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Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models
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Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

Building circuits
learning them from data and compiling other models

Applications
what are circuits useful for
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Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ? pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamHerzl = 1)
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q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?
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q1(m) = pm(Day = Mon, JamHerzl = 1)

⇒ marginals
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events

pinterest.com/pin/190417890473268205/
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).

⇒ often poly will in fact be linear!

⇒ think of |m| as the number of streets on my route to work

⇒ Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).
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What about approximate inference?

Why approximate when we can do exact?
⇒ and do we lose some expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

⇒ But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on
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Stay Tuned For …

Next:

1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified framework for
tractable probabilistic modeling

11/108



Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?
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Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day,Time, JamHerzl, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})
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Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day,Time, JamHerzl, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

pinterest.com/pin/190417890473268205/
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Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 13/108



Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 14/108



Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 15/108



Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “broken”

[Alemi et al. 2017; Dai et al. 2019]

16/108



Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5
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PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

X1

X2

X3

X4

X5
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PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

Z =
∫ ∏

c ϕc(Xc)dX

⇒ EVI queries are intractable!
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PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

Z =
∫ ∏

c ϕc(Xc)dX

⇒ EVI queries are intractable!

Bayesian Networks (BNs)

p(X) =
∏

i p(Xi | pa(Xi))

⇒ EVI queries are tractable!

X1

X2

X3

X4

X5
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X3

X4

X5
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?
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Marginal queries (MAR)
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q1(m) = pm(Day = Mon, JamHerzl = 1)
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

q1(m) = pm(Day = Mon, JamHerzl = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X

H = X \ E

pinterest.com/pin/190417890473268205/
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Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

pinterest.com/pin/190417890473268205/
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Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(JamHerzl = 1 | Day = Mon)
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Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(JamHerzl = 1 | Day = Mon)

If you can answer MAR queries,
then you can also do conditional queries (CON):

pm(Q | E) = pm(Q,E)

pm(E)

pinterest.com/pin/190417890473268205/

20/108

pinterest.com/pin/190417890473268205/


Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative
error of 2n

1−ϵ
for any fixed ϵ is NP-hard [Dagum et al. 1993; Roth 1996].

Treewidth: Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with treewidthw
take timeO(|X| · 2w), which is linear for fixed widthw [Dechter 1998; Koller et al. 2009].

⇒ what about bounding the treewidth by design?
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Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

22/108



Low-treewidth PGMs: trees

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 23/108



What do we lose?

Expressiveness: Ability to compactly represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 24/108



Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1 ) · p1(X|Z = 1 )

+ p(Z = 2 ) · p2(X|Z = 2 )

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

25/108



Expressiveness and efficiency

Expressiveness: Ability to compactly represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) compares model sizes in terms of their ability to
compactly represent functions

⇒ but how many components do they need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 26/108



Mixture models
Expressive efficiency

⇒ deeper mixtures would be efficient compared to shallow ones 27/108



Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X
pinterest.com/pin/190417890473268205/
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e) pinterest.com/pin/190417890473268205/
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]

pinterest.com/pin/190417890473268205/
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

pinterest.com/pin/190417890473268205/
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

⇒ counts + group comparison

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 30/108
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019a]

pinterest.com/pin/190417890473268205/
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

31/108
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more tractable queries

less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
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BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

and tractable ones are not very expressive…
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less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
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Probabilistic Circuits



Stay Tuned For …

Next:

1. What are the building blocks of tractable models?
⇒ a computational graph forming a probabilistic circuit

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How are probabilistic circuits related to the alphabet soup of models?

37/108



Base Case: Univariate Distributions

x

X

pX(x)

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode
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Base Case: Univariate Distributions

x

X

pX(x)

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

⇒ often 100% probability for one value of a categorical random variable
⇒ for example,X or ¬X for Boolean random variable

38/108



Base Case: Univariate Distributions

.74

X

.33

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

⇒ often 100% probability for one value of a categorical random variable
⇒ for example,X or ¬X for Boolean random variable

38/108



Factorizations are products
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix

39/108



Factorizations are products
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix

39/108



Factorizations are products
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix

39/108



Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)
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Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)
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Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

