇒ a computational graph forming a probabilistic circuit

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How are probabilistic circuits related to the alphabet soup of models?

37/108

Base Case: Univariate Distributions

x

X

pX(x)

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

38/108

Base Case: Univariate Distributions

x

X

pX(x)

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

⇒ often 100% probability for one value of a categorical random variable
⇒ for example,X or ¬X for Boolean random variable

38/108

Base Case: Univariate Distributions

.74

X

.33

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

⇒ often 100% probability for one value of a categorical random variable
⇒ for example,X or ¬X for Boolean random variable

38/108

Factorizations are products
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix

39/108

Factorizations are products
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix

39/108

Factorizations are products
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix

39/108

Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

40/108

Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

40/108

Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

With mixtures, we increase expressiveness
⇒ by stacking them we increase expressive efficiency

40/108

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1

41/108

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

41/108

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

w1 w2

41/108

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

41/108

Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks

42/108

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!

43/108

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability

43/108

How do we ensure tractability?

44/108

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 45/108

Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 46/108

Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

47/108

Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x,y) = p(x)p(y), (decomposability):

∫ ∫
p(x,y)dxdy =

∫ ∫
p(x)p(y)dxdy =

=

∫
p(x)dx

∫
p(y)dy

⇒ larger integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

47/108

Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

47/108

Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 output Zi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

.61

1.0

.83

1.0 .58 1.0 .77

47/108

Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 48/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

If p(q, e) = p(qx, ex,qy, ey)
= p(qx, ex)p(qy, ey) (decomposable product node):

argmax
q

p(q | e) = argmax
q

p(q, e)

= argmax
qx,qy

p(qx, ex,qy, ey)

= argmax
qx

p(qx, ex), argmax
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

argmax
q

p(q, e) = argmax
q

∑
i

wipi(q, e)

= argmax
q

max
i

wipi(q, e)

= max
i

argmax
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

In practice:

1. turn sum into max nodes

2. evaluate p(e) bottom-up

3. retrieve max activations top-down

4. compute MAP queries at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

In practice:

1. turn sum into max nodes

2. evaluate p(e) bottom-up

3. retrieve max activations top-down

4. compute MAP queries at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

In practice:

1. turn sum into max nodes

2. evaluate p(e) bottom-up

3. retrieve max activations top-down

4. compute MAP queries at leaves

× ×

× ×× ×

X1

X2

0

1

1 X4 X3 0

49/108

Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

In practice:

1. turn sum into max nodes

2. evaluate p(e) bottom-up

3. retrieve max activations top-down

4. compute MAP queries at leaves

× ×

× ×× ×

X1

X2

0

1

1 X4 X3 0

49/108

Approximate MAP

If the probabilistic circuit is non-deterministic, MAP is intractable:
⇒ e.g. with latent variables Z

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸= argmax
q

max
z

p(q, z, e)

However, same two steps algorithm, still used as an approximation to MAP [Liu et al. 2013;

Peharz et al. 2016]

50/108

Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
51/108

Structured decomposability enables tractable …
Entropy of probabilistic circuit [Liang et al. 2017b]

Symmetric and group queries (exactly-k, odd-number, more, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [ibid.]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019b]
52/108

Structured decomposability enables tractable …
Entropy of probabilistic circuit [Liang et al. 2017b]

Symmetric and group queries (exactly-k, odd-number, more, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [ibid.]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019b]
52/108

Stay Tuned For …

Next:

1. How probabilistic circuits are related to logical ones?
⇒ a historical perspective

2. How probabilistic circuits in the literature relate and differ?
⇒ SPNs, ACs, CNets, PSDDs

3. How classical tractable models can be turned in a circuit?
⇒ Compiling low-treewidth PGMs

After: How do I build my own probabilistic circuit?
53/108

Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)

analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)

⇒ Algebraic model counting [Kimmig et al. 2017], Semi-ring
programming [Belle et al. 2016]

Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
54/108

Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
[Darwiche et al. 2002]

O/BDDs
[Bryant 1986]

SDDs
[Darwiche 2011]

Logical circuits are compact representations for boolean functions…
55/108

Logical circuits
structural properties

…and as probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche et al., “A knowledge compilation map”, 2002 56/108

Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable query classes

Darwiche et al., “A knowledge compilation map”, 2002 57/108

Logical circuits
connection to probabilistic circuits through WMC

A task called weighted model counting (WMC)

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

Two decades worth of connections:
1. Encode probabilistic model as WMC (add variable placeholders for parameters)
2. Compile∆ into a d-DNNF (or OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Depending on the WMC encoding even tractable MAP

End result equivalent to probabilistic circuit: efficiently replace parameter variables
in logical circuit by edge parameters in probabilistic circuit

58/108

From BN trees to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

59/108

From BN trees to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…

59/108

From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)

59/108

From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)

59/108

From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

59/108

From BN trees to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)

59/108

From BN trees to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)

59/108

From BN trees to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)

59/108

Low-treewidh PGMs

Tree, polytrees and
thin junction trees
can be turned into

decomposable

smooth

deterministic

probabilistic circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B

60/108

Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

(MAP)

⇒ parameters attached to leaves (cf. WMC) …can be moved to sum nodes
⇒ Support for tractable MAP queries depends on intended WMC encoding

⇒ Also see related AND/OR search spaces [Dechter et al. 2007]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 61/108

Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]

62/108

Cutset Networks (CNets)

A CNet [Rahman et al. 2014] is a weighted model tree [Dechter et al. 2007] whose leaves are
tree Bayesian networks

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

⇒ they can be represented as probabilistic circuits
63/108

CNets as probabilistic circuits

Every decision node in the CNet can be represented as a deterministic, smooth sum node

X1

M
′
X\1

M
′′
X\1

C1

C2 C3

M
′
X\1

M
′′
X\1

w1
0 w1

1 = × ×

w1
0 w1

1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

and we can recurse on each child node until a BN tree is reached
⇒ compilable into a deterministic, smooth and decomposable circuit!

64/108

CNets as probabilistic circuits

CNets are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

w1
0 w1

1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

65/108

Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014a] are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 66/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

?

where are probabilistic circuits?
67/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
68/108

How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Probabilistic deep learning using random sum-product networks”, 2018 69/108

How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

70/108

Building circuits

Read more in online slides about …

Building Circuits:

1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

3. How to compile other models to circuits?
⇒ PGM compilation, probabilistic databases, probabilistic programming

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf
72/108

http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf

Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
(2) outputs a probabilistic model that is tractable for queriesQ.

73/108

Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
⇒ Guarantees learned model has sizeO(poly(|D|))

⇒ Guarantees learned model has sizeO(poly(|X|))

(2) outputs a probabilistic model that is tractable for queriesQ.

73/108

Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
⇒ Guarantees learned model has sizeO(poly(|D|))

⇒ Guarantees learned model has sizeO(poly(|X|))

(2) outputs a probabilistic model that is tractable for queriesQ.

⇒ Guarantees efficient querying forQ in timeO(poly(|X|))

73/108

Stay Tuned For …

Next:

1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

After: What is this used for?

74/108

Learning circuit parameters

The parameters of a probabilistic circuit are

sum node parametersw + input distributions’ parameters θ

⇒ e.g., parameters of Bernoulli or Gaussian leaves

Recall that if a sum node is non-deterministic, it marginalizes out latent variables Z…
⇒ i.e., we are training a mixture model

75/108

Learning circuit parameters

deterministic
circuits

non- deterministic
circuits

⇒

⇒

closed-form, convex optimization
[Kisa et al. 2014b; Liang et al. 2019]

SGD [Peharz et al. 2018]

soft/hard EM [Poon et al. 2011; Peharz 2015]

bayesian moment matching [Jaini et al. 2016]

collapsed variational Bayes [Zhao et al. 2016a]

