
Logic &
Probabilistic
Circuits

Representation
Reasoning
Theory

Guy Van den Broeck
University of California, Los Angeles
guyvdb@cs.ucla.edu

YooJung Choi
Arizona State University
yj.choi@asu.edu

August 22nd, 2023 - Logic and Algorithms in Database Theory and AI Boot Camp @ Simons Institute

Objective

Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

Most AI and DB interest in tractable logic circuits for the past 15 years has been as a
means of doing probabilistic inference
Much richer query languages <3
We live in the age of probabilistic generative AI... :-)

We will spare you most of the machine learning details, and instead focus on
representations, query languages, reasoning algorithms, and connections to theory.

2/266

Objective

Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

Most AI and DB interest in tractable logic circuits for the past 15 years has been as a
means of doing probabilistic inference
Much richer query languages <3
We live in the age of probabilistic generative AI... :-)

We will spare you most of the machine learning details, and instead focus on
representations, query languages, reasoning algorithms, and connections to theory.

2/266

Objective

Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

Most AI and DB interest in tractable logic circuits for the past 15 years has been as a
means of doing probabilistic inference
Much richer query languages <3
We live in the age of probabilistic generative AI... :-)

We will spare you most of the machine learning details, and instead focus on
representations, query languages, reasoning algorithms, and connections to theory.

2/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

3/266

Acknowledgements

This tutorial is based on our (joint) tutorials and slides from

Antonio Vergari

Robert Peharz

Nicola Di Mauro

Honghua Zhang

Benjie Wang

4/266

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

The Alphabet Soup of probabilistic models
5/266

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

Intractable and tractablemodels
6/266

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

tractability is a spectrum
7/266

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

Expressivemodels without compromises
8/266

Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

DPPs FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs GPT

a unifying framework for tractable models
9/266

Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

© fineartamerica.com

11/266

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamWwood = 1)

© fineartamerica.com

11/266

fineartamerica.com

Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamWwood = 1)

⇒ marginals
© fineartamerica.com

11/266

fineartamerica.com

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)
© fineartamerica.com

11/266

fineartamerica.com

Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events

© fineartamerica.com

11/266

fineartamerica.com

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

12/266

Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

12/266

Q:M

tractable bands
13/266

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

© fineartamerica.com

14/266

fineartamerica.com

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day,Time, JamWwood , JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

© fineartamerica.com

14/266

fineartamerica.com

Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day,Time, JamWwood , JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

© fineartamerica.com

14/266

fineartamerica.com

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 15/266

Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 16/266

Q:M
GANs

EVI

tractable bands
17/266

Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma and Welling, “Auto-Encoding Variational Bayes”, 2014 18/266

Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…

⇒ which is “tricky”

19/266

Q:M
GANs

VAEs

EVI

tractable bands
20/266

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

many neural variants
RealNVP (Dinh et al. 2016),
MAF (Papamakarios et al. 2017)
MADE (Germain et al. 2015),
PixelRNN (Oord et al. 2016)

Z

X

f−1f

21/266

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

many neural variants
RealNVP (Dinh et al. 2016),
MAF (Papamakarios et al. 2017)
MADE (Germain et al. 2015),
PixelRNN (Oord et al. 2016)

Z

X

f−1f

21/266

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

© fineartamerica.com

22/266

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

© fineartamerica.com

22/266

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E
© fineartamerica.com

22/266

fineartamerica.com

Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

tractable MAR⇒ tractable conditional queries
(CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com

22/266

fineartamerica.com

Tractable MAR : scene understanding

Fast and exact marginalization over unseen or “do not care” parts in the scene

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 23/266

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

Z

X

f−1f

24/266

Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det(δf−1

δx

)∣∣∣
an explicit likelihood!

⇒ tractable EVI queries!

MAR is generally intractable:
we cannot easily integrate over
high-dimensional f

Z

X

f−1f

25/266

Q:M
GANs

VAEs

Flows

EVI MAR CON

I

tractable bands
26/266

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning (Darwiche 2001; Sang et al. 2005)

elimination (Zhang et al. 1994; Dechter 1998)

message passing (Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011)

X1

X2

X3

X4

X5

27/266

Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-hard
⇒ (Cooper 1990; Roth 1996)

Approximation complexity: Computing MAR and CON approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ (Dagum et al. 1993; Roth 1996)

28/266

Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w) (Dechter 1998; Koller et al. 2009).

⇒ what about bounding the treewidth by design?

29/266

Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
(Meilă et al. 2000)

X1

X2

X3

X4

X5

Polytrees
(Dasgupta 1999)

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
(Bach et al. 2001)

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

30/266

Tree distributions

A tree-structured BN (Meilă et al. 2000) where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 31/266

Q:M
GANs

VAEs

Flows

Trees

EVI MAR CON

I
I I

tractable bands
32/266

What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 33/266

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k

34/266

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1) · p1(X|Z = 1)

+ p(Z = 2) · p2(X|Z = 2)

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

34/266

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any probability density!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 35/266

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any probability density!

Expressive efficiency (aka Succinctness):
Ability to represent rich and effective classes of functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 35/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

36/266

How expressive efficient are mixtures?

⇒ solution: deep mixtures as in deep generative models 36/266

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON

I
I I
I I

tractable bands

37/266

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

38/266

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

© fineartamerica.com

38/266

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X
© fineartamerica.com

38/266

fineartamerica.com

Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e) © fineartamerica.com

38/266

fineartamerica.com

MAP inference : image inpainting
7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

7.3 Face Image Completion

Original

Covered

MEAN

P
D

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

D
V

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

M
er
ge

|
{
z

}

BACK-ORIG

SUM

BACK-MPE

Figure 7.3: Examples of face image reconstructions, left half is covered.

– 121 –

Predicting arbitrary patches
given a singlemodel
without the need of retraining.

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra and Cozman, “Image classification using sum-product networks for autonomous flight of
micro aerial vehicles”, 2016 39/266

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON MAP

I
I I
I

tractable bands
40/266

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

41/266

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

© fineartamerica.com

41/266

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X

© fineartamerica.com

41/266

fineartamerica.com

Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete (Park et al. 2006)

⇒ NP-hard for trees (de Campos 2011)

⇒ NP-hard even for Naive Bayes (ibid.)

© fineartamerica.com

41/266

fineartamerica.com

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON MAP MMAP

I
I
I

tractable bands
42/266

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

© fineartamerica.com

43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

© fineartamerica.com

43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

⇒ counts + group comparison

© fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

© fineartamerica.com

43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

⇒ information-theoretic queries

© fineartamerica.com

43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

q9: What is the causal effect of doing road works?

© fineartamerica.com

43/266

fineartamerica.com

Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

q8: Is traffic more uncertain on weekdays?

q9: What is the causal effect of doing road works?

⇒ causal backdoor estimation
© fineartamerica.com

43/266

fineartamerica.com

Q:M
GANs

VAEs

Flows

Trees

Mixtures

EVI MAR CON MAP MMAP ADV

I
I
I

tractable bands
44/266

Q:M
GANs

VAEs

Flows

Trees

Mixtures

?

EVI MAR CON MAP MMAP ADV

I
I
I
I I
tractable bands

45/266

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

46/266

Q:M
GANs

VAEs

Flows

Trees

Mixtures

Factorized

EVI MAR CON MAP MMAP ADV

I
I
I
I I

tractable bands
47/266

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

48/266

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
49/266

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

and tractable ones are not very expressive…
50/266

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

larger tractable bands

smaller tractable bands

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
51/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

52/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

52/266

Probabilistic Circuits

Goal

Given a reasoning task
can we design
a class of expressive models
that is tractable for it?

54/266

Goal

Given a reasoning task
can we design
a class of deep computational graphs
that is tractable for it?