With mixtures, we increase expressiveness
⇒ by stacking them we increase expressive efficiency
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A grammar for tractable models
Recursive semantics of probabilistic circuits
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41/108



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

41/108



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

w1 w2

41/108



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1
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×
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Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks

42/108



Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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X1
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X5
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×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability
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How do we ensure tractability?
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Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 45/108



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 46/108



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

47/108



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x,y) = p(x)p(y), (decomposability):

∫ ∫
p(x,y)dxdy =

∫ ∫
p(x)p(y)dxdy =

=

∫
p(x)dx

∫
p(y)dy

⇒ larger integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

47/108



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 output Zi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

.61

1.0

.83

1.0 .58 1.0 .77
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Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 48/108



Tractable MAP

The addition of determinism enables tractable MAP queries!

× ×

× ×× ×

X1

X2

X1
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X3 X4 X3 X4
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Tractable MAP

The addition of determinism enables tractable MAP queries!

If p(q, e) = p(qx, ex,qy, ey)
= p(qx, ex)p(qy, ey) (decomposable product node):

argmax
q

p(q | e) = argmax
q

p(q, e)

= argmax
qx,qy

p(qx, ex,qy, ey)

= argmax
qx

p(qx, ex), argmax
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAP

The addition of determinism enables tractable MAP queries!

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

argmax
q

p(q, e) = argmax
q

∑
i

wipi(q, e)

= argmax
q

max
i

wipi(q, e)

= max
i

argmax
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×
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Approximate MAP

If the probabilistic circuit is non-deterministic, MAP is intractable:
⇒ e.g. with latent variables Z

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸= argmax
q

max
z

p(q, z, e)

However, same two steps algorithm, still used as an approximation to MAP [Liu et al. 2013;

Peharz et al. 2016]
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
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Structured decomposability enables tractable …
Entropy of probabilistic circuit [Liang et al. 2017b]

Symmetric and group queries (exactly-k, odd-number, more, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [ibid.]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019b]
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Stay Tuned For …

Next:

1. How probabilistic circuits are related to logical ones?
⇒ a historical perspective

2. How probabilistic circuits in the literature relate and differ?
⇒ SPNs, ACs, CNets, PSDDs

3. How classical tractable models can be turned in a circuit?
⇒ Compiling low-treewidth PGMs

After: How do I build my own probabilistic circuit?
53/108



Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)

analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)

⇒ Algebraic model counting [Kimmig et al. 2017], Semi-ring
programming [Belle et al. 2016]

Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
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Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
[Darwiche et al. 2002]

O/BDDs
[Bryant 1986]

SDDs
[Darwiche 2011]

Logical circuits are compact representations for boolean functions…
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Logical circuits
structural properties

…and as probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche et al., “A knowledge compilation map”, 2002 56/108



Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable query classes

Darwiche et al., “A knowledge compilation map”, 2002 57/108



Logical circuits
connection to probabilistic circuits through WMC

A task called weighted model counting (WMC)

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

Two decades worth of connections:
1. Encode probabilistic model as WMC (add variable placeholders for parameters)
2. Compile∆ into a d-DNNF (or OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Depending on the WMC encoding even tractable MAP

End result equivalent to probabilistic circuit: efficiently replace parameter variables
in logical circuit by edge parameters in probabilistic circuit
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From BN trees to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1
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From BN trees to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…
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p(A|C = 0)
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

59/108



From BN trees to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)
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From BN trees to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)
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From BN trees to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)
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Low-treewidh PGMs

Tree, polytrees and
thin junction trees
can be turned into

decomposable

smooth

deterministic

probabilistic circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B
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Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

(MAP)

⇒ parameters attached to leaves (cf. WMC) …can be moved to sum nodes
⇒ Support for tractable MAP queries depends on intended WMC encoding

⇒ Also see related AND/OR search spaces [Dechter et al. 2007]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 61/108



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]
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Cutset Networks (CNets)

A CNet [Rahman et al. 2014] is a weighted model tree [Dechter et al. 2007] whose leaves are
tree Bayesian networks

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

⇒ they can be represented as probabilistic circuits
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CNets as probabilistic circuits

Every decision node in the CNet can be represented as a deterministic, smooth sum node