CCCP [Zhao et al. 2016b]

Extended Baum-Welch [Rashwan et al. 2018]

76/108

Deterministic circuits

Given a deterministic circuit C and a complete datasetD, the likelihood of C givenD is

L(w;D) =
∏
x∈D

pC(x;w)

as it decomposes as in BNs, the MLE parameters are computable as

wMLE
i,j =

∑
d∈D 1{x |= [i ∧ j]}∑

d∈D 1{x |= [i]}

⇒ compute sufficient statistics (just count) in a single pass ofD

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 77/108

Deterministic circuits
An example

� �

�

� �

� �

1

2

3

4

� � �

� � �

� � �

� �

5

6

7

8

X4X3X2X1

�

�

�

�

X5

× ×

? ?

X5 = 0 X5 = 1

× ×

? ?

X3 = 0 X3 = 1

78/108

Deterministic circuits
An example

� �

�

� �

� �

1

2

3

4

� � �

� � �

� � �

� �

5

6

7

8

X4X3X2X1

�

�

�

�

X5

× ×

4/8 4/8

X5 = 0 X5 = 1

× ×

1/4 3/4

X3 = 0 X3 = 1

78/108

Non-deterministic circuits
Gradient Descent

Computing the likelihood gradient and optimize by GD

∆wpc

Soft Gradient
Generative (∇wpcS(x)) Sc(x)∇Sp(x)S(x)

Discriminative (∇wpc logS(y|x))
∇wpcS(y|x)

S(y|x) − ∇wpcS(∗|x)
S(∗|x)

Hard Gradient
Generative (∇wpc logM(x)) ♯{wpc∈Wx}

wpc

Discriminative (∇wpc logM(y|x)) ♯{wpc∈W(y|x)}−♯{wpc∈W(1|x)}
wpc

Gens et al., “Discriminative Learning of Sum-Product Networks”, 2012 79/108

Non-deterministic circuits
Expectation Maximization

…or using EM by considering each sum node as the marginalization of a hidden variable

Soft Posterior (p(Hp = c|x)) ∝ 1
S(x)

∂S(x)
∂Sp(x)

Sc(x)wpc

Hard Posterior (p(Hp = c|x)) =

{
1 ifwpc ∈ Wx

0 otherwise

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 80/108

Bayesian Parameter Learning

Bayesian Learning starts by expressing a prior p(w) over the weights
⇒ learning corresponds to computing the posterior based on the data

p(w|D) ∝ p(w)p(D|w)

Moment matching (oBMM) [Rashwan et al. 2016]

oBMM extended with Gaussian distributions [Jaini et al. 2016]

collapsed variational inference algorithm [Zhao et al. 2016b]

81/108

Structure learning

greedy top-down: LearnSPN and variants

hill climbing: LearnPSDD and variants

random structures: RAT-SPNs, XCNets, …

ensembles of circuits: EM, bagging, boosting,…

82/108

LearnCNet

� �

�

� �

� �

1

2

3

4

� � �

� � �

� � �

� �

5

6

7

8

X4X3X2X1

�

�

�

�

X5

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 83/108

LearnCNet

� �

�

� �

� �

1

2

3

4

� � �

� � �

� � �

� �

5

6

7

8

X4X3X2X1

�

�

�

�

X5

× ×

4/8 4/8

X5 = 0 X5 = 1

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 83/108

LearnCNet

� �

�

� �

� �

1

2

3

4

� � �

� � �

� � �

� �

5

6

7

8

X4X3X2X1

�

�

�

�

X5

× ×

4/8 4/8

X5 = 0 X5 = 1

× ×

1/4 3/4

X3 = 0 X3 = 1

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015
83/108

LearnSPN

1

2

3

4

5

6

7

8

X4X3X2X1 X5

Learning both structure and parameters of a circuit by starting from a data matrix