55/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

56/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Flows Diffusion

VAEs GANs

Expressive models are not very tractable…
57/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Tractable models are not that expressive…
58/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Circuits can be both expressive and tractable!
59/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees

Start simple…
60/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

then make it more expressive!
61/266

m
or
e
ex
pr
es
si
ve

le
ss

ex
pr
es
si
ve

more tractable

less tractable

Circuits
Circuits

Circuits

Flows Diffusion

VAEs GANs

GMMs

HMMs

Trees
overparam.

structure

impose structure!
62/266

Input distributions
as computational nodes

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable

63/266

Input distributions
as computational nodes

¬X
Base case: a single node encoding a distribution

⇒ e.g., indicators forX or ¬X for Boolean random variable

63/266

Input distributions
as computational nodes

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

63/266

Mixture models
as computational graphs

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1 · p1(X1)+w2 · p2(X1)

⇒ translating inference to data structures…

64/266

Mixture models
as computational graphs

X1

0.8

0.2

p(X1) = 0.2·p1(X1)+0.8·p2(X1)

⇒ …e.g., as a weighted sum unit over Gaussian input distributions

64/266

Mixture models
as computational graphs

.06

.21

1 0.09

0.8

0.2

5 p(X = 5) =0.2 · p1(X1 = 5)

+0.8 · p2(X1 = 5)

⇒ inference = feedforward evaluation

64/266

Mixture models
as computational graphs

X1

X1

0.8

0.2

A simplified notation:

⇒ scopes attached to inputs
⇒ edge directions omitted

64/266

Factorizations
as computational graphs

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
65/266

Factorizations
as computational graphs

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
65/266

Factorizations
as computational graphs

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
65/266

Factorizations
as computational graphs

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
65/266

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1

66/266

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

66/266

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

66/266

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

66/266

A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

66/266

Building PCs in Python with SPFlow

import spn.structure.leaves.parametric.Parametric as param
from param import Categorical , Gaussian

PC = 0.4 * (Categorical(p=[0.2, 0.8], scope=0) *
(0.3 * (Gaussian(mean=1.0, stdev=1.0, scope=1) *

Categorical(p=[0.4, 0.6], scope=2))
+ 0.7 * (Gaussian(mean=-1.0, stdev=1.0, scope=1) *

Categorical(p=[0.6, 0.4], scope=2)))) \
+ 0.6 * (Categorical(p=[0.2, 0.8], scope=0) *

Gaussian(mean=0.0, stdev=0.1, scope=1) *
Categorical(p=[0.4, 0.6], scope=2))

Molina et al., “SPFlow: An easy and extensible library for deep probabilistic learning using
sum-product networks”, 2019 67/266

EVI queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

X1

X1

X2

X2

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

×

×

0.5

0.5

0.
6

0.4

X3

X3

×

×

0.8

0.2

0.
5

0.5

X4

X4

×

×

0.8

0.2

68/266

EVI queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

1.29

0.18

0.35

2.42

−1.85

−1.85

0.5

0.5

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

×

×

0.5

0.5

0.
6

0.4

1.21

0.67−1.3

−1.3

×

×

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

×

×

0.8

0.2

68/266

EVI queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2) = 0.75

1.29

0.18

0.35

2.42

−1.85

−1.85

0.5

0.5

1.21

0.74

1.80

2.01

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

2.18

1.47

1.82

1.90

0.5

0.5

0.
6

0.4

1.21

0.67−1.3

−1.3

1.22

2.29

1.43

1.76

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

0.77

0.68

0.75
0.8

0.2

0.75

68/266

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!

69/266

Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural properties needed for tractability

69/266

Which structural constraints
ensure tractability?

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 71/266

Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced (Shih et al. 2019)

Darwiche and Marquis, “A knowledge compilation map”, 2002 72/266

Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z
(the distribution’s normalizing constant):∫

p(x)dx

73/266

Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

73/266

Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

73/266

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

73/266

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

73/266

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

73/266

Tractable MAR

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 74/266

EVI 10, 958.72 nats MAR 5, 387.55 nats

Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

75/266

Tractable CON

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 76/266

Original Missing Conditional sample

Stable Diffusion

Generative models are still hard to control

77/266

78/266

ChatGPT

79/266

ChatGPT

ChatGPT

80/266

ChatGPT

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

ChatGPT

GeLaTo

81/266

What do we have?

Prefix: “The weather is”

Constraint α: text contains “winter”

Model only does

82/266

What do we need?

Prefix: “The weather is”

Constraint α: text contains “winter”

Marginalization!

Generate from

83/266

Computing p(α | x1:t+1)

For α in conjunctive normal form (CNF):

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

where each wij is a keyword (i.e. a string of tokens),
representing the constraint that wij appears in the generated text.

e.g., α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

84/266

Computing p(α | x1:t+1)

For α in conjunctive normal form (CNF):

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

where each wij is a keyword (i.e. a string of tokens),
representing the constraint that wij appears in the generated text.

e.g., α = ("swims" ∨ "like swimming") ∧ ("lake" ∨ "pool")

Efficient algorithm:
For m clauses and sequence length n, time-complexity for generation is O(2|m|n)
when p is a hidden Markov model (see general probabilistic circuit case later).

Trick: dynamic programming with clever preprocessing and local belief updates

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

85/266

CommonGen: a Challenging Benchmark

Given 3-5 concepts (keywords), our goal is to generate a sentence using all
keywords, which can appear in any order and any form of inflections. e.g.,

 Reference 1: A car drives down a snow covered road.

 Input: snow drive car

 Reference 2: Two cars drove through the snow.

(w1,1 ∨ … ∨ w1,d1) ∧ … ∧ (wm,1 ∨ … ∨ wm,dm)

Each clause represents the inflections for one keyword.

86/266

GeLaTo
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

87/266

GeLaTo
Overview

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

88/266

Language model is not
fine-tuned/prompted to satisfy constraints

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

89/266

Language model is fine-tuned to perform
constrained generation (e.g. seq2seq)

Honghua Zhang, Meihua Dang, Nanyun Peng and Guy Van den Broeck. Tractable Control for Autoregressive Language Generation, 2023.

90/266

Advantages of GeLaTo:

1. Constraint α is guaranteed to be satisfied: for any next-token xt+1 that
would make α unsatisfiable, p(xt+1 | x1:t, α) = 0 for both settings.

2. Training phmm does not depend on α, which is only imposed at inference
(generation) time. Once phmm is trained, we can impose whatever α.

3. We can impose additional tractable constraints:
○ The keywords are generated following a particular order.
○ (Some) keywords must appear at a particular position.
○ (Some) keywords must not appear in the generated sentence.

Conclusion: you can control an intractable generative model
using a tractable probabilistic circuit.

91/266

Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

max
q

p(q | e)

92/266

Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

max
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

max
q

∑
i

wipi(q, e) = max
q

∑
z

p(q, z, e) ̸=
∑
z

max
q

p(q, z, e)

⇒ MAP for latent variable models is intractable (Conaty et al. 2017)

93/266

Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 94/266

Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

95/266

Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

95/266

Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

95/266

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

95/266

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

95/266

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

95/266

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

95/266

Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

95/266

MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.

Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen and Domingos, “Submodular Sum-product Networks for Scene Understanding”, 2016 96/266

How expressive?

competitive with Flows and VAEs!

Dang et al., “Sparse Probabilistic Circuits via Pruning and Growing”, 2022 97/266

How scalable?

up to billions of parameters

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 98/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

99/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

99/266

Logical Circuits

Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)

analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)

⇒ Algebraic model counting (Kimmig et al. 2017), Semi-ring
programming (Belle et al. 2016)

Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
101/266

Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
(Darwiche et al. 2002a)

O/BDDs
(Bryant 1986)

SDDs
(Darwiche 2011a)

Logical circuits are compact representations for boolean functions…
102/266

Logical circuits
structural properties

…and like probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche and Marquis, “A knowledge compilation map”, 2002 103/266

Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable logical circuit families

Darwiche and Marquis, “A knowledge compilation map”, 2002 104/266

Knowledge Compilation

A. Darwiche

Compiler

Answer in

Linear Time

MAJ-MAJ-SAT

E-MAJ-SAT

MAJ-SAT

SAT

(A and (not B))

or(C and (not D))

or ((not C) and D)

…

A B B A C D D C

and and and and and and and and

or or or or

and and

or

NNF Circuit
encoding

105/266

NNF Circuits

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A

106/266

Decomposability (DNNF)

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A

Darwiche, JACM 2001

SAT in linear time

107/266

Determinism (d-DNNF)

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A
Input: L, K, P, A

Darwiche, JANCL 2000

MAJ-SAT in linear time

108/266

Decomposability + determinism = tractable (W)MC

Model counting problem: given a Boolean formula∆, compute the number of satisfying
assignments.

Weighted model counting (WMC):

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

⇒ linear in circuit size!

109/266

Decomposability + determinism = tractable (W)MC

To computeWMC(∆, w):

Turn OR gates to sum nodes and AND
gates to product nodes

Replace each literal l with its weightw(l)

bottom-up evaluation

109/266

Decomposability + determinism = tractable (W)MC

To computeWMC(∆, w):

Turn OR gates to sum nodes and AND
gates to product nodes

Replace each literal l with its weightw(l)

bottom-up evaluation

109/266

Probabilistic inference by WMC
connection to probabilistic circuits through WMC

1. Encode probabilistic model as WMC formula (∆, w)

2. Compile∆ into a logical circuit (e.g. d-DNNF, OBDD, SDD, etc.)

3. Tractable MAR/CON by tractable WMC on circuit

4. Answer complex queries tractably by enforcingmore structural properties!

Chavira and Darwiche, “On probabilistic inference by weighted model counting”, 2008 110/266

Probabilistic inference by WMC
connection to probabilistic circuits through WMC

Resulting compiled WMC circuit equivalent to probabilistic circuit
⇒ parameter variables→ edge parameters

λā λa

×× × ×

θa|c̄θā|c̄ θā|c θa|c θb̄|c̄ θb|c̄

λb̄ λb

×× × ×

θb̄|c θb|c

λc̄ λc

× ×

θc̄ θc

Compiled circuit of WMC encoding

A = ā A = a

θā|c̄ θa|c̄ θā|c θa|c

B = b̄ B = b

θb̄|c̄ θb|c̄ θb̄|c θb|cC = c̄ C = c

× ×

θc̄ θc

Equivalent probabilistic circuit
111/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