X1

M
′
X\1

M
′′
X\1

C1

C2 C3

M
′
X\1

M
′′
X\1

w1
0 w1

1 = × ×

w1
0 w1

1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

and we can recurse on each child node until a BN tree is reached
⇒ compilable into a deterministic, smooth and decomposable circuit!
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CNets as probabilistic circuits

CNets are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

w1
0 w1

1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

65/108



Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014a] are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 66/108
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Probabilistic deep learning using random sum-product networks”, 2018 69/108



How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

70/108



Building circuits



Read more in online slides about …

Building Circuits:

1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

3. How to compile other models to circuits?
⇒ PGM compilation, probabilistic databases, probabilistic programming

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf
72/108
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Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
(2) outputs a probabilistic model that is tractable for queriesQ.
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Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
⇒ Guarantees learned model has sizeO(poly(|D|))

⇒ Guarantees learned model has sizeO(poly(|X|))

(2) outputs a probabilistic model that is tractable for queriesQ.
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Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
⇒ Guarantees learned model has sizeO(poly(|D|))

⇒ Guarantees learned model has sizeO(poly(|X|))

(2) outputs a probabilistic model that is tractable for queriesQ.

⇒ Guarantees efficient querying forQ in timeO(poly(|X|))

73/108



Stay Tuned For …

Next:

1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

After: What is this used for?
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Learning circuit parameters

The parameters of a probabilistic circuit are

sum node parametersw + input distributions’ parameters θ

⇒ e.g., parameters of Bernoulli or Gaussian leaves

Recall that if a sum node is non-deterministic, it marginalizes out latent variables Z…
⇒ i.e., we are training a mixture model
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Learning circuit parameters

deterministic
circuits

non- deterministic
circuits

⇒

⇒

closed-form, convex optimization
[Kisa et al. 2014b; Liang et al. 2019]

SGD [Peharz et al. 2018]

soft/hard EM [Poon et al. 2011; Peharz 2015]

bayesian moment matching [Jaini et al. 2016]

collapsed variational Bayes [Zhao et al. 2016a]

CCCP [Zhao et al. 2016b]

Extended Baum-Welch [Rashwan et al. 2018]
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Deterministic circuits

Given a deterministic circuit C and a complete datasetD, the likelihood of C givenD is

L(w;D) =
∏
x∈D

pC(x;w)

as it decomposes as in BNs, the MLE parameters are computable as

wMLE
i,j =

∑
d∈D 1{x |= [i ∧ j]}∑

d∈D 1{x |= [i]}

⇒ compute sufficient statistics (just count) in a single pass ofD

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Liang et al., “Learning Logistic Circuits”, 2019 77/108



Deterministic circuits
An example
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X3 = 0 X3 = 1
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An example
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Non-deterministic circuits
Gradient Descent

Computing the likelihood gradient and optimize by GD

∆wpc

Soft Gradient
Generative (∇wpcS(x)) Sc(x)∇Sp(x)S(x)

Discriminative (∇wpc logS(y|x))
∇wpcS(y|x)

S(y|x) − ∇wpcS(∗|x)
S(∗|x)

Hard Gradient
Generative (∇wpc logM(x)) ♯{wpc∈Wx}

wpc

Discriminative (∇wpc logM(y|x)) ♯{wpc∈W(y|x)}−♯{wpc∈W(1|x)}
wpc

Gens et al., “Discriminative Learning of Sum-Product Networks”, 2012 79/108



Non-deterministic circuits
Expectation Maximization

…or using EM by considering each sum node as the marginalization of a hidden variable

Soft Posterior (p(Hp = c|x)) ∝ 1
S(x)

∂S(x)
∂Sp(x)

Sc(x)wpc

Hard Posterior (p(Hp = c|x)) =

{
1 ifwpc ∈ Wx

0 otherwise

Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 80/108



Bayesian Parameter Learning

Bayesian Learning starts by expressing a prior p(w) over the weights
⇒ learning corresponds to computing the posterior based on the data

p(w|D) ∝ p(w)p(D|w)

