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Objective

Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

Most AI and DB interest in tractable logic circuits for the past 15 years has been as a
means of doing probabilistic inference
Much richer query languages <3
We live in the age of probabilistic generative AI... :-)

We will spare you most of the machine learning details, and instead focus on
representations, query languages, reasoning algorithms, and connections to theory.

2/266



Objective

Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

Most AI and DB interest in tractable logic circuits for the past 15 years has been as a
means of doing probabilistic inference
Much richer query languages <3
We live in the age of probabilistic generative AI... :-)

We will spare you most of the machine learning details, and instead focus on
representations, query languages, reasoning algorithms, and connections to theory.

2/266



Objective

Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

Most AI and DB interest in tractable logic circuits for the past 15 years has been as a
means of doing probabilistic inference
Much richer query languages <3
We live in the age of probabilistic generative AI... :-)

We will spare you most of the machine learning details, and instead focus on
representations, query languages, reasoning algorithms, and connections to theory.

2/266



Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

The Alphabet Soup of probabilistic models
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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

a unifying framework for tractable models
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Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

© fineartamerica.com

11/266

fineartamerica.com


Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamWwood = 1)

© fineartamerica.com

11/266

fineartamerica.com


Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamWwood = 1)

⇒ marginals
© fineartamerica.com

11/266

fineartamerica.com


Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)
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q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

12/266



Q:M

tractable bands
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

© fineartamerica.com
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day,Time, JamWwood , JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

© fineartamerica.com
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Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 15/266



Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 16/266



Q:M
GANs

EVI

tractable bands
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Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma and Welling, “Auto-Encoding Variational Bayes”, 2014 18/266



Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…

⇒ which is “tricky”

19/266



Q:M
GANs

VAEs

EVI

tractable bands
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Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

many neural variants
RealNVP (Dinh et al. 2016),
MAF (Papamakarios et al. 2017)
MADE (Germain et al. 2015),
PixelRNN (Oord et al. 2016)

Z

X

f−1f
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

© fineartamerica.com
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E
© fineartamerica.com
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

tractable MAR⇒ tractable conditional queries
(CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com
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Tractable MAR : scene understanding

Fast and exact marginalization over unseen or “do not care” parts in the scene

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 23/266



Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

Z

X

f−1f
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Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

MAR is generally intractable:
we cannot easily integrate over
high-dimensional f

Z

X

f−1f
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Q:M
GANs

VAEs

Flows

EVI MAR CON

I

tractable bands
26/266



Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning (Darwiche 2001; Sang et al. 2005)

elimination (Zhang et al. 1994; Dechter 1998)

message passing (Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011)

X1

X2

X3

X4

X5

27/266



Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-hard
⇒ (Cooper 1990; Roth 1996)

Approximation complexity: Computing MAR and CON approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ (Dagum et al. 1993; Roth 1996)

28/266



Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w) (Dechter 1998; Koller et al. 2009).

⇒ what about bounding the treewidth by design?

29/266



Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
(Meilă et al. 2000)

X1

X2

X3

X4

X5

Polytrees
(Dasgupta 1999)

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
(Bach et al. 2001)

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

30/266



Tree distributions

A tree-structured BN (Meilă et al. 2000) where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 31/266



Q:M
GANs

VAEs

Flows

Trees

EVI MAR CON

I
I I

tractable bands
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What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 33/266



Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1 ) · p1(X|Z = 1 )

+ p(Z = 2 ) · p2(X|Z = 2 )

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

34/266



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any probability density!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 35/266



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any probability density!

Expressive efficiency (aka Succinctness):
Ability to represent rich and effective classes of functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 35/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

36/266



How expressive efficient are mixtures?

⇒ solution: deep mixtures as in deep generative models 36/266



Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON

I
I I
I I

tractable bands
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X
© fineartamerica.com
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e) © fineartamerica.com
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MAP inference : image inpainting
7.3 Face Image Completion
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Figure 7.3: Examples of face image reconstructions, left half is covered.
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Predicting arbitrary patches
given a singlemodel
without the need of retraining.

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra and Cozman, “Image classification using sum-product networks for autonomous flight of
micro aerial vehicles”, 2016 39/266
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

© fineartamerica.com

41/266

fineartamerica.com


Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X

© fineartamerica.com

41/266

fineartamerica.com


Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete (Park et al. 2006)

⇒ NP-hard for trees (de Campos 2011)

⇒ NP-hard even for Naive Bayes (ibid.)

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

⇒ counts + group comparison

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 43/266
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

⇒ information-theoretic queries

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

q9: What is the causal effect of doing road works?

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

q9: What is the causal effect of doing road works?

⇒ causal backdoor estimation
© fineartamerica.com
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VAEs

Flows
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Q:M
GANs

VAEs

Flows

Trees

Mixtures

?