112/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

112/266

From tree BN to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

113/266

From tree BN to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…

113/266

From tree BN to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)

113/266

From tree BN to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)

113/266

From tree BN to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

113/266

From tree BN to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)

113/266

From tree BN to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)

113/266

From tree BN to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)

113/266

Hidden Markov Models
as computational graphs

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×

114/266

Compilation : probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 115/266

Decision Diagrams

FBDDs (Free binary
decision diagrams;
read-once)

OBDDs (Ordered BDDs)

SDDs (Sentential decision
diagrams)

⇒ BDD as circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 116/266

Structured Decomposability

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A

L K P A

vtree

Pipatsrisawat & Darwiche, AAAI 2008

117/266

Structured Decomposability

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A

L K P A

vtree

Pipatsrisawat & Darwiche, AAAI 2008

118/266

Structured Decomposability

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A

L K P A

vtree

Pipatsrisawat & Darwiche, AAAI 2008

119/266

Partitioned Determinism (SDDs)

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A
Input: L, K, P, A

Darwiche, IJCAI 2011

120/266

Partitioned Determinism (SDDs)

A. Darwiche

L K L P A P L L PA P L K L P P

K K A A A A
Input: L, K, P, A

Darwiche, IJCAI 2011

121/266

Decision Diagrams

FBDDs (Free binary
decision diagrams;
read-once)

OBDDs (Ordered BDDs)

SDDs (Sentential decision
diagrams)

⇒ SDD & OBDD for
(A ∧ B) ∨ (C ∧D)

OR

OR

OR

AND AND

AND AND

AND AND

Darwiche, “SDD: A new canonical representation of propositional knowledge bases”, 2011 122/266

Probability of logical events

q8: What is the probability of having a traffic jam on
my route to campus?

© fineartamerica.com

123/266

fineartamerica.com

Probability of logical events

q8: What is the probability of having a traffic jam on
my route to campus?

q8(m) = pm(
∨

i∈route JamStr i)

⇒ marginals + logical events

© fineartamerica.com

123/266

fineartamerica.com

Smoothness + structured decomp. = tractable PR

Computing p(α): the probability of arbitrary
logical formula

Multilinear in circuit sizes if the logical circuit:

is smooth, structured decomposable,
deterministic

shares the same vtree

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

124/266

Smoothness + structured decomp. = tractable PR

If p(x) =
∑

i wipi(x),α =
∨

j αj ,
(smooth p)
(smooth + deterministicα):

p(α) =
∑
i

wipi

∨
j

αj

 =
∑
i

wi

∑
j

pi (αj)

⇒ probabilities are “pushed down” to
children

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

124/266

Smoothness + structured decomp. = tractable PR

If p(x,y) = p(x)p(y),α = β ∧ γ ,
(structured decomposability):

p(α) = p (β ∧ γ) · p (β ∧ γ) = p (β) · p (γ)

⇒ probabilities decompose into simpler
ones

× ×

× ×
X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

124/266

Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

124/266

Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

124/266

structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) (Bekker et al. 2015)

For the “right” vtree

Marginal MAP (Oztok et al. 2016)

Probability of logical circuit event in probabilistic circuit (Choi et al. 2015b)

Multiply two probabilistic circuits (Shen et al. 2016)

KL Divergence between probabilistic circuits (Liang et al. 2017)

Same-decision probability (Oztok et al. 2016)

Expected same-decision probability (Choi et al. 2017)

Expected classifier agreement (Choi et al. 2018)

Expected predictions (Khosravi et al. 2019b)

125/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

126/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

126/266

Succinctness of circuits
Expressive efficiency

Tractability is defined with respect to the size of the model.

How do structural constraints affect expressive efficiency (succinctness) of
probabilistic/logical circuits?

127/266

Succinctness of circuits
Expressive efficiency

A family of circuitsM1 is at least as succinct asM2

iff for everym2 ∈ M2, there existsm1 ∈ M1 that represents

the same function and |m1| ≤ |poly(m2)|.
⇒ denotedM1 ≤ M2

⇒ strictly more succinct (M1 < M2)
iffM1 ≤ M2 andM1 ̸≥ M2

128/266

Succinctness of circuits
Expressive efficiency

Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

Darwiche and Marquis, “A knowledge compilation map”, 2002 129/266

Succinctness of circuits
Expressive efficiency

Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

d-DNNF ̸≤ DNNF unless the polynomial hierarchy collapses (Darwiche et al. 2002a).

The Sauerhoff function has DNNF of sizeO(n2) but d-DNNF of size 2Ω(n) (Bova et al.

2016).

129/266

Succinctness of circuits
Expressive efficiency

Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

d-DNNF ̸≤ DNNF unless the polynomial hierarchy collapses (Darwiche et al. 2002a).

The Sauerhoff function has DNNF of sizeO(n2) but d-DNNF of size 2Ω(n) (Bova et al.

2016).

⇒ Unconditional exponential separation for d-DNNF ̸≤ DNNF
⇒ Using a connection between circuits

and communication complexity

129/266

Succinctness of circuits
Expressive efficiency

SDD < OBDD: SDDs are strictly more succinct than OBDDs

SDD≤ OBDD: OBDDs are SDDs with right-linear vtrees

SDD ̸≥ OBDD: The hidden weighted bit function has SDD of sizeO(n3) but OBDD of
size 2Ω(n).

Bova, “SDDs are exponentially more succinct than OBDDs”, 2016 130/266

Query compilation

Möbius Über Alles

#P-hard

PTIME

QW
Q9

Poly-size FBDD, dec-DNNF

QV

Poly-size OBDD,SDD =

 = inversion-free
QJ

Read Once
QU Open

H0

H1

H2

H3

hierarchical

Non-hierarchical
∀FOun, ∃FOun

131/266

How precise is the characterization
of tractable circuits
by structural properties?

132/266

Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedfor-
ward (sum-product) evaluation.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

133/266

Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedfor-
ward (sum-product) evaluation.

⇒ Are these properties necessary?

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

133/266

Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedfor-
ward (sum-product) evaluation.

⇒ Are these properties necessary?
⇒ Yes! Otherwise, integrals do not decompose.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4

133/266

Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward
(max-product) evaluation.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

134/266

Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward
(max-product) evaluation.

⇒ However, decomposability is not necessary!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

134/266

Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward
(max-product) evaluation.

⇒ However, decomposability is not necessary!
⇒ A weaker condition, consistency, suffices.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

134/266

Consistency

A product node is consistent if any variable shared between its children appears in a
single leaf node

⇒ decomposability implies consistency

X1 X2 X3

×

w1 w2 w3 w4

consistent circuit

X1 X2 ≤ θ X2 > θ X3

×

w1 w2 w3 w4

inconsistent circuit 135/266

Determinism + consistency = tractable MAP

136/266

Determinism + consistency = tractable MAP

Ifmaxqshared p(q, e) =
maxqshared p(qx, ex) ·maxqshared p(qy, ey) (consistent):

max
q

p(q, e) = max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

136/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

?

Are smooth&decomposable circuits as
succinct as deterministic & consistent ones,
or vice versa?

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

?
≤

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem (Valiant 1979)⇒
no tractable circuit for marginals!

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

̸≤

̸≤
≤,
̸≥

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem (Valiant 1979)⇒
no tractable circuit for marginals!

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

̸≤

̸≤

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard (de Campos 2011)

⇒ no tractable circuit for MAP!

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

̸≤
, ̸≥

̸≤
, ̸≥

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):

Linear-size smooth and decomposable
circuit

MAP of p(X) solves marginal MAP of
p(X, C) which is NP-hard (de Campos 2011)

⇒ no tractable circuit for MAP!

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

̸≤
, ̸≥

̸≤
, ̸≥

Neither smooth&decomposable nor
deterministic& consistent circuits are more
succinct than the other!
⇒ Choose tractable circuit family based

on your query
More theoretical questions remaining

⇒ “Complete the map”

137/266

Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

(Darwiche et al. 2002b)

: strictly more succinct

smooth & cons.

(Peharz et al. 2015)*

: equally succinct

̸≤
, ̸≥

̸≤
, ̸≥

Neither smooth&decomposable nor
deterministic& consistent circuits are more
succinct than the other!
⇒ Choose tractable circuit family based

on your query
More theoretical questions remaining

⇒ “Complete the map”

137/266

Expressive efficiency of circuits

Succinctness map formonotone circuits

⇒ (s)mooth, (d)eterministic, (D)ecomposable, (w)eak (D)ecomposable (i.e.
consistent)

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 138/266

Expressive efficiency of circuits

Succinctness map formonotone circuits Succinctness map for positive circuits
(non-negative output, but weights may

be negative)

⇒ (s)mooth, (d)eterministic, (D)ecomposable, (w)eak (D)ecomposable (i.e.
consistent)

Colnet and Mengel, “A Compilation of Succinctness Results for Arithmetic Circuits”, 2021 138/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

139/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

139/266

Goal

Given a class of queries
can we systematically find
a class of probabilistic circuits
that is tractable for it?