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108

LearnSPN
X4X3X2X1 X5

Looking for sub-population in the data—clustering—to introduce sum nodes…

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108

LearnSPN
X4X3X2X1 X5

X4X3X2X1 X5

…seeking independencies among sets of RVs to factorize into product nodes

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108

LearnSPN
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

X4X3X2X1 X5

…learning smaller estimators as a a recursive data crawler

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108

LearnSPN variants

ID-SPN [Rooshenas et al. 2014]

LearnSPN-b/T/B [Vergari et al. 2015]

for heterogeneous data [Bueff et al. 2018; Molina et al. 2018]

using k-means [Butz et al. 2018] or SVD splits [Adel et al. 2015]

learning DAGs [Dennis et al. 2015; Jaini et al. 2018]

approximating independence tests [Di Mauro et al. 2018]

85/108

LearnPSDD
Vtree learning + hill climbing

local search (split /clone) to maximise a penalized likelihood score

Liang et al., “Learning the structure of probabilistic sentential decision diagrams”, 2017 86/108

Randomized structure learning

Random Tensorized SPNs (RAT-SPNs) [Peharz et al. 2018]

SPNs are obtained by first constructing a random region graph

subsequently populating the region graph with tensors of SPN nodes

discriminative+generative parameter learning (SGD/EM + dropout)

Extremely Randomized CNets (XCNets) [Di Mauro et al. 2017]

top-down random conditioning

learning Chow-Liu trees at the leaves

87/108

Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data…
Solution: ensembles of circuits!

⇒ non-deterministic mixture models: another sum node!

p(X) =
K∑
i=1

λiCi(X), λi ≥ 0
K∑
i=1

λi = 1

Ensemble weights and components can be learned separately or jointly

EM or structural EM

bagging

boosting
88/108

Bagging

more efficient than EM

mixture coefficients are set equally probable

mixture components can be learned independently on different bootstraps

Adding random subspace projection to bagged networks (like for CNets)

more efficient than bagging

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015
Di Mauro et al., “Learning Bayesian Random Cutset Forests”, 2015 89/108

Boosting

Boosting Probabilistic Circuits

BDE: boosting density estimation
sequentially grows the ensemble, adding a weak base learner at each stage
at each boosting stepm, find a weak learner cm and a coefficient ηm maximizing the
weighted LL of the new model

fm = (1− ηm)fm−1 + ηmcm

GBDE: a kernel based generalization of BDE—AdaBoost style algorithm

sequential EM
at each stepm, jointly optimize ηm and cm keeping fm−1 fixed

Rahman et al., “Learning Ensembles of Cutset Networks”, 2016 90/108

Applications

Read more in online slides about …

Applications:

1. How to compile other models to circuits?
⇒ PGM compilation, probabilistic databases, probabilistic programming

2. what have probabilistic circuits been used for?
⇒ computer vision, sop, speech, planning, …

3. what are the current trends and challenges?
⇒ hybrid models, benchmarks, scaling, reasoning

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf

92/108

http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf

Probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 93/108

The Logical Conclusions

Logical roots of probabilistic circuits

Probabilistic circuits bridge between logic and deep learning

Bring back world models!

Powerful general reasoning tool
⇒ for example in probabilistic programming

Elegant knowledge representation formalism

94/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

takeaway #1 tractability is a spectrum
95/108

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

SPNs

PSDDs

CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

takeaway #2: you can be both tractable and expressive
96/108

×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning

97/108

Code

We will soon release Juice v0.1: The Julia Circuit Empanada

Learning probabilistic circuits from data and choose to be

decomposable – deterministic – structured decomposable

Evaluate tractable queries

EVI – MAR, COND – MAP – Complex queries, expectations, etc.