EVI MAR CON MAP MMAP ADV

I
I
I
I I
tractable bands

45/266



Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…
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Q:M
GANs

VAEs

Flows

Trees

Mixtures

Factorized

EVI MAR CON MAP MMAP ADV

I
I
I
I I

tractable bands
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BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
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BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

and tractable ones are not very expressive…
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smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
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Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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Probabilistic Circuits



Goal

Given a reasoning task
can we design
a class of expressive models
that is tractable for it?
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Goal

Given a reasoning task
can we design
a class of deep computational graphs
that is tractable for it?
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Expressive models are not very tractable…
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Tractable models are not that expressive…
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Circuits can be both expressive and tractable!
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then make it more expressive!
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Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

impose structure!
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Input distributions
as computational nodes

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable
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Input distributions
as computational nodes

¬X
Base case: a single node encoding a distribution

⇒ e.g., indicators forX or ¬X for Boolean random variable
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Input distributions
as computational nodes

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode
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Mixture models
as computational graphs

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1 · p1(X1)+w2 · p2(X1)

⇒ translating inference to data structures…
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Mixture models
as computational graphs

X1

0.8

0.2

p(X1) = 0.2·p1(X1)+0.8·p2(X1)

⇒ …e.g., as a weighted sum unit over Gaussian input distributions
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Mixture models
as computational graphs

.06

.21

1 0.09

0.8

0.2

5 p(X = 5) =0.2 · p1(X1 = 5)

+0.8 · p2(X1 = 5)

⇒ inference = feedforward evaluation
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Mixture models
as computational graphs

X1

X1

0.8

0.2

A simplified notation:

⇒ scopes attached to inputs
⇒ edge directions omitted
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Factorizations
as computational graphs

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
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Factorizations
as computational graphs

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
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Factorizations
as computational graphs

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
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Factorizations
as computational graphs

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
65/266



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

66/266



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

66/266



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

66/266



A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Building PCs in Python with SPFlow

import spn.structure.leaves.parametric.Parametric as param
from param import Categorical , Gaussian

PC = 0.4 * (Categorical(p=[0.2, 0.8], scope=0) *
(0.3 * (Gaussian(mean=1.0, stdev=1.0, scope=1) *

Categorical(p=[0.4, 0.6], scope=2))
+ 0.7 * (Gaussian(mean=-1.0, stdev=1.0, scope=1) *

Categorical(p=[0.6, 0.4], scope=2)))) \
+ 0.6 * (Categorical(p=[0.2, 0.8], scope=0) *

Gaussian(mean=0.0, stdev=0.1, scope=1) *
Categorical(p=[0.4, 0.6], scope=2))

Molina et al., “SPFlow: An easy and extensible library for deep probabilistic learning using
sum-product networks”, 2019 67/266



EVI queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

X1

X1

X2

X2
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0.1

0.
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0.5
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×

0.5

0.5
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6
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X3
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×

×

0.8

0.2

0.
5

0.5

X4

X4

×

×

0.8

0.2
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EVI queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)
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EVI queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2) = 0.75
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural properties needed for tractability
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Which structural constraints
ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 71/266



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced (Shih et al. 2019)

Darwiche and Marquis, “A knowledge compilation map”, 2002 72/266



Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z
(the distribution’s normalizing constant):∫

p(x)dx

73/266



Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Tractable MAR

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 74/266

EVI 10, 958.72 nats MAR 5, 387.55 nats



Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable CON

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 76/266

Original Missing Conditional sample



Stable Diffusion

Generative models are still hard to control
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ChatGPT
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ChatGPT

ChatGPT
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ChatGPT

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

ChatGPT

GeLaTo

81/266



What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does
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What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization!

Generate from

83/266



Computing p(α | x1:t+1)

For α in conjunctive normal form (CNF):

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

where each wij is a keyword (i.e. a string of tokens), 
representing the constraint that wij appears in the generated text.

e.g.,  α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.
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Computing p(α | x1:t+1)

For α in conjunctive normal form (CNF):

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

where each wij is a keyword (i.e. a string of tokens), 
representing the constraint that wij appears in the generated text.

e.g.,  α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Efficient algorithm: 
For m clauses and sequence length n, time-complexity for generation is O(2|m|n) 
when p is a hidden Markov model (see general probabilistic circuit case later).

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.
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CommonGen: a Challenging Benchmark

Given 3-5 concepts (keywords), our goal is to generate a sentence using all 
keywords, which can appear in any order and any form of inflections. e.g.,

 Reference 1: A car drives down a snow covered road.

 Input: snow drive car

 Reference 2: Two cars drove through the snow. 

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

Each clause represents the inflections for one keyword.
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GeLaTo 
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.
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GeLaTo 
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.
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Language model is not 
fine-tuned/prompted to satisfy constraints

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.
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Language model is fine-tuned to perform 
constrained generation (e.g. seq2seq)

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.
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Advantages of GeLaTo:

1. Constraint α is guaranteed to be satisfied: for any next-token xt+1 that 
would make α unsatisfiable, p(xt+1 | x1:t, α) = 0 for both settings.

2. Training phmm does not depend on α, which is only imposed at inference 
(generation) time. Once phmm is trained, we can impose whatever α.

3. We can impose additional tractable constraints:
○ The keywords are generated following a particular order.
○ (Some) keywords must appear at a particular position.
○ (Some) keywords must not appear in the generated sentence.

Conclusion: you can control an intractable generative model 
using a tractable probabilistic circuit.
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Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

max
q

p(q | e)
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Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

max
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

max
q

∑
i

wipi(q, e) = max
q

∑
z

p(q, z, e) ̸=
∑
z

max
q

p(q, z, e)

⇒ MAP for latent variable models is intractable (Conaty et al. 2017)
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Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 94/266



Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

95/266



Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58
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1.8

X3

.77
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Determinism + decomposability = tractable MAP
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MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.

Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen and Domingos, “Submodular Sum-product Networks for Scene Understanding”, 2016 96/266



How expressive?

competitive with Flows and VAEs!