140/266

A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

141/266

A language for queries

Integral expressions that can be formed by composing these operators

+ , × , pow , log , exp and /

⇒ many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits!
⇒ re-using intermediate transformations across queries

141/266

KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫

KLD(p || q) =
∫
val(X) p(x)× log

(
p(x) / q(x)

)
dX

p

q

/

r

log

s

×
t

∫

KLD(p || q) =
∫
val(X) p(x)× log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫

KLD(p || q) =
∫
val(X) p(x) × log (p(x)/q(x)) dX

p

q

/

r

log

s

×
t

∫

XENT(p || q) =
∫
p(x)× log q(x) dX

p

q

log

r

×
s

∫

Exm∼p(xm|xo) [q
α(xm,xo)]

p

q

pow

r

×
s

∫

Compatibility

Two circuits are compatible if they have the same hierarchical scope partitioning
⇒ generalizes “structured decomposability with same vtree”

X1

X1

X2

X2

×

×

X3

X3

×

×

X2

X1

×

X3

×

compatible circuits

X3

X2X2

X3

X1

X3

×

×

×

×

X1

X2

×

×

X2

X1

×

X3

×

non-compatible circuits

148/266

Tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

149/266

Tractable operators

JX < γK

JY ≥ δK

JX ≥ γK

JY < δK

×

×

p1

p2
θ1

θ2

log
log p1(X)

JY ≥ δK

log p1(Y)

JX < γK

×

×

supp(p1)

log θ1

log p2(X)

JY < δK

log p2(Y)

JX ≥ γK

×

×

supp(p2)

log θ2

smooth, decomposable
deterministic

smooth, decomposable

149/266

SMOsmoothness

DECdecomposability

DETdeterminism

CMPcompatibility

+

p
+
q

×
p
×
q

po
wN

p
n

po
wR

p
α

/
p/
q

log
lo
g
p

exp
ex
p
p

8 4 4 4 4 4 4

8 8 8 4 8 8 8

8 8 8 4 4 4 8

8 4 4 8 4 8 8

Building an atlas of composable tractable atomic operations 149/266

p

q

log

r

×
s

∫

To perform tractable integration we need s to be smooth and decomposable…

p

q

log

r

×
s

∫

hence we need p and r to be smooth, decomposable and compatible…

p

q

log

r

×
s

∫

therefore q must be smooth, decomposable and deterministic…

p

q

log

r

×
s

∫

we can computeXENT tractably if p and q are smooth, decomposable, compatible
and q is deterministic…

compositionally derive the tractability of many more queries

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 153/266

and prove hardness when some input properties are not satisfied

Vergari et al., “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”, 2021 153/266

Composable tractable sub-routines

Efficient inference algorithms in a couple lines of Julia code! 2

2https://github.com/UCLA-StarAI/circuit-ops-atlas 153/266

Next up…

1. Learning and reasoning with symbolic constraints

2. Expected predictions: handling missing values, fairness

3. Exact inference of causal effects

⇒ using tractable operators

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible 154/266

Symbolic constraints

“How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?”

155/266

When?

Ground Truth

e.g. predict shortest path in a map

156/266

When?

given x // e.g. a tile map

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266

When?

given x // e.g. a tile map
find y∗ = argmaxy pθ(y | x) // e.g. a configurations of edges in a grid

s.t. y |= K // e.g., that form a valid path

// for a 12× 12 grid, 2144 states but only 1010 valid ones!
Ground Truth

structured output prediction (SOP) tasks

Vlastelica et al., “Differentiation of blackbox combinatorial solvers”, 2020 157/266

When?

given x // e.g. a feature map
find y∗ = argmaxy pθ(y | x) // e.g. labels of classes

s.t. y |= K // e.g., constraints over superclasses

K : (Ycat =⇒ Yanimal) ∧ (Ydog =⇒ Yanimal)

hierarchical multi-label classification

Giunchiglia and Lukasiewicz, “Coherent hierarchical multi-label classification networks”, 2020 158/266

When?

Ground Truth ResNet-18

neural nets struggle to satisfy domain constraints!

159/266

How?

take an unreliable neural network architecture…

160/266

How?

……and replace the last layer with
a semantic probabilistic layer

161/266

SPL

SPL

qΘ(y | g(z)) is an expressive distribution over labels

cK(x,y) encodes the constraint 1{x,y |= K}

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 162/266

SPL

SPL

p(y | x) = qΘ(y | g(z)) · cK(x,y)/Z(x)

Z(x) =
∑

y
qΘ(y | x) · cK(x,y)

Ahmed et al., “Semantic Probabilistic Layers for Neuro-Symbolic Learning”, 2022 162/266

SPL

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

a conditional circuit q(y;Θ = g(z))

163/266

SPL

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

and a logical circuit c(y,x) encoding K

164/266

Tractable products

X1

X2

X3

× ×

X1

X1

X2

×

× X3

×

X1

X1

X2

X2

×

×

X3

X3

×

×

smooth, decomposable
compatible

exactly compute Z in time O(|q||c|)

165/266

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

166/266

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

166/266

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

166/266

SPL recipe

K : (Y1 = 1 =⇒ Y3 = 1)

∧ (Y2 = 1 =⇒ Y3 = 1)

1) Take any
logical constraint

1{Y1 = 0}

1{Y1 = 1}

1{Y2 = 0}

1{Y2 = 1}

×

×

× ×

1{Y3 = 1}

1{Y3 = 0}

× c

2) Compile it into
a constraint circuit

Y1

Y2

Y1

Y2

×

×

Y3

Y3

×

×

q

g

3)Multiply it
by a circuit distribution

4) train end-to-end by sgd!
166/266

Guaranteeing consistency
Ground Truth FIL LSL SPL

cost: 39.31 cost:∞ cost:∞ cost: 45.09

cost: 57.31 cost:∞ cost:∞ cost: 58.09
167/266

Expected predictions

Reasoning about the output of a classifier or regressor f given a distribution p over the
input features

Ep[f] =

∫
val(X)

p(x)× f(x) dX

p

f

×
r

∫
168/266

Handling missing values at test time

Given a partial observationxo, what is the ex-
pected output from f ?

E
xm∼p(xm|xo)

[f(xm,xo)]

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 169/266

Fairness analysis
using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

q: Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");
println("Male : \$ $(exps[1])");
println("Diff : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568

https://github.com/Juice-jl/ 170/266

https://github.com/Juice-jl/

Causal Inference
Given subsets A, Y ⊆ X , interested in causal effect p(Y |do(A)).

In general, p(Y |do(A)) ̸= p(Y |A) (correlation is not causation).

▶ Specify (qualitative) assumptions on the system using a
causal diagram G (here A, Y , Z , K ⊆ X)) :

A

Z

Y
(a) Backdoor

K Z A Y
(b) Napkin

▶ Given causal diagram G , can derive expressions for causal
effect p(Y |A) using do-calculus (Pearl 1995).∑

Z p(Z)p(Y |A, Z)

(a) Backdoor

∑
K p(A,Y |K ,Z)p(K)∑

K p(A|K ,Z)p(K)

(b) Napkin

171/266

Causal Inference
Given subsets A, Y ⊆ X , interested in causal effect p(Y |do(A)).
In general, p(Y |do(A)) ̸= p(Y |A) (correlation is not causation).

▶ Specify (qualitative) assumptions on the system using a
causal diagram G (here A, Y , Z , K ⊆ X)) :

A

Z

Y
(a) Backdoor

K Z A Y
(b) Napkin

▶ Given causal diagram G , can derive expressions for causal
effect p(Y |A) using do-calculus (Pearl 1995).∑

Z p(Z)p(Y |A, Z)

(a) Backdoor

∑
K p(A,Y |K ,Z)p(K)∑

K p(A|K ,Z)p(K)

(b) Napkin

172/266

Causal Inference
Given subsets A, Y ⊆ X , interested in causal effect p(Y |do(A)).
In general, p(Y |do(A)) ̸= p(Y |A) (correlation is not causation).

▶ Specify (qualitative) assumptions on the system using a
causal diagram G (here A, Y , Z , K ⊆ X)) :

A

Z

Y
(a) Backdoor

K Z A Y
(b) Napkin

▶ Given causal diagram G , can derive expressions for causal
effect p(Y |A) using do-calculus (Pearl 1995).∑

Z p(Z)p(Y |A, Z)

(a) Backdoor

∑
K p(A,Y |K ,Z)p(K)∑

K p(A|K ,Z)p(K)

(b) Napkin

173/266

Causal Inference
Given subsets A, Y ⊆ X , interested in causal effect p(Y |do(A)).
In general, p(Y |do(A)) ̸= p(Y |A) (correlation is not causation).