Moment matching (oBMM) [Rashwan et al. 2016]

oBMM extended with Gaussian distributions [Jaini et al. 2016]

collapsed variational inference algorithm [Zhao et al. 2016b]
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Structure learning

greedy top-down: LearnSPN and variants

hill climbing: LearnPSDD and variants

random structures: RAT-SPNs, XCNets, …

ensembles of circuits: EM, bagging, boosting,…
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LearnCNet
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LearnCNet
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LearnSPN
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Learning both structure and parameters of a circuit by starting from a data matrix

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108



LearnSPN
X4X3X2X1 X5

Looking for sub-population in the data—clustering—to introduce sum nodes…

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108



LearnSPN
X4X3X2X1 X5

X4X3X2X1 X5

…seeking independencies among sets of RVs to factorize into product nodes

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108



LearnSPN
X4X3X2X1 X5

X4X3X2X1 X5 X4X3X2X1 X5

X4X3X2X1 X5

…learning smaller estimators as a a recursive data crawler

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013 84/108



LearnSPN variants

ID-SPN [Rooshenas et al. 2014]

LearnSPN-b/T/B [Vergari et al. 2015]

for heterogeneous data [Bueff et al. 2018; Molina et al. 2018]

using k-means [Butz et al. 2018] or SVD splits [Adel et al. 2015]

learning DAGs [Dennis et al. 2015; Jaini et al. 2018]

approximating independence tests [Di Mauro et al. 2018]
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LearnPSDD
Vtree learning + hill climbing

local search (split /clone) to maximise a penalized likelihood score

Liang et al., “Learning the structure of probabilistic sentential decision diagrams”, 2017 86/108



Randomized structure learning

Random Tensorized SPNs (RAT-SPNs) [Peharz et al. 2018]

SPNs are obtained by first constructing a random region graph

subsequently populating the region graph with tensors of SPN nodes

discriminative+generative parameter learning (SGD/EM + dropout)

Extremely Randomized CNets (XCNets) [Di Mauro et al. 2017]

top-down random conditioning

learning Chow-Liu trees at the leaves
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Ensembles of probabilistic circuits

Single circuits might be not accurate enough or overfit training data…
Solution: ensembles of circuits!

⇒ non-deterministic mixture models: another sum node!

p(X) =
K∑
i=1

λiCi(X), λi ≥ 0
K∑
i=1

λi = 1

Ensemble weights and components can be learned separately or jointly

EM or structural EM

bagging

boosting
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Bagging

more efficient than EM

mixture coefficients are set equally probable

mixture components can be learned independently on different bootstraps

Adding random subspace projection to bagged networks (like for CNets)

more efficient than bagging

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015
Di Mauro et al., “Learning Bayesian Random Cutset Forests”, 2015 89/108



Boosting

Boosting Probabilistic Circuits

BDE: boosting density estimation
sequentially grows the ensemble, adding a weak base learner at each stage
at each boosting stepm, find a weak learner cm and a coefficient ηm maximizing the
weighted LL of the new model

fm = (1− ηm)fm−1 + ηmcm

GBDE: a kernel based generalization of BDE—AdaBoost style algorithm

sequential EM
at each stepm, jointly optimize ηm and cm keeping fm−1 fixed

Rahman et al., “Learning Ensembles of Cutset Networks”, 2016 90/108



Applications



Read more in online slides about …

Applications:

1. How to compile other models to circuits?
⇒ PGM compilation, probabilistic databases, probabilistic programming

2. what have probabilistic circuits been used for?
⇒ computer vision, sop, speech, planning, …

3. what are the current trends and challenges?
⇒ hybrid models, benchmarks, scaling, reasoning

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf
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Probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 93/108



The Logical Conclusions

Logical roots of probabilistic circuits

Probabilistic circuits bridge between logic and deep learning

Bring back world models!

Powerful general reasoning tool
⇒ for example in probabilistic programming

Elegant knowledge representation formalism
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takeaway #2: you can be both tractable and expressive
96/108



×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning
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Code

We will soon release Juice v0.1: The Julia Circuit Empanada

Learning probabilistic circuits from data and choose to be

decomposable – deterministic – structured decomposable

Evaluate tractable queries

EVI – MAR, COND – MAP – Complex queries, expectations, etc.

Easily compile logical and probabilistic circuits from other representations

Highly efficient using Julia’s SIMD processing capabilities
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