Dang et al., “Sparse Probabilistic Circuits via Pruning and Growing”, 2022 97/266



How scalable?

up to billions of parameters

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 98/266



Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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Logical Circuits



Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)

analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)

⇒ Algebraic model counting (Kimmig et al. 2017), Semi-ring
programming (Belle et al. 2016)

Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
101/266



Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
(Darwiche et al. 2002a)

O/BDDs
(Bryant 1986)

SDDs
(Darwiche 2011a)

Logical circuits are compact representations for boolean functions…
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Logical circuits
structural properties

…and like probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche and Marquis, “A knowledge compilation map”, 2002 103/266



Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable logical circuit families

Darwiche and Marquis, “A knowledge compilation map”, 2002 104/266



Knowledge Compilation

A. Darwiche

Compiler

Answer in 

Linear Time

MAJ-MAJ-SAT

E-MAJ-SAT

MAJ-SAT

SAT

(A and (not B))

or(C and (not D))

or ((not C) and D)

…

A B  B A C  D D  C

and and and and and and and and

or or or or

and and

or

NNF Circuit
encoding
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NNF Circuits

A. Darwiche

L K L  P A P  L L PA P L K L  P P 

K K A A A A
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Decomposability (DNNF)

A. Darwiche

L K L  P A P  L L PA P L K L  P P 

K K A A A A

Darwiche, JACM 2001

SAT in linear time
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Determinism (d-DNNF)

A. Darwiche

L K L  P A P  L L PA P L K L  P P 

K K A A A A
Input: L, K, P, A

Darwiche, JANCL 2000

MAJ-SAT in linear time
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Decomposability + determinism = tractable (W)MC

Model counting problem: given a Boolean formula∆, compute the number of satisfying
assignments.

Weighted model counting (WMC):

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

⇒ linear in circuit size!
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Decomposability + determinism = tractable (W)MC

To computeWMC(∆, w):

Turn OR gates to sum nodes and AND
gates to product nodes

Replace each literal l with its weightw(l)

bottom-up evaluation
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Probabilistic inference by WMC
connection to probabilistic circuits through WMC

1. Encode probabilistic model as WMC formula (∆, w)

2. Compile∆ into a logical circuit (e.g. d-DNNF, OBDD, SDD, etc.)

3. Tractable MAR/CON by tractable WMC on circuit

4. Answer complex queries tractably by enforcingmore structural properties!

Chavira and Darwiche, “On probabilistic inference by weighted model counting”, 2008 110/266



Probabilistic inference by WMC
connection to probabilistic circuits through WMC

Resulting compiled WMC circuit equivalent to probabilistic circuit
⇒ parameter variables→ edge parameters

λā λa

×× × ×

θa|c̄θā|c̄ θā|c θa|c θb̄|c̄ θb|c̄

λb̄ λb

×× × ×

θb̄|c θb|c

λc̄ λc

× ×

θc̄ θc

Compiled circuit of WMC encoding

A = ā A = a

θā|c̄ θa|c̄ θā|c θa|c

B = b̄ B = b

θb̄|c̄ θb|c̄ θb̄|c θb|cC = c̄ C = c

× ×

θc̄ θc

Equivalent probabilistic circuit
111/266



Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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From tree BN to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1
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From tree BN to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…
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From tree BN to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)
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From tree BN to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)
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From tree BN to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)
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From tree BN to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)
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From tree BN to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)
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From tree BN to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)
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Hidden Markov Models
as computational graphs

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×
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Compilation : probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 115/266



Decision Diagrams

FBDDs (Free binary
decision diagrams;
read-once)

OBDDs (Ordered BDDs)

SDDs (Sentential decision
diagrams)

⇒ BDD as circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 116/266



Structured Decomposability

A. Darwiche

L K L  P A P  L L PA P L K L  P P 

K K A A A A



 

L K P A

vtree

Pipatsrisawat & Darwiche, AAAI 2008
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Structured Decomposability

A. Darwiche
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vtree
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Partitioned Determinism (SDDs)

A. Darwiche

L K L  P A P  L L PA P L K L  P P 

K K A A A A
Input: L, K, P, A

Darwiche, IJCAI 2011
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Partitioned Determinism (SDDs)

A. Darwiche
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Decision Diagrams

FBDDs (Free binary
decision diagrams;
read-once)

OBDDs (Ordered BDDs)

SDDs (Sentential decision
diagrams)

⇒ SDD & OBDD for
(A ∧ B) ∨ (C ∧D)

OR

OR

OR

AND AND

AND AND

AND AND

Darwiche, “SDD: A new canonical representation of propositional knowledge bases”, 2011 122/266



Probability of logical events

q8: What is the probability of having a traffic jam on
my route to campus?