▶ Specify (qualitative) assumptions on the system using a
causal diagram G (here A, Y , Z , K ⊆ X)) :

A

Z

Y
(a) Backdoor

K Z A Y
(b) Napkin

▶ Given causal diagram G , can derive expressions for causal
effect p(Y |A) using do-calculus (Pearl 1995).∑

Z p(Z)p(Y |A, Z)

(a) Backdoor

∑
K p(A,Y |K ,Z)p(K)∑

K p(A|K ,Z)p(K)

(b) Napkin 174/266

Tractability of Exact Causal Inference

Consider the backdoor query, for fixed values of the treatment a
and outcome y :

p(y |do(a)) :=
∑
Z

p(Z) × p(y |a, Z)

.

Theorem (Wang & Kwiatkowska 2023)
If p is given as a structured decomposable and deterministic
circuit, then the backdoor query is #P-hard to compute.

175/266

Tractability of Exact Causal Inference

Consider the backdoor query, for fixed values of the treatment a
and outcome y :

p(y |do(a)) :=
∑
Z

p(Z) × p(y |a, Z)

.
Theorem (Wang & Kwiatkowska 2023)
If p is given as a structured decomposable and deterministic
circuit, then the backdoor query is #P-hard to compute.

176/266

Applying the Atlas of Tractable Operations
Break down do-calculus query into compositions of basic
operations, such as marginalization, products, and powers:

p(V)

MARG(·; V \ W)

POW(·; −1)
PROD(·, ·)

p(V |W)

(a) Pipeline for COND(·, W)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

Problem: Cannot guarantee that input to POW is deterministic,
even if p(X) is deterministic.

177/266

Applying the Atlas of Tractable Operations
Break down do-calculus query into compositions of basic
operations, such as marginalization, products, and powers:

p(V)

MARG(·; V \ W)

POW(·; −1)
PROD(·, ·)

p(V |W)

(a) Pipeline for COND(·, W)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

Problem: Cannot guarantee that input to POW is deterministic,
even if p(X) is deterministic.

178/266

Applying the Atlas of Tractable Operations
Break down do-calculus query into compositions of basic
operations, such as marginalization, products, and powers:

p(V)

MARG(·; V \ W)

POW(·; −1)
PROD(·, ·)

p(V |W)

(a) Pipeline for COND(·, W)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

Problem: Cannot guarantee that input to POW is deterministic,
even if p(X) is deterministic. 179/266

Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)
Given a subset of variables Q ⊆ X , a PC is Q-deterministic if the
children of a sum node T correspond to different values of Q (for
sum nodes with sc(T) ∩ Q ̸= ∅).

+
× ×

+ + + +

× ×
Y Ȳ

A Z Ā Z̄

× ×
Y Ȳ

A Z̄ Ā Z

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(a) Q = {A, Z}-deterministic

+
× ×

+ + + +

× ×
Z Z̄

A Y Ā Ȳ

× ×
Z Z̄

A Ȳ Ā Y

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(b) Q = {A, Y }-deterministic

Motivation: If a circuit is marginally deterministic w.r.t Q, then we
can marginalize out X \ Q and obtain a deterministic circuit!

180/266

Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)
Given a subset of variables Q ⊆ X , a PC is Q-deterministic if the
children of a sum node T correspond to different values of Q (for
sum nodes with sc(T) ∩ Q ̸= ∅).

+
× ×

+ + + +

× ×
Y Ȳ

A Z Ā Z̄

× ×
Y Ȳ

A Z̄ Ā Z

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(a) Q = {A, Z}-deterministic

+
× ×

+ + + +

× ×
Z Z̄

A Y Ā Ȳ

× ×
Z Z̄

A Ȳ Ā Y

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(b) Q = {A, Y }-deterministic

Motivation: If a circuit is marginally deterministic w.r.t Q, then we
can marginalize out X \ Q and obtain a deterministic circuit!

181/266

Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)
Given a subset of variables Q ⊆ X , a PC is Q-deterministic if the
children of a sum node T correspond to different values of Q (for
sum nodes with sc(T) ∩ Q ̸= ∅).

+
× ×

+ + + +

× ×
Y Ȳ

A Z Ā Z̄

× ×
Y Ȳ

A Z̄ Ā Z

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(a) Q = {A, Z}-deterministic

+
× ×

+ + + +

× ×
Z Z̄

A Y Ā Ȳ

× ×
Z Z̄

A Ȳ Ā Y

0.7 0.3

0.9 0.1
0.2 0.8

0.25 0.75
0.6 0.4

(b) Q = {A, Y }-deterministic

Motivation: If a circuit is marginally deterministic w.r.t Q, then we
can marginalize out X \ Q and obtain a deterministic circuit! 182/266

Tractable Causal Inference
If (the circuit encoding) p(X) is (A ∪ Z)-deterministic, then the
input to POW is guaranteed to be deterministic.

p(A, Y , Z)

MARG(·; Y)

POW(·; −1)
PROD(·, ·)

p(Y |A, Z)

(a) Pipeline for COND(·, A ∪ Z)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

=⇒ all operations are tractable according to Atlas
=⇒ can compute causal effect in O(|p|3) time
(can improve to O(|p|2))

183/266

Tractable Causal Inference
If (the circuit encoding) p(X) is (A ∪ Z)-deterministic, then the
input to POW is guaranteed to be deterministic.

p(A, Y , Z)

MARG(·; Y)

POW(·; −1)
PROD(·, ·)

p(Y |A, Z)

(a) Pipeline for COND(·, A ∪ Z)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

=⇒ all operations are tractable according to Atlas
=⇒ can compute causal effect in O(|p|3) time
(can improve to O(|p|2))

184/266

Tractable Causal Inference
If (the circuit encoding) p(X) is (A ∪ Z)-deterministic, then the
input to POW is guaranteed to be deterministic.

p(A, Y , Z)

MARG(·; Y)

POW(·; −1)
PROD(·, ·)

p(Y |A, Z)

(a) Pipeline for COND(·, A ∪ Z)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

=⇒ all operations are tractable according to Atlas

=⇒ can compute causal effect in O(|p|3) time
(can improve to O(|p|2))

185/266

Tractable Causal Inference
If (the circuit encoding) p(X) is (A ∪ Z)-deterministic, then the
input to POW is guaranteed to be deterministic.

p(A, Y , Z)

MARG(·; Y)

POW(·; −1)
PROD(·, ·)

p(Y |A, Z)

(a) Pipeline for COND(·, A ∪ Z)

p(X)

MARG(·; X \ Z)
MARG(·; X \ (A ∪ Y ∪ Z))

COND(·; A ∪ Z)

PROD(·, ·)

MARG(·; Z)

p(Y |do(A))

(b) Pipeline for entire backdoor query

=⇒ all operations are tractable according to Atlas
=⇒ can compute causal effect in O(|p|3) time
(can improve to O(|p|2))

186/266

Open Questions

▶ Are all causal queries derived by the do-calculus tractable in
PTIME (for some non-trivial marginal determinism condition)?

▶ What is the optimal complexity for these queries?

187/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

188/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

188/266

m
or
e
ex
pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries

PCs

PCsPCs

PCs

BNs

NFs

PCsPCs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

tractability vs expressive efficiency
189/266

Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) (Darwiche 2003) 4 4 4 8
Sum-Product Networks (SPNs) (Poon et al. 2011) 4 4 8 8

Cutset Networks (CNets) (Rahman et al. 2014) 4 4 4 8
Probabilistic Decision Graphs (Jaeger 2004) 4 4 4 4

(Affine) ADDs (Hoey et al. 1999; Sanner et al. 2005) 4 4 4 4
AndOrGraphs (Dechter et al. 2007) 4 4 4 4

PSDDs (Kisa et al. 2014) 4 4 4 4
190/266

Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable

smooth

deterministic

circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B

191/266

Arithmetic Circuits (ACs)

ACs (Darwiche 2003) are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges (Rooshenas et al. 2014)

Lowd and Rooshenas, “Learning Markov Networks With Arithmetic Circuits”, 2013 192/266

Sum-Product Networks (SPNs)

SPNs (Poon et al. 2011) are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective (Peharz et al. 2014)
193/266

Cutset Networks (CNets)

CNets
(Rahman et al. 2014) are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014
Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 194/266

Probabilistic Sentential Decision Diagrams

PSDDs (Kisa et al. 2014) are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 195/266

Probabilistic Decision Graphs

PDGs (Jaeger 2004) are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Jaeger, “Probabilistic decision graphs—combining verification and AI techniques for probabilistic
inference”, 2004
Jaeger et al., “Learning probabilistic decision graphs”, 2006 196/266

AndOrGraphs

AndOrGarphs
(Dechter et al. 2007) are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Dechter and Mateescu, “AND/OR search spaces for graphical models”, 2007
Marinescu and Dechter, “Best-first AND/OR search for 0/1 integer programming”, 2007 197/266

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models
probabilistic circuits?

198/266

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

199/266

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

Tractable likelihoods and marginals

Global Negative Dependence

Diversity in recommendation systems

200/266

Are all tractable probabilistic models probabilistic circuits?

Graphical
Models (w/

bounded
tree-width)

Determinantal
Point Processes

(DPPs)

Probabilistic
Circuits (PCs)

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.

201/266

Relationship between PCs and DPPs

Positive
Dependence

Fully
Factorized

Probabilistic
Circuits

Determinantal
Point Processes

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.