Easily compile logical and probabilistic circuits from other representations

Highly efficient using Julia’s SIMD processing capabilities

98/108

Tractable
Probabilistic
Models

Representations
Inference
Learning
Applications

Guy Van den Broeck
University of California, Los Angeles

based on joint AAAI-2020 and UAI-2019 tutorials with

Antonio Vergari
University of California, Los Angeles

YooJung Choi
University of California, Los Angeles

Robert Peharz
TU Eindhoven

Nicola Di Mauro
University of Bari

November 11, 2019 - International Spring School on “Uncertainty in AI and data management” - Santiago, Chile

References I
⊕ Chow, C and C Liu (1968). “Approximating discrete probability distributions with dependence trees”. In: IEEE Transactions on Information Theory 14.3, pp. 462–467.

⊕ Bryant, R (1986). “Graph-based algorithms for boolean manipulation”. In: IEEE Transactions on Computers, pp. 677–691.

⊕ Cooper, Gregory F (1990). “The computational complexity of probabilistic inference using Bayesian belief networks”. In: Artificial intelligence 42.2-3, pp. 393–405.

⊕ Dagum, Paul and Michael Luby (1993). “Approximating probabilistic inference in Bayesian belief networks is NP-hard”. In: Artificial intelligence 60.1, pp. 141–153.

⊕ Zhang, Nevin Lianwen and David Poole (1994). “A simple approach to Bayesian network computations”. In: Proceedings of the Biennial Conference-Canadian Society for Computational
Studies of Intelligence, pp. 171–178.

⊕ Roth, Dan (1996). “On the hardness of approximate reasoning”. In: Artificial Intelligence 82.1–2, pp. 273–302.

⊕ Dechter, Rina (1998). “Bucket elimination: A unifying framework for probabilistic inference”. In: Learning in graphical models. Springer, pp. 75–104.

⊕ Dasgupta, Sanjoy (1999). “Learning polytrees”. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 134–141.

⊕ Meilă, Marina and Michael I. Jordan (2000). “Learning with mixtures of trees”. In: Journal of Machine Learning Research 1, pp. 1–48.

⊕ Bach, Francis R. and Michael I. Jordan (2001). “Thin Junction Trees”. In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.

⊕ Darwiche, Adnan (2001). “Recursive conditioning”. In: Artificial Intelligence 126.1-2, pp. 5–41.

⊕ Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). “Generalized belief propagation”. In: Advances in neural information processing systems, pp. 689–695. 100/108

References II
⊕ Chickering, Max (2002). “The WinMine Toolkit”. In: Microsoft, Redmond.

⊕ Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). “Iterative join-graph propagation”. In: Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan
Kaufmann Publishers Inc., pp. 128–136.

⊕ Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM.

⊕ Sang, Tian, Paul Beame, and Henry A Kautz (2005). “Performing Bayesian inference by weighted model counting”. In: AAAI. Vol. 5, pp. 475–481.

⊕ Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). “Compiling relational Bayesian networks for exact inference”. In: International Journal of Approximate Reasoning 42.1-2,
pp. 4–20.

⊕ Park, James D and Adnan Darwiche (2006). “Complexity results and approximation strategies for MAP explanations”. In: Journal of Artificial Intelligence Research 21, pp. 101–133.

⊕ De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). “ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.”. In: IJCAI. Vol. 7. Hyderabad, pp. 2462–2467.

⊕ Dechter, Rina and Robert Mateescu (2007). “AND/OR search spaces for graphical models”. In: Artificial intelligence 171.2-3, pp. 73–106.

⊕ Kulesza, A. and F. Pereira (2007). “Structured Learning with Approximate Inference”. In: Advances in Neural Information Processing Systems 20. MIT Press, pp. 785–792.

⊕ Riguzzi, Fabrizio (2007). “A top down interpreter for LPAD and CP-logic”. In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109–120. 101/108

References III
⊕ Olteanu, Dan and Jiewen Huang (2008). “Using OBDDs for efficient query evaluation on probabilistic databases”. In: International Conference on Scalable Uncertainty Management.