© fineartamerica.com
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Probability of logical events

q8: What is the probability of having a traffic jam on
my route to campus?

q8(m) = pm(
∨

i∈route JamStr i)

⇒ marginals + logical events

© fineartamerica.com
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Smoothness + structured decomp. = tractable PR

Computing p(α): the probability of arbitrary
logical formula

Multilinear in circuit sizes if the logical circuit:

is smooth, structured decomposable,
deterministic

shares the same vtree

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

If p(x) =
∑

i wipi(x),α =
∨

j αj ,
(smooth p)
(smooth + deterministicα):

p(α) =
∑
i

wipi

∨
j

αj

 =
∑
i

wi

∑
j

pi (αj)

⇒ probabilities are “pushed down” to
children

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

If p(x,y) = p(x)p(y),α = β ∧ γ ,
(structured decomposability):

p(α) = p (β ∧ γ) · p (β ∧ γ) = p (β) · p (γ)

⇒ probabilities decompose into simpler
ones

× ×

× ×
X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

124/266



Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) (Bekker et al. 2015)

For the “right” vtree

Marginal MAP (Oztok et al. 2016)

Probability of logical circuit event in probabilistic circuit (Choi et al. 2015b)

Multiply two probabilistic circuits (Shen et al. 2016)

KL Divergence between probabilistic circuits (Liang et al. 2017)

Same-decision probability (Oztok et al. 2016)

Expected same-decision probability (Choi et al. 2017)

Expected classifier agreement (Choi et al. 2018)

Expected predictions (Khosravi et al. 2019b)
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Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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Succinctness of circuits
Expressive efficiency

Tractability is defined with respect to the size of the model.

How do structural constraints affect expressive efficiency (succinctness) of
probabilistic/logical circuits?
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Succinctness of circuits
Expressive efficiency

A family of circuitsM1 is at least as succinct asM2

iff for everym2 ∈ M2, there existsm1 ∈ M1 that represents

the same function and |m1| ≤ |poly(m2)|.
⇒ denotedM1 ≤ M2

⇒ strictly more succinct (M1 < M2)
iffM1 ≤ M2 andM1 ̸≥ M2
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Succinctness of circuits
Expressive efficiency

Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

Darwiche and Marquis, “A knowledge compilation map”, 2002 129/266



Succinctness of circuits
Expressive efficiency

Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

d-DNNF ̸≤ DNNF unless the polynomial hierarchy collapses (Darwiche et al. 2002a).

The Sauerhoff function has DNNF of sizeO(n2) but d-DNNF of size 2Ω(n) (Bova et al.

2016).
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Succinctness of circuits
Expressive efficiency

Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

d-DNNF ̸≤ DNNF unless the polynomial hierarchy collapses (Darwiche et al. 2002a).

The Sauerhoff function has DNNF of sizeO(n2) but d-DNNF of size 2Ω(n) (Bova et al.

2016).

⇒ Unconditional exponential separation for d-DNNF ̸≤ DNNF
⇒ Using a connection between circuits

and communication complexity
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Succinctness of circuits
Expressive efficiency

SDD < OBDD: SDDs are strictly more succinct than OBDDs

SDD≤ OBDD: OBDDs are SDDs with right-linear vtrees

SDD ̸≥ OBDD: The hidden weighted bit function has SDD of sizeO(n3) but OBDD of
size 2Ω(n).

Bova, “SDDs are exponentially more succinct than OBDDs”, 2016 130/266



Query compilation

Möbius Über Alles 

#P-hard 

PTIME 

QW 
Q9 

Poly-size FBDD, dec-DNNF 

QV 

Poly-size OBDD,SDD =  

     = inversion-free 
QJ 

Read Once 
QU Open 

H0 

H1 

H2 

H3 

hierarchical 

Non-hierarchical 
∀FOun, ∃FOun 
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How precise is the characterization
of tractable circuits
by structural properties?
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedfor-
ward (sum-product) evaluation.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedfor-
ward (sum-product) evaluation.

⇒ Are these properties necessary?
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedfor-
ward (sum-product) evaluation.

⇒ Are these properties necessary?
⇒ Yes! Otherwise, integrals do not decompose.

× ×

× ×× ×
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward
(max-product) evaluation.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward
(max-product) evaluation.

⇒ However, decomposability is not necessary!

× ×

× ×× ×
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X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward
(max-product) evaluation.

⇒ However, decomposability is not necessary!
⇒ A weaker condition, consistency, suffices.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×
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Consistency

A product node is consistent if any variable shared between its children appears in a
single leaf node

⇒ decomposability implies consistency

X1 X2 X3

×

w1 w2 w3 w4

consistent circuit

X1 X2 ≤ θ X2 > θ X3

×

w1 w2 w3 w4

inconsistent circuit 135/266



Determinism + consistency = tractable MAP

136/266



Determinism + consistency = tractable MAP

Ifmaxqshared p(q, e) =
maxqshared p(qx, ex) ·maxqshared p(qy, ey) (consistent):

max
q

p(q, e) = max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

?

Are smooth&decomposable circuits as
succinct as deterministic & consistent ones,
or vice versa?
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Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem (Valiant 1979)⇒
no tractable circuit for marginals!
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Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard (de Campos 2011)

⇒ no tractable circuit for MAP!
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Expressive efficiency of circuits

Succinctness map formonotone circuits

⇒ (s)mooth, (d)eterministic, (D)ecomposable, (w)eak (D)ecomposable (i.e.
consistent)

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 138/266



Expressive efficiency of circuits

Succinctness map formonotone circuits Succinctness map for positive circuits
(non-negative output, but weights may

be negative)

⇒ (s)mooth, (d)eterministic, (D)ecomposable, (w)eak (D)ecomposable (i.e.
consistent)

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 138/266



Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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Goal

Given a class of queries
can we systematically find
a class of probabilistic circuits
that is tractable for it?
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A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries
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A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits!
⇒ re-using intermediate transformations across queries

141/266



KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫
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val(X) p(x)× log
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∫
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XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫



Exm∼p(xm|xo) [q
α(xm,xo)]

p

q

pow

r

×
s

∫



Compatibility

Two circuits are compatible if they have the same hierarchical scope partitioning
⇒ generalizes “structured decomposability with same vtree”