202/266

PSDDs

More Tractable Fewer Constraints

Deterministic and
Decomposable

PCs

We cannot tractably represent DPPs with subclasses of PCs

No
No

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.

203/266

PSDDs

More Tractable Fewer Constraints

Deterministic and
Decomposable

PCs

Deterministic PCs
with no negative

parameters

Deterministic PCs
with negative
parameters

We cannot tractably represent DPPs with subclasses of PCs

No
No

No No

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.

204/266

PSDDs

More Tractable Fewer Constraints

Deterministic and
Decomposable

PCs

Deterministic PCs
with no negative

parameters

Deterministic PCs
with negative
parameters

Decomposable PCs
with no negative

parameters
(SPNs)

We cannot tractably represent DPPs with subclasses of PCs

No
No

No No

No

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.

205/266

PSDDs

More Tractable Fewer Constraints

Deterministic and
Decomposable

PCs

Deterministic PCs
with no negative

parameters

Deterministic PCs
with negative
parameters

Decomposable PCs
with no negative

parameters
(SPNs)

Decomposable PCs
with negative
parameters

We cannot tractably represent DPPs with subclasses of PCs

No
No

No No

No We don’t know

Honghua Zhang, Steven Holtzen and Guy Van den Broeck. On the Relationship Between Probabilistic Circuits and Determinantal Point Processes, UAI, 2020.

206/266

PCs and Circuit Lower Bounds

Based on arithmetic circuit lower bounds by Ran Raz and Amir Yehudayoff

Decomposable PCs are Syntactically Multilinear Arithmetic Circuits:

207/266

DPPs have No Compact Decomposable PCs

208/266

Probabilistic Generating Circuits

Probabilistic
Circuits

Determinantal
Point Processes

Probabilistic
Generating Circuits

A Tractable Unifying Framework for PCs and DPPs
Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

209/266

Probability Generating Functions

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

210/266

Probability Generating Functions

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

211/266

1. Sum nodes with weighted edges to

children.

2. Product nodes with unweighted

edges to children.

3. Leaf nodes: z_i or constant.

Probabilistic Generating Circuits (PGCs)

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

212/266

PCs as PGCs

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

(Smooth & Decomposable) PCs represents probability mass functions:

PGCs represent probability generating functions:

Given a smooth & decomposable PC, by setting to 1, and to ,
we obtain a PGC that represents the PC.

213/266

Tractable Likelihood (EVID) or Marginals (MAR)?

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

214/266

PGCs Support Tractable Likelihoods/Marginals

Purely
symbolic

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

215/266

PGCs Support Tractable Likelihoods/Marginals

Purely
symbolic

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

● Monomials setting to true variables
that must be false are 0-ed out

● Other monomials contribute to result.
● Only monomials that set all required

variables to true have max degree.
● Sum those up

216/266

PGCs Support Tractable Likelihoods/Marginals

Purely
symbolic

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

217/266

Example

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

218/266

Example

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

219/266

Example

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

220/266

Inference Time Complexity

Given a PGC of size m (#edges) over n random variables.

Algorithm 1 (Zhang et al., ICML 2021):

Bottom-up pass
w/ z_i = t, 0 or 1

Product/sum of degree-n
polynomials at each node

or O(mn log n log log n)

221/266

Inference Time Complexity

Given a PGC of size m (#edges) over n random variables.

Algorithm 1 (Zhang et al., ICML 2021):

Bottom-up pass
w/ z_i = t, 0 or 1

Product/sum of degree-n
polynomials at each node

Algorithm 2 (Harviainen et al., UAI 2023):

Bottom-up pass
w/ t = 0, 1, …, n

Polynomial interpolation at
t = 0, 1, …, n

observation: the output of a PGC is a degree-n polynomial w/ respect to t

or O(mn log n log log n)

222/266

Syntactic vs. Semantic Restrictions

Theorem (Harviainen et al.). It is NP-hard to check if a
PGC encodes a valid probability generating polynomial

+ PGCs are tractable when semantically multilinear

+ No need for PC decomposability/syntactic

multilinearity or other properties…

- Checking Validity of PGCs is Hard

223/266

DPPs as PGCs

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

We need it as a sum of products to obtain a
Probabilistic Generating Circuit

224/266

DPPs as PGCs

Constant

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

We need it as a sum of products to obtain a
Probabilistic Generating Circuit

225/266

DPPs as PGCs

Division-free determinant algorithm
(Samuelson-Berkowitz algorithm)

Constant

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

226/266

Experiment Results: Amazon Baby Registries

SimplePGC achieves SOTA
result on 11/15 datasets

Honghua Zhang, Brendan Juba and Guy Van den Broeck. Probabilistic Generating Circuits, ICML, 2021.

227/266

Beyond DPPs: Strongly Rayleigh Distributions

We can efficiently sample from strongly Rayleigh distributions by
MCMC (with polynomial bound on mixing time)

DPPs are strongly Rayleigh distributions

228/266

Efficient Sampling from SR Distributions

229/266

Relationship between PGCs and SR Distributions

DPPs

Compact
PGCs

SR
Distributions

??

230/266

Relationship between PGCs and SR Distributions

DPPs

Compact
PGCs

SR
Distributions

?

231/266

Not All SR Distributions have Compact PGCs (Bläser 2023)

232/266

Not All SR Distributions have Compact PGCs (Bläser 2023)

Generalize to bipartite multigraph

d: each edge from U to V has d copies

 is real-stable and its evaluation is #P-hard.

 does not define an SR distribution as it has negative coefficients

233/266

Not All SR Distributions have Compact PGCs (Bläser 2023)

The inversion of a real stable polynomial is also real stable

234/266

Relationship between PGCs and SR Distributions

DPPs

Compact
PGCs

SR
Distributions

235/266

Probabilistic generating circuits seem
awfully general.

Are all tractable probabilistic models
probabilistic generating circuits?

236/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

237/266

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)

2. What are probabilistic circuits and why are they tractable? (Guy)

3. What is the connection to logical circuit languages? (YooJung)

4. How do I compile my favorite model into a circuit? (YooJung)

5. How are circuit size and tractability related? (YooJung)

6. What’s the most impressive query we can efficiently compute? (YooJung)

7. Are all tractable distributions probabilistic circuits? (Guy)

8. How to learn probabilistic circuits from data? (Guy)

237/266

Building Probabilistic Circuits

239/266

Origins: Compilation

Compiling probabilistic graphical models
Arithmetic circuits (Darwiche 2002, 2003, 2009)

Compile a given Bayesian network into an arithmetic circuit—a smooth,
decomposable and deterministic PCs

Either via logic encoding of Bayesian network + knowledge compilation

Or record “execution trace” (sum and product operations) of traditional inference
algorithms (junction tree, variable elimination)

Z1

X1

Z2

X2

. . .

X2

X2

. . .

. . .

×

×

X1

X1

×

×

241/266

Compilation
Selected references

Logic circuits, interplay between structural properties and tractable reasoning
(Darwiche et al. 2002a)

Converting probabilistic graphical models via knowledge compilation
(Darwiche 2002)

Logic circuit compilers
(Darwiche 2004; Muise et al. 2012; Bova et al. 2015; Lagniez et al. 2017; Oztok et al. 2018)

Neuro-symbolic models using logic circuits
(Ahmed et al. 2022a,b)

242/266

Parameter Learning

Gradient descent (of course)

PCs are computational graphs

Hence we can just learn them as any other neural net using SGD

Use re-parameterization if parameters should satisfy constraints:
soft-max for sum-weights (non-negative, sum-to-one)
soft-plus for variances
low-rank plus diagonal for covariance matrices

Allows for conditional distributions

244/266

Conditional PCs
(Shao et al. 2019)

245/266

Maximum likelihood (frequentist)

PCs can be interpreted as hierarchical latent variable models, where each sum node
corresponds to a discrete latent variable (Peharz et al. 2016). This allows to perform
classical maximum-likelihood estimation.