Springer, pp. 326–340.

⊕ Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

⊕ Choi, Arthur and Adnan Darwiche (2010). “Relax, compensate and then recover”. In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167–180.

⊕ Lowd, Daniel and Pedro Domingos (2010). “Approximate inference by compilation to arithmetic circuits”. In: Advances in Neural Information Processing Systems, pp. 1477–1485.

⊕ Campos, Cassio Polpo de (2011). “New complexity results for MAP in Bayesian networks”. In: IJCAI. Vol. 11, pp. 2100–2106.

⊕ Darwiche, Adnan (2011). “SDD: A New Canonical Representation of Propositional Knowledge Bases”. In: Proceedings of the Twenty-Second International Joint Conference on Artificial
Intelligence - Volume Volume Two. IJCAI’11. Barcelona, Catalonia, Spain. ISBN: 978-1-57735-514-4.

⊕ Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

⊕ Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). “Introduction to dual decomposition for inference”. In: Optimization for Machine Learning 1, pp. 219–254.

⊕ Gens, Robert and Pedro Domingos (2012). “Discriminative Learning of Sum-Product Networks”. In: Advances in Neural Information Processing Systems 25, pp. 3239–3247.

⊕ — (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

⊕ Liu, Qiang and Alexander Ihler (2013). “Variational algorithms for marginal MAP”. In: The Journal of Machine Learning Research 14.1, pp. 3165–3200. 102/108

References IV
⊕ Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With Arithmetic Circuits”. In: Proceedings of the 16th International Conference on Artificial

Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.

⊕ Goodfellow, Ian et al. (2014). “Generative adversarial nets”. In: Advances in neural information processing systems, pp. 2672–2680.

⊕ Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014.

⊕ Kisa, Doga et al. (July 2014a). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning
(KR). Vienna, Austria.

⊕ — (July 2014b). “Probabilistic sentential decision diagrams”. In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR).
Vienna, Austria. URL: http://starai.cs.ucla.edu/papers/KisaKR14.pdf.

⊕ Martens, James and Venkatesh Medabalimi (2014). “On the Expressive Efficiency of Sum Product Networks”. In: CoRR abs/1411.7717.

⊕ Peharz, Robert, Robert Gens, and Pedro Domingos (2014). “Learning Selective Sum-Product Networks”. In: Workshop on Learning Tractable Probabilistic Models. LTPM.

⊕ Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees”. In:
Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.

⊕ Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backprop. and approximate inference in deep generative models”. In: arXiv preprint
arXiv:1401.4082.

⊕ Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML 2014. 103/108

http://starai.cs.ucla.edu/papers/KisaKR14.pdf

References V
⊕ Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). “Learning the Structure of Sum-Product Networks via an SVD-based Algorithm”. In: Uncertainty in Artificial Intelligence.

⊕ Bekker, Jessa et al. (2015). “Tractable Learning for Complex Probability Queries”. In: Advances in Neural Information Processing Systems 28 (NIPS).

⊕ Burda, Yuri, Roger Grosse, and Ruslan Salakhutdinov (2015). “Importance weighted autoencoders”. In: arXiv preprint arXiv:1509.00519.

⊕ Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015). “Tractable learning for structured probability spaces: A case study in learning preference distributions”. In:
Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI).

⊕ Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. ISBN:
978-1-57735-738-4.

⊕ Di Mauro, Nicola, Antonio Vergari, and Floriana Esposito (2015a). “Learning Accurate Cutset Networks by Exploiting Decomposability”. In: Proceedings of AIXIA. Springer, pp. 221–232.

⊕ Di Mauro, Nicola, Antonio Vergari, and Teresa M.A. Basile (2015b). “Learning Bayesian Random Cutset Forests”. In: Proceedings of ISMIS. Springer, pp. 122–132.