X1

X1

X2

X2

×

×

X3

X3

×

×

X2

X1

×

X3

×

compatible circuits

X3

X2X2

X3

X1

X3

×

×

×

×

X1

X2

×

×

X2

X1

×

X3

×

non-compatible circuits
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Tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible
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Tractable operators

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y )

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y )

JX ≥ γK

×

×

supp(p2)

log θ2

smooth, decomposable
deterministic

smooth, decomposable
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SMOsmoothness

DECdecomposability

DETdeterminism

CMPcompatibility

+

p
+
q

×
p
×
q

po
wN

p
n

po
wR

p
α

/
p/
q

log
lo
g
p

exp
ex
p
p

8 4 4 4 4 4 4

8 8 8 4 8 8 8

8 8 8 4 4 4 8

8 4 4 8 4 8 8

Building an atlas of composable tractable atomic operations 149/266



p

q

log

r

×
s

∫

To perform tractable integration we need s to be smooth and decomposable…



p

q

log

r

×
s

∫

hence we need p and r to be smooth, decomposable and compatible…



p

q

log

r

×
s

∫

therefore q must be smooth, decomposable and deterministic…



p

q

log

r

×
s

∫

we can computeXENT tractably if p and q are smooth, decomposable, compatible
and q is deterministic…



compositionally derive the tractability of many more queries

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 153/266



and prove hardness when some input properties are not satisfied

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 153/266



Composable tractable sub-routines

Efficient inference algorithms in a couple lines of Julia code! 2

2https://github.com/UCLA-StarAI/circuit-ops-atlas 153/266



Next up…

1. Learning and reasoning with symbolic constraints

2. Expected predictions: handling missing values, fairness

3. Exact inference of causal effects

⇒ using tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible 154/266



Symbolic constraints

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”
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When?

Ground Truth

e.g. predict shortest path in a map
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When?

given x // e.g. a tile map

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266



When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266



When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, 2020 158/266



When?

Ground Truth ResNet-18

neural nets struggle to satisfy domain constraints!

159/266



How?

take an unreliable neural network architecture…
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How?

……and replace the last layer with
a semantic probabilistic layer

161/266



SPL

SPL

qΘ(y | g(z)) is an expressive distribution over labels

cK(x,y) encodes the constraint 1{x,y |= K}

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 162/266



SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 162/266



SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))
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SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

and a logical circuit c(y,x) encoding K
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Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)
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SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint
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SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!
166/266



Guaranteeing consistency
Ground Truth FIL LSL SPL

cost: 39.31 cost:∞ cost:∞ cost: 45.09

cost: 57.31 cost:∞ cost:∞ cost: 58.09
167/266



Expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

Ep[f ] =

∫
val(X)

p(x)× f(x) dX

p

f

×
r

∫
168/266



Handling missing values at test time

Given a partial observationxo, what is the ex-
pected output from f ?

E
xm∼p(xm|xo)

[f(xm,xo)]

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 169/266



Fairness analysis
using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

q: Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female  : \$ $(exps[2])");
println("Male    : \$ $(exps[1])");
println("Diff    : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568

https://github.com/Juice-jl/ 170/266
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Causal Inference
Given subsets A, Y ⊆ X , interested in causal effect p(Y |do(A)).

In general, p(Y |do(A)) ̸= p(Y |A) (correlation is not causation).

▶ Specify (qualitative) assumptions on the system using a
causal diagram G (here A, Y , Z , K ⊆ X)) :

A

Z

Y
(a) Backdoor

K Z A Y
(b) Napkin

▶ Given causal diagram G , can derive expressions for causal
effect p(Y |A) using do-calculus (Pearl 1995).∑

Z p(Z)p(Y |A, Z)

(a) Backdoor

∑
K p(A,Y |K ,Z)p(K)∑

K p(A|K ,Z)p(K)

(b) Napkin
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Tractability of Exact Causal Inference

Consider the backdoor query, for fixed values of the treatment a
and outcome y :

p(y |do(a)) :=
∑
Z

p(Z) × p(y |a, Z)

.

Theorem (Wang & Kwiatkowska 2023)
If p is given as a structured decomposable and deterministic
circuit, then the backdoor query is #P-hard to compute.
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Applying the Atlas of Tractable Operations
Break down do-calculus query into compositions of basic
operations, such as marginalization, products, and powers:

p(V )

MARG(·; V \ W )

POW(·; −1)
PROD(·, ·)

p(V |W )

(a) Pipeline for COND(·, W )

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

Problem: Cannot guarantee that input to POW is deterministic,
even if p(X) is deterministic.
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Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)
Given a subset of variables Q ⊆ X , a PC is Q-deterministic if the
children of a sum node T correspond to different values of Q (for
sum nodes with sc(T ) ∩ Q ̸= ∅).

+
× ×

+ + + +

× ×
Y Ȳ

A Z Ā Z̄

× ×
Y Ȳ

A Z̄ Ā Z

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(a) Q = {A, Z}-deterministic

+
× ×

+ + + +

× ×
Z Z̄

A Y Ā Ȳ

× ×
Z Z̄

A Ȳ Ā Y
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Motivation: If a circuit is marginally deterministic w.r.t Q, then we
can marginalize out X \ Q and obtain a deterministic circuit!
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Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)
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Tractable Causal Inference
If (the circuit encoding) p(X) is (A ∪ Z)-deterministic, then the
input to POW is guaranteed to be deterministic.

p(A, Y , Z)

MARG(·; Y )

POW(·; −1)
PROD(·, ·)

p(Y |A, Z)

(a) Pipeline for COND(·, A ∪ Z)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

=⇒ all operations are tractable according to Atlas
=⇒ can compute causal effect in O(|p|3) time
(can improve to O(|p|2))
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Open Questions

▶ Are all causal queries derived by the do-calculus tractable in
PTIME (for some non-trivial marginal determinism condition)?