246/266

Closed-form maximum likelihood

When the circuit is deterministic, there is even an closed-form ML solution, which is
incredible fast:

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
julia> num_examples(data)
17412
julia> num_edges(structure)
270448
julia> @btime estimate_parameters(structure , data);

63.585 ms (1182350 allocations: 65.97 MiB)

Custom SIMD and CUDA kernels to parallelize over layers and training examples.
https://github.com/Juice-jl/ 247/266

https://github.com/Juice-jl/

Expectation-Maximization

When the PC is not deterministic, we can still apply expectation-maximization (Peharz

et al. 2016). EM can piggy-back on autodfiff:
train_x , valid_x , test_x = get_mnist_images([7])

graph = Graph.poon_domingos_structure(shape=(28,28), delta=[7])
args = EinsumNetwork.Args(num_var=train_x.shape[1], num_dims=1,

num_classes=1, num_sums=28,
num_input_distributions=28,
exponential_family=EinsumNetwork.BinomialArray ,
exponential_family_args={'N':255},
online_em_frequency=1, online_em_stepsize=0.05)

PC = EinsumNetwork.EinsumNetwork(graph, args)
PC.initialize()
PC.to('cuda')

https://github.com/cambridge-mlg/EinsumNetworks 248/266

https://github.com/cambridge-mlg/EinsumNetworks

Expectation-Maximization

for epoch_count in range(10):
train_ll , valid_ll , test_ll = compute_loglikelihood()
start_t = time.time()

for idx in get_batches(train_x , 100):
outputs = PC.forward(train_x[idx, :])
log_likelihood = EinsumNetwork.log_likelihoods(outputs).sum()
log_likelihood.backward()
PC.em_process_batch()

print_performance(epoch_count , train_ll , valid_ll , test_ll , time.time() - start_t)

https://github.com/cambridge-mlg/EinsumNetworks 249/266

https://github.com/cambridge-mlg/EinsumNetworks

Expectation-Maximization

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 250/266

Structure Learning

Region graphs
Laying out the PC structure on a high level

Region graphs (RGs) describe decompositional structure

RGs are bipartite, directed graphs containing regions (R) and partitions (P)

Input and output nodes of the RG are regions

Regions have a scope (receptive field), denoted as sc(R) ⊆ X

For every partition P it holds that

sc(Rout) =
⋃

Rin∈ inputs(P)

sc(Rin)

sc(R′) ∩ sc(R′′) = ∅, R′ ̸= R′′ ∈ inputs(P)

252/266

Example region graph

253/266

(Here, every partition has 2 input regions.
This is often assumed, but not necessary.)

From region graphs to PCs

254/266

From region graphs to PCs

254/266

Equip each input region with non-linear units
ϕ1, . . . , ϕK

From region graphs to PCs

254/266

Equip each internal region with sum nodes

From region graphs to PCs

254/266

Often, output region has only a single sum

From region graphs to PCs

254/266

Equip partitions with products, combining units
in input regions in all possible ways

From region graphs to PCs

254/266

Equip partitions with products, combining units
in input regions in all possible ways

From region graphs to PCs

254/266

Connect products to sum units above

From region graphs to PCs

Equip each input region (leaf)R withK units ϕ1, . . . , ϕK , which are non-linear
functions over sc(R). Usually, ϕ1, . . . , ϕK are probability densities. K can be
different for each input region.

Equip each other region withK sum units. K can be different for each internal
region. Often, for the root regionK = 1, when PC is used as density estimator.

Equip each partitionP with as many products as there are combinations of units in
the input regions toP , selecting one unit from each region. Formally, ifP has input
regionsR1,R2 . . . ,RI , insert one product

∏I
i=1 ui for each

(u1, u2, . . . , uI) ∈ R1 ×R2 × · · · × RI .

Connect each
∏I

i=1 ui inP to all sum units in the output regions ofP .

255/266

From region graphs to PCs

Resulting PC has alternating sum and product units (not a strong constraint)

We can easily scale the PC (overparameterize, increase expressivity) by equipping
regions with more units

RGs can be seen as a vectorized version of PCs – each region and partition can be
seen as as a module

Resulting PC will be smooth and decomposable, i.e., we can integrate, marginalize,
and take conditionals

After the PC has been constructed, we might discard the RG

256/266

Scaling up image models
Latent Variable Distillation

Liu et al., “Scaling Up Probabilistic Circuits by Latent Variable Distillation”, 2022 257/266

How to construct and learn RGs?

Random regions graphs
The “no-learning” option (Peharz et al. 2019)

Generating a random region graph, by recursively splittingX into two random parts:

259/266

Image-tailored circuit structure
“Recursive image slicing” (Poon et al. 2011)

Images yield a natural region graph by using axis-aligned splits:

Start with the full image (=output region)

Define partitions by applying horizontal and vertical splits

Recurse on the newly generated sub-images (internal regions)

Structure somewhat reminiscent to convolutions

Generates RGs which are “true DAGs,” i.e. regions get re-used

260/266

261/266

261/266

261/266

261/266

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Expand regions with clustering

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Number of clusters = number of partitions

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Try to find independent groups of variables
(e.g. independence tests)

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Success→ partition into new regions

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Try to find independent groups of variables
(e.g. independence tests)

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Success→ partition into new regions

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Single variable

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Single variable→ input region

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Expand regions with clustering

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Number of clusters = number of partitions

And so on…

Data-driven structure learning
“Recursive data slicing” (Gens et al. 2013)

262/266

Stopping conditions: minimal number
of features, samples, depth, …

Clustering ratios also deliver (initial)
parameters

Smooth & Decomposable Circuits

Tractable integration

LearnSPN
Selected references

ID-SPN (Rooshenas et al. 2014)

LearnSPN-b/T/B (Vergari et al. 2015)

For heterogeneous data (Molina et al. 2018)

Using k-means (Butz et al. 2018) or SVD splits (Adel et al. 2015)

Learning DAGs (Dennis et al. 2015; Jaini et al. 2018)

Approximating independence tests (Di Mauro et al. 2018)

263/266

Cutset networks
Besides clustering, decision tree learning can be used as PC learner. Cutset networks,
decision trees over simple probabilistic models (Chow-Liu trees) (Rahman et al. 2014):

Cutset networks can easily be converted into smooth, decomposable and
deterministic PCs. 264/266

Decision trees as PCs
Also vanilla decision tree learners can be used to learn PCs, by augmenting the leaves
with distributions over inputs (Correia et al. 2020). Allows to treatmissing features and
outlier detection.

265/266

266/266

References I
⊕ Chow, C and C Liu (1968). “Approximating discrete probability distributions with dependence trees”. In: IEEE Transactions on Information Theory 14.3, pp. 462–467.

⊕ Valiant, Leslie G (1979). “The complexity of enumeration and reliability problems”. In: SIAM Journal on Computing 8.3, pp. 410–421.

⊕ Bryant, R (1986). “Graph-based algorithms for boolean manipulation”. In: IEEE Transactions on Computers, pp. 677–691.

⊕ Cooper, Gregory F (1990). “The computational complexity of probabilistic inference using Bayesian belief networks”. In: Artificial intelligence 42.2-3, pp. 393–405.

⊕ Dagum, Paul and Michael Luby (1993). “Approximating probabilistic inference in Bayesian belief networks is NP-hard”. In: Artificial intelligence 60.1, pp. 141–153.

⊕ Zhang, Nevin Lianwen and David Poole (1994). “A simple approach to Bayesian network computations”. In:
Proceedings of the Biennial Conference-Canadian Society for Computational Studies of Intelligence, pp. 171–178.

⊕ Roth, Dan (1996). “On the hardness of approximate reasoning”. In: Artificial Intelligence 82.1–2, pp. 273–302.

⊕ Dechter, Rina (1998). “Bucket elimination: A unifying framework for probabilistic inference”. In: Learning in graphical models. Springer, pp. 75–104.

⊕ Dasgupta, Sanjoy (1999). “Learning polytrees”. In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc.,
pp. 134–141.

⊕ Hoey, Jesse, Robert St-Aubin, Alan Hu, and Craig Boutilier (1999). “SPUDD: stochastic planning using decision diagrams”. In:
Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp. 279–288.

⊕ Meilă, Marina and Michael I. Jordan (2000). “Learning with mixtures of trees”. In: Journal of Machine Learning Research 1, pp. 1–48.

References II
⊕ Bach, Francis R. and Michael I. Jordan (2001). “Thin Junction Trees”. In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569–576.

⊕ Darwiche, Adnan (2001). “Recursive conditioning”. In: Artificial Intelligence 126.1-2, pp. 5–41.

⊕ Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). “Generalized belief propagation”. In: Advances in neural information processing systems, pp. 689–695.

⊕ Darwiche, Adnan (2002). “A logical approach to factoring belief networks”. In: KR 2, pp. 409–420.

⊕ Darwiche, Adnan and Pierre Marquis (2002a). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ — (2002b). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17.1, pp. 229–264.

⊕ Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). “Iterative join-graph propagation”. In:
Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 128–136.

⊕ Darwiche, Adnan (2003). “A Differential Approach to Inference in Bayesian Networks”. In: J.ACM.

⊕ — (2004). “New advances in compiling CNF to decomposable negation normal form”. In: Proc. of ECAI. Citeseer, pp. 328–332.

⊕ Jaeger, Manfred (2004). “Probabilistic decision graphs—combining verification and AI techniques for probabilistic inference”. In:
International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12.supp01, pp. 19–42.

⊕ Sang, Tian, Paul Beame, and Henry A Kautz (2005). “Performing Bayesian inference by weighted model counting”. In: AAAI. Vol. 5, pp. 475–481.

References III
⊕ Sanner, Scott and David McAllester (2005). “Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference”. In: IJCAI. Vol. 2005,
pp. 1384–1390.

⊕ Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). “Compiling relational Bayesian networks for exact inference”. In:
International Journal of Approximate Reasoning 42.1-2, pp. 4–20.

⊕ Jaeger, Manfred, Jens D Nielsen, and Tomi Silander (2006). “Learning probabilistic decision graphs”. In: International Journal of Approximate Reasoning 42.1-2,
pp. 84–100.