⊕ Fierens, Daan et al. (May 2015). “Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”. In: Theory and Practice of Logic Programming 15 (03),
pp. 358–401. ISSN: 1475-3081. DOI: 10.1017/S1471068414000076. URL: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.

⊕ Germain, Mathieu et al. (2015). “MADE: Masked Autoencoder for Distribution Estimation”. In: CoRR abs/1502.03509.

⊕ Peharz, Robert (2015). “Foundations of Sum-Product Networks for Probabilistic Modeling”. PhD thesis. Graz University of Technology, SPSC.

⊕ Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In: ECML-PKDD 2015. 104/108

https://doi.org/10.1017/S1471068414000076
http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf

References VI
⊕ Vlasselaer, Jonas et al. (2015). “Anytime Inference in Probabilistic Logic Programs with Tp-compilation”. In: Proceedings of 24th International Joint Conference on Artificial Intelligence

(IJCAI). URL: http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf.

⊕ Belle, Vaishak and Luc De Raedt (2016). “Semiring Programming: A Framework for Search, Inference and Learning”. In: arXiv preprint arXiv:1609.06954.

⊕ Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). “On the expressive power of deep learning: A tensor analysis”. In: Conference on Learning Theory, pp. 698–728.

⊕ Jaini, Priyank et al. (2016). “Online Algorithms for Sum-Product Networks with Continuous Variables”. In: Probabilistic Graphical Models - Eighth International Conference, PGM 2016,
Lugano, Switzerland, September 6-9, 2016. Proceedings, pp. 228–239. URL: http://jmlr.org/proceedings/papers/v52/jaini16.html.

⊕ Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). “Solving PP-PP-complete problems using knowledge compilation”. In: Fifteenth International Conference on the Principles of
Knowledge Representation and Reasoning.

⊕ Peharz, Robert et al. (2016). “On the Latent Variable Interpretation in Sum-Product Networks”. In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. URL:
http://arxiv.org/abs/1601.06180.

⊕ Rahman, Tahrima and Vibhav Gogate (2016). “Learning Ensembles of Cutset Networks”. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence. AAAI’16. Phoenix,
Arizona: AAAI Press, pp. 3301–3307. URL: http://dl.acm.org/citation.cfm?id=3016100.3016365.

⊕ Rashwan, Abdullah, Han Zhao, and Pascal Poupart (2016). “Online and Distributed Bayesian Moment Matching for Parameter Learning in Sum-Product Networks”. In: Proceedings
of the 19th International Conference on Artificial Intelligence and Statistics, pp. 1469–1477.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). “Tractable Operations for Arithmetic Circuits of Probabilistic Models”. In: Advances in Neural Information Processing Systems 29:
Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936–3944. 105/108

http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf
http://jmlr.org/proceedings/papers/v52/jaini16.html
http://arxiv.org/abs/1601.06180
http://dl.acm.org/citation.cfm?id=3016100.3016365

References VII
⊕ Vlasselaer, Jonas et al. (Mar. 2016). “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”. In: Artificial Intelligence 232, pp. 43 –53. ISSN: 0004-3702. DOI:

10.1016/j.artint.2015.12.001.

⊕ Zhao, Han, Pascal Poupart, and Geoffrey J Gordon (2016a). “A Unified Approach for Learning the Parameters of Sum-Product Networks”. In: Advances in Neural Information
Processing Systems 29. Ed. by D. D. Lee et al. Curran Associates, Inc., pp. 433–441.

⊕ Zhao, Han et al. (2016b). “Collapsed Variational Inference for Sum-Product Networks”. In: In Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.

⊕ Alemi, Alexander A et al. (2017). “Fixing a broken ELBO”. In: arXiv preprint arXiv:1711.00464.

⊕ Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). “Optimal feature selection for decision robustness in Bayesian networks”. In: Proceedings of the 26th International
Joint Conference on Artificial Intelligence (IJCAI).

⊕ Di Mauro, Nicola et al. (2017). “Fast and Accurate Density Estimation with Extremely Randomized Cutset Networks”. In: ECML-PKDD 2017.