▶ What is the optimal complexity for these queries?
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Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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more tractable queries

less tractable queries

PCs

PCsPCs

PCs

BNs

NFs

PCsPCs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
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Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) (Darwiche 2003) 4 4 4 8
Sum-Product Networks (SPNs) (Poon et al. 2011) 4 4 8 8

Cutset Networks (CNets) (Rahman et al. 2014) 4 4 4 8
Probabilistic Decision Graphs (Jaeger 2004) 4 4 4 4

(Affine) ADDs (Hoey et al. 1999; Sanner et al. 2005) 4 4 4 4
AndOrGraphs (Dechter et al. 2007) 4 4 4 4

PSDDs (Kisa et al. 2014) 4 4 4 4
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Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable

smooth

deterministic

circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B
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Arithmetic Circuits (ACs)

ACs (Darwiche 2003) are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges (Rooshenas et al. 2014)

Lowd and Rooshenas, “Learning Markov Networks With Arithmetic Circuits”, 2013 192/266



Sum-Product Networks (SPNs)

SPNs (Poon et al. 2011) are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective (Peharz et al. 2014)
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Cutset Networks (CNets)

CNets
(Rahman et al. 2014) are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014
Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 194/266



Probabilistic Sentential Decision Diagrams

PSDDs (Kisa et al. 2014) are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 195/266



Probabilistic Decision Graphs

PDGs (Jaeger 2004) are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Jaeger, “Probabilistic decision graphs—combining verification and AI techniques for probabilistic
inference”, 2004
Jaeger et al., “Learning probabilistic decision graphs”, 2006 196/266



AndOrGraphs

AndOrGarphs
(Dechter et al. 2007) are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Dechter and Mateescu, “AND/OR search spaces for graphical models”, 2007
Marinescu and Dechter, “Best-first AND/OR search for 0/1 integer programming”, 2007 197/266



Probabilistic circuits seem awfully general. 

Are all tractable probabilistic models 
probabilistic circuits?
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Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants
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Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

 

 

Tractable likelihoods and marginals

Global Negative Dependence

Diversity in recommendation systems
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Are all tractable probabilistic models probabilistic circuits?

Graphical 
Models (w/ 

bounded 
tree-width)

Determinantal 
Point Processes 

(DPPs)

Probabilistic 
Circuits (PCs)

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.
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Relationship between PCs and DPPs

Positive 
Dependence

Fully
Factorized

Probabilistic 
Circuits

Determinantal
Point Processes

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.
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PSDDs

More Tractable Fewer Constraints

Deterministic and 
Decomposable 

PCs

We cannot tractably represent DPPs with subclasses of PCs

No
No

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.
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PSDDs

More Tractable Fewer Constraints

Deterministic and 
Decomposable 

PCs

Deterministic PCs 
with no negative 

parameters

Deterministic PCs 
with negative 
parameters

We cannot tractably represent DPPs with subclasses of PCs

No
No

No No
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PSDDs

More Tractable Fewer Constraints

Deterministic and 
Decomposable 

PCs

Deterministic PCs 
with no negative 

parameters

Deterministic PCs 
with negative 
parameters

Decomposable PCs 
with no negative 

parameters
(SPNs)

We cannot tractably represent DPPs with subclasses of PCs

No
No

No No

No
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PSDDs

More Tractable Fewer Constraints

Deterministic and 
Decomposable 

PCs

Deterministic PCs 
with no negative 

parameters

Deterministic PCs 
with negative 
parameters

Decomposable PCs 
with no negative 

parameters
(SPNs)

Decomposable PCs 
with negative 
parameters

We cannot tractably represent DPPs with subclasses of PCs

No
No

No No

No We don’t know

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.
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PCs and Circuit Lower Bounds

Based on arithmetic circuit lower bounds by Ran Raz and Amir Yehudayoff

Decomposable PCs are Syntactically Multilinear Arithmetic Circuits:
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DPPs have No Compact Decomposable PCs
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Probabilistic Generating Circuits

Probabilistic
Circuits

Determinantal 
Point Processes

Probabilistic 
Generating Circuits

A Tractable Unifying Framework for PCs and DPPs
Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Probability Generating Functions

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Probability Generating Functions

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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1. Sum nodes         with weighted edges to 

children. 

2. Product nodes         with unweighted 

edges to children.

3. Leaf nodes: z_i or constant.

Probabilistic Generating Circuits (PGCs)

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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PCs as PGCs

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

(Smooth & Decomposable) PCs represents probability mass functions:

PGCs represent probability generating functions:

Given a smooth & decomposable PC, by setting     to 1, and     to    , 
we obtain a PGC that represents the PC.  
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Tractable Likelihood (EVID) or Marginals (MAR)?

 

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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PGCs Support Tractable Likelihoods/Marginals

 

 

Purely 
symbolic

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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PGCs Support Tractable Likelihoods/Marginals

 

 

Purely 
symbolic

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

 

● Monomials setting to true variables 
that must be false are 0-ed out

● Other monomials contribute to result. 
● Only monomials that set all required 

variables to true have max degree. 
● Sum those up
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PGCs Support Tractable Likelihoods/Marginals

 

 

 

Purely 
symbolic

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Example

 

 

 

 

  

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Example

 

 

 

 

    

  

 

 

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Example

 

 

 

 

    

  

 

 

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Inference Time Complexity

Given a PGC of size m (#edges) over n random variables.

Algorithm 1 (Zhang et al., ICML 2021):

Bottom-up pass
w/ z_i = t, 0 or 1

Product/sum of degree-n 
polynomials at each node

or O(mn log n log log n)
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Inference Time Complexity

Given a PGC of size m (#edges) over n random variables.

Algorithm 1 (Zhang et al., ICML 2021):

Bottom-up pass
w/ z_i = t, 0 or 1

Product/sum of degree-n 
polynomials at each node

Algorithm 2 (Harviainen et al., UAI 2023):

Bottom-up pass 
w/ t = 0, 1, …, n

Polynomial interpolation at 
t = 0, 1, …, n

observation: the output of a PGC is a degree-n polynomial w/ respect to t 

or O(mn log n log log n)
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Syntactic vs. Semantic Restrictions

Theorem (Harviainen et al.). It is NP-hard to check if a 
PGC encodes a valid probability generating polynomial

+ PGCs are tractable when semantically multilinear

+ No need for PC decomposability/syntactic 

multilinearity or other properties…

- Checking Validity of PGCs is Hard
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DPPs as PGCs

 

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

We need it as a sum of products to obtain a 
Probabilistic Generating Circuit
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DPPs as PGCs

 

Constant

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

We need it as a sum of products to obtain a 
Probabilistic Generating Circuit
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DPPs as PGCs

 

 

Division-free determinant algorithm
(Samuelson-Berkowitz algorithm)

Constant

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Experiment Results: Amazon Baby Registries

SimplePGC achieves SOTA 
result on 11/15 datasets

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.
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Beyond DPPs: Strongly Rayleigh Distributions

We can efficiently sample from strongly Rayleigh distributions by 
MCMC (with polynomial bound on mixing time)

DPPs are strongly Rayleigh distributions
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Efficient Sampling from SR Distributions

229/266



Relationship between PGCs and SR Distributions

DPPs

Compact
PGCs

SR 
Distributions

??
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Relationship between PGCs and SR Distributions

DPPs

Compact
PGCs

SR 
Distributions

?
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Not All SR Distributions have Compact PGCs (Bläser 2023)
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Not All SR Distributions have Compact PGCs (Bläser 2023)

Generalize to bipartite multigraph 

d: each edge from U to V has d copies

                is real-stable and its evaluation is #P-hard.

                 does not define an SR distribution as it has negative coefficients
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Not All SR Distributions have Compact PGCs (Bläser 2023)

The inversion of a real stable polynomial is also real stable
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Relationship between PGCs and SR Distributions

DPPs

Compact
PGCs

SR 
Distributions
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Probabilistic generating circuits seem 
awfully general. 

Are all tractable probabilistic models 
probabilistic generating circuits?
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Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)
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Building Probabilistic Circuits
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Origins: Compilation



Compiling probabilistic graphical models
Arithmetic circuits (Darwiche 2002, 2003, 2009)

Compile a given Bayesian network into an arithmetic circuit—a smooth,
decomposable and deterministic PCs

Either via logic encoding of Bayesian network + knowledge compilation

Or record “execution trace” (sum and product operations) of traditional inference
algorithms (junction tree, variable elimination)

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×
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Compilation
Selected references

Logic circuits, interplay between structural properties and tractable reasoning
(Darwiche et al. 2002a)

Converting probabilistic graphical models via knowledge compilation
(Darwiche 2002)

Logic circuit compilers
(Darwiche 2004; Muise et al. 2012; Bova et al. 2015; Lagniez et al. 2017; Oztok et al. 2018)

Neuro-symbolic models using logic circuits
(Ahmed et al. 2022a,b)
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Parameter Learning



Gradient descent (of course)

PCs are computational graphs

Hence we can just learn them as any other neural net using SGD

Use re-parameterization if parameters should satisfy constraints:
soft-max for sum-weights (non-negative, sum-to-one)
soft-plus for variances
low-rank plus diagonal for covariance matrices

Allows for conditional distributions
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Conditional PCs
(Shao et al. 2019)
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Maximum likelihood (frequentist)

PCs can be interpreted as hierarchical latent variable models, where each sum node
corresponds to a discrete latent variable (Peharz et al. 2016). This allows to perform
classical maximum-likelihood estimation.
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Closed-form maximum likelihood

When the circuit is deterministic, there is even an closed-form ML solution, which is
incredible fast:

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
julia> num_examples(data)
17412
julia> num_edges(structure)
270448
julia> @btime estimate_parameters(structure , data);

63.585 ms (1182350 allocations: 65.97 MiB)

Custom SIMD and CUDA kernels to parallelize over layers and training examples.
https://github.com/Juice-jl/ 247/266
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Expectation-Maximization