⊕ Kimmig, Angelika, Guy Van den Broeck, and Luc De Raedt (2017). “Algebraic model counting”. In: Journal of Applied Logic 22, pp. 46–62.

⊕ Liang, Yitao, Jessa Bekker, and Guy Van den Broeck (2017a). “Learning the structure of probabilistic sentential decision diagrams”. In: Proceedings of the 33rd Conference on
Uncertainty in Artificial Intelligence (UAI).

⊕ Liang, Yitao and Guy Van den Broeck (Aug. 2017b). “Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams”. In: IJCAI 2017
Workshop on Explainable Artificial Intelligence (XAI). URL: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.

106/108

https://doi.org/10.1016/j.artint.2015.12.001
http://starai.cs.ucla.edu/papers/LiangXAI17.pdf

References VIII
⊕ Van den Broeck, Guy and Dan Suciu (Aug. 2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. DOI:

10.1561/1900000052. URL: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.

⊕ Bueff, Andreas, Stefanie Speichert, and Vaishak Belle (2018). “Tractable Querying and Learning in Hybrid Domains via Sum-Product Networks”. In: arXiv preprint arXiv:1807.05464.

⊕ Butz, Cory J et al. (2018). “An Empirical Study of Methods for SPN Learning and Inference”. In: International Conference on Probabilistic Graphical Models, pp. 49–60.

⊕ Choi, YooJung and Guy Van den Broeck (2018). “On robust trimming of Bayesian network classifiers”. In: arXiv preprint arXiv:1805.11243.

⊕ Di Mauro, Nicola et al. (2018). “Sum-Product Network structure learning by efficient product nodes discovery”. In: Intelligenza Artificiale 12.2, pp. 143–159.

⊕ Friedman, Tal and Guy Van den Broeck (Dec. 2018). “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”. In: Advances in Neural Information Processing
Systems 31 (NeurIPS). URL: http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf.

⊕ Jaini, Priyank, Amur Ghose, and Pascal Poupart (2018). “Prometheus: Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks”. In: International Conference on
Probabilistic Graphical Models, pp. 181–192.

⊕ Molina, Alejandro et al. (2018). “Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains”. In: AAAI.

⊕ Peharz, Robert et al. (2018). “Probabilistic deep learning using random sum-product networks”. In: arXiv preprint arXiv:1806.01910.

⊕ Rashwan, Abdullah, Pascal Poupart, and Chen Zhitang (2018). “Discriminative Training of Sum-Product Networks by Extended Baum-Welch”. In: International Conference on
Probabilistic Graphical Models, pp. 356–367. 107/108

https://doi.org/10.1561/1900000052
http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf
http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf

References IX

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2018). “Conditional PSDDs: Modeling and learning with modular knowledge”. In: Thirty-Second AAAI Conference on Artificial Intelligence.

⊕ Dai, Bin and David Wipf (2019). “Diagnosing and enhancing vae models”. In: arXiv preprint arXiv:1903.05789.

⊕ Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). “Symbolic Exact Inference for Discrete Probabilistic Programs”. In: arXiv preprint arXiv:1904.02079.

⊕ Khosravi, Pasha et al. (2019a). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: arXiv preprint arXiv:1903.01620.

⊕ Khosravi, Pasha et al. (2019b). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features”. In: Proceedings of the 28th International Joint Conference on
Artificial Intelligence (IJCAI).

⊕ Liang, Yitao and Guy Van den Broeck (2019). “Learning Logistic Circuits”. In: Proceedings of the 33rd Conference on Artificial Intelligence (AAAI).

⊕ Shih, Andy et al. (2019). “Smoothing Structured Decomposable Circuits”. In: arXiv preprint arXiv:1906.00311.

108/108

	Why tractable inference?
	Probabilistic Circuits
	Building circuits
	Applications
	References