When the PC is not deterministic, we can still apply expectation-maximization (Peharz

et al. 2016). EM can piggy-back on autodfiff:
train_x , valid_x , test_x = get_mnist_images([7])

graph = Graph.poon_domingos_structure(shape=(28,28), delta=[7])
args = EinsumNetwork.Args(num_var=train_x.shape[1], num_dims=1,

num_classes=1, num_sums=28,
num_input_distributions=28,
exponential_family=EinsumNetwork.BinomialArray ,
exponential_family_args={'N':255},
online_em_frequency=1, online_em_stepsize=0.05)

PC = EinsumNetwork.EinsumNetwork(graph, args)
PC.initialize()
PC.to('cuda')

https://github.com/cambridge-mlg/EinsumNetworks 248/266

https://github.com/cambridge-mlg/EinsumNetworks


Expectation-Maximization

for epoch_count in range(10):
train_ll , valid_ll , test_ll = compute_loglikelihood()
start_t = time.time()

for idx in get_batches(train_x , 100):
outputs = PC.forward(train_x[idx, :])
log_likelihood = EinsumNetwork.log_likelihoods(outputs).sum()
log_likelihood.backward()
PC.em_process_batch()

print_performance(epoch_count , train_ll , valid_ll , test_ll , time.time() - start_t)

https://github.com/cambridge-mlg/EinsumNetworks 249/266
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Expectation-Maximization

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 250/266



Structure Learning



Region graphs
Laying out the PC structure on a high level

Region graphs (RGs) describe decompositional structure

RGs are bipartite, directed graphs containing regions (R) and partitions (P )

Input and output nodes of the RG are regions

Regions have a scope (receptive field), denoted as sc(R) ⊆ X

For every partition P it holds that

sc(Rout) =
⋃

Rin∈ inputs(P)

sc(Rin)

sc(R′) ∩ sc(R′′) = ∅, R′ ̸= R′′ ∈ inputs(P)
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Example region graph
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(Here, every partition has 2 input regions.
This is often assumed, but not necessary.)



From region graphs to PCs
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From region graphs to PCs
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Equip each input region with non-linear units
ϕ1, . . . , ϕK



From region graphs to PCs
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Equip each internal region with sum nodes



From region graphs to PCs
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Often, output region has only a single sum



From region graphs to PCs
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Equip partitions with products, combining units
in input regions in all possible ways



From region graphs to PCs

254/266

Equip partitions with products, combining units
in input regions in all possible ways



From region graphs to PCs

254/266

Connect products to sum units above



From region graphs to PCs

Equip each input region (leaf)R withK units ϕ1, . . . , ϕK , which are non-linear
functions over sc(R). Usually, ϕ1, . . . , ϕK are probability densities. K can be
different for each input region.

Equip each other region withK sum units. K can be different for each internal
region. Often, for the root regionK = 1, when PC is used as density estimator.

Equip each partitionP with as many products as there are combinations of units in
the input regions toP , selecting one unit from each region. Formally, ifP has input
regionsR1,R2 . . . ,RI , insert one product

∏I
i=1 ui for each

(u1, u2, . . . , uI) ∈ R1 ×R2 × · · · × RI .

Connect each
∏I

i=1 ui inP to all sum units in the output regions ofP .
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From region graphs to PCs

Resulting PC has alternating sum and product units (not a strong constraint)

We can easily scale the PC (overparameterize, increase expressivity) by equipping
regions with more units

RGs can be seen as a vectorized version of PCs – each region and partition can be
seen as as a module

Resulting PC will be smooth and decomposable, i.e., we can integrate, marginalize,
and take conditionals

After the PC has been constructed, we might discard the RG
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Scaling up image models
Latent Variable Distillation

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 257/266



How to construct and learn RGs?



Random regions graphs
The “no-learning” option (Peharz et al. 2019)

Generating a random region graph, by recursively splittingX into two random parts:
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Image-tailored circuit structure
“Recursive image slicing” (Poon et al. 2011)

Images yield a natural region graph by using axis-aligned splits:

Start with the full image (=output region)

Define partitions by applying horizontal and vertical splits

Recurse on the newly generated sub-images (internal regions)

Structure somewhat reminiscent to convolutions

Generates RGs which are “true DAGs,” i.e. regions get re-used
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Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Expand regions with clustering



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Number of clusters = number of partitions



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Try to find independent groups of variables
(e.g. independence tests)



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Success→ partition into new regions



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Try to find independent groups of variables
(e.g. independence tests)



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Success→ partition into new regions



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Single variable



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Single variable→ input region



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Expand regions with clustering



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)
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Number of clusters = number of partitions

And so on…



Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Stopping conditions: minimal number
of features, samples, depth, …

Clustering ratios also deliver (initial)
parameters

Smooth & Decomposable Circuits

Tractable integration



LearnSPN
Selected references

ID-SPN (Rooshenas et al. 2014)

LearnSPN-b/T/B (Vergari et al. 2015)

For heterogeneous data (Molina et al. 2018)

Using k-means (Butz et al. 2018) or SVD splits (Adel et al. 2015)

Learning DAGs (Dennis et al. 2015; Jaini et al. 2018)

Approximating independence tests (Di Mauro et al. 2018)
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Cutset networks
Besides clustering, decision tree learning can be used as PC learner. Cutset networks,
decision trees over simple probabilistic models (Chow-Liu trees) (Rahman et al. 2014):

Cutset networks can easily be converted into smooth, decomposable and
deterministic PCs. 264/266



Decision trees as PCs
Also vanilla decision tree learners can be used to learn PCs, by augmenting the leaves
with distributions over inputs (Correia et al. 2020). Allows to treatmissing features and
outlier detection.
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