⊕ Park, James D and Adnan Darwiche (2006). “Complexity results and approximation strategies for MAP explanations”. In: Journal of Artificial Intelligence Research 21,
pp. 101–133.

⊕ De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). “ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.”. In: IJCAI. Vol. 7. Hyderabad,
pp. 2462–2467.

⊕ Dechter, Rina and Robert Mateescu (2007). “AND/OR search spaces for graphical models”. In: Artificial intelligence 171.2-3, pp. 73–106.

⊕ Marinescu, Radu and Rina Dechter (2007). “Best-first AND/OR search for 0/1 integer programming”. In:
International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming. Springer, pp. 171–185.

⊕ Riguzzi, Fabrizio (2007). “A top down interpreter for LPAD and CP-logic”. In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109–120.

⊕ Chavira, Mark and Adnan Darwiche (2008). “On probabilistic inference by weighted model counting”. In: Artificial Intelligence 172.6-7, pp. 772–799.

References IV
⊕ Olteanu, Dan and Jiewen Huang (2008). “Using OBDDs for efficient query evaluation on probabilistic databases”. In:
International Conference on Scalable Uncertainty Management. Springer, pp. 326–340.

⊕ Darwiche, Adnan (2009). Modeling and Reasoning with Bayesian Networks. Cambridge.

⊕ Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.

⊕ Choi, Arthur and Adnan Darwiche (2010). “Relax, compensate and then recover”. In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167–180.

⊕ Darwiche, Adnan (2011a). “SDD: A New Canonical Representation of Propositional Knowledge Bases”. In:
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two. IJCAI’11. Barcelona, Catalonia, Spain. isbn:
978-1-57735-514-4.

⊕ — (2011b). “SDD: A new canonical representation of propositional knowledge bases”. In: Twenty-Second International Joint Conference on Artificial Intelligence.

⊕ de Campos, Cassio P (2011). “New complexity results for MAP in Bayesian networks”. In: IJCAI. Vol. 11, pp. 2100–2106.

⊕ Poon, Hoifung and Pedro Domingos (2011). “Sum-Product Networks: a New Deep Architecture”. In: UAI 2011.

⊕ Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). “Introduction to dual decomposition for inference”. In: Optimization for Machine Learning 1, pp. 219–254.

⊕ Muise, Christian, Sheila A McIlraith, J Christopher Beck, and Eric I Hsu (2012). “Dsharp: fast d-DNNF compilation with sharpSAT”. In:
Canadian Conference on Artificial Intelligence. Springer, pp. 356–361.

References V
⊕ Gens, Robert and Pedro Domingos (2013). “Learning the Structure of Sum-Product Networks”. In: Proceedings of the ICML 2013, pp. 873–880.

⊕ Lowd, Daniel and Amirmohammad Rooshenas (2013). “Learning Markov Networks With Arithmetic Circuits”. In:
Proceedings of the 16th International Conference on Artificial Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406–414.

⊕ Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). “Generative adversarial nets”.
In: Advances in neural information processing systems, pp. 2672–2680.

⊕ Kingma, Diederik P and Max Welling (2014). “Auto-Encoding Variational Bayes”. In: Proceedings of the 2nd International Conference on Learning Representations (ICLR).
2014.

⊕ Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche (July 2014). “Probabilistic sentential decision diagrams”. In:
Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria.

⊕ Martens, James and Venkatesh Medabalimi (2014). “On the Expressive Efficiency of Sum Product Networks”. In: CoRR abs/1411.7717.

⊕ Peharz, Robert, Robert Gens, and Pedro Domingos (2014). “Learning Selective Sum-Product Networks”. In: Workshop on Learning Tractable Probabilistic Models. LTPM.

⊕ Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of
Chow-Liu Trees”. In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630–645.

⊕ Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). “Stochastic backprop. and approximate inference in deep generative models”. In:
arXiv preprint arXiv:1401.4082.

References VI
⊕ Rooshenas, Amirmohammad and Daniel Lowd (2014). “Learning Sum-Product Networks with Direct and Indirect Variable Interactions”. In: Proceedings of ICML 2014.

⊕ Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). “Learning the Structure of Sum-Product Networks via an SVD-based Algorithm”. In:
Uncertainty in Artificial Intelligence.

⊕ Bekker, Jessa, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den Broeck (2015). “Tractable Learning for Complex Probability Queries”. In:
Advances in Neural Information Processing Systems 28 (NIPS).

⊕ Bova, Simone, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2015). “On compiling CNFs into structured deterministic DNNFs”. In:
International Conference on Theory and Applications of Satisfiability Testing. Springer, pp. 199–214.

⊕ Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015a). “Tractable learning for structured probability spaces: A case study in learning preference distributions”.
In: Twenty-Fourth International Joint Conference on Artificial Intelligence (IJCAI).

⊕ Choi, Arthur, Guy Van Den Broeck, and Adnan Darwiche (2015b). “Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference
Distributions”. In: Proceedings of the 24th International Conference on Artificial Intelligence. IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 2861–2868. isbn:
978-1-57735-738-4. url: http://dl.acm.org/citation.cfm?id=2832581.2832649.

⊕ Dennis, Aaron and Dan Ventura (2015). “Greedy Structure Search for Sum-product Networks”. In: IJCAI’15. Buenos Aires, Argentina: AAAI Press, pp. 932–938. isbn:
978-1-57735-738-4.

⊕ Di Mauro, Nicola, Antonio Vergari, and Floriana Esposito (2015). “Learning Accurate Cutset Networks by Exploiting Decomposability”. In: Proceedings of AIXIA. Springer,
pp. 221–232.

http://dl.acm.org/citation.cfm?id=2832581.2832649

References VII
⊕ Fierens, Daan, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt (May 2015). “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”. In: Theory and Practice of Logic Programming 15 (03), pp. 358–401. issn: 1475-3081. doi:
10.1017/S1471068414000076. url: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.

⊕ Germain, Mathieu, Karol Gregor, Iain Murray, and Hugo Larochelle (2015). “MADE: Masked Autoencoder for Distribution Estimation”. In: CoRR abs/1502.03509.

⊕ Peharz, Robert, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos (2015). “On Theoretical Properties of Sum-Product Networks”. In:
The Journal of Machine Learning Research.

⊕ Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). “Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning”. In:
ECML-PKDD 2015.

⊕ Vlasselaer, Jonas, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt (2015). “Anytime Inference in Probabilistic Logic Programs with
Tp-compilation”. In: Proceedings of 24th International Joint Conference on Artificial Intelligence (IJCAI). url:
http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf.

⊕ Belle, Vaishak and Luc De Raedt (2016). “Semiring Programming: A Framework for Search, Inference and Learning”. In: arXiv preprint arXiv:1609.06954.

⊕ Bova, Simone (2016). “SDDs are exponentially more succinct than OBDDs”. In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1.

⊕ Bova, Simone, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2016). “Knowledge Compilation Meets Communication Complexity.”. In: IJCAI. Vol. 16,
pp. 1008–1014.

⊕ Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). “On the expressive power of deep learning: A tensor analysis”. In: Conference on Learning Theory, pp. 698–728.

https://doi.org/10.1017/S1471068414000076
http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf
http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf

References VIII
⊕ Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2016). “Density estimation using real nvp”. In: arXiv preprint arXiv:1605.08803.

⊕ Friesen, Abram L and Pedro Domingos (2016). “Submodular Sum-product Networks for Scene Understanding”. In.

⊕ Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). “Pixel recurrent neural networks”. In: arXiv preprint arXiv:1601.06759.

⊕ Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). “Solving PP-PP-complete problems using knowledge compilation”. In:
Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning.

⊕ Peharz, Robert, Robert Gens, Franz Pernkopf, and Pedro M. Domingos (2016). “On the Latent Variable Interpretation in Sum-Product Networks”. In:
IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. url: http://arxiv.org/abs/1601.06180.

⊕ Sguerra, Bruno Massoni and Fabio G Cozman (2016). “Image classification using sum-product networks for autonomous flight of micro aerial vehicles”. In:
2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, pp. 139–144.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). “Tractable Operations for Arithmetic Circuits of Probabilistic Models”. In:
Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain,
pp. 3936–3944.

⊕ Vlasselaer, Jonas, Wannes Meert, Guy Van den Broeck, and Luc De Raedt (Mar. 2016). “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”. In:
Artificial Intelligence 232, pp. 43 –53. issn: 0004-3702. doi: 10.1016/j.artint.2015.12.001.

⊕ Yuan, Zehuan, Hao Wang, Limin Wang, Tong Lu, Shivakumara Palaiahnakote, and Chew Lim Tan (2016). “Modeling spatial layout for scene image understanding via a
novel multiscale sum-product network”. In: Expert Systems with Applications 63, pp. 231–240.

http://arxiv.org/abs/1601.06180
https://doi.org/10.1016/j.artint.2015.12.001

References IX
⊕ Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). “Optimal feature selection for decision robustness in Bayesian networks”. In:
Proceedings of the 26th International Joint Conference on Artificial Intelligence (IJCAI).

⊕ Conaty, Diarmaid, Denis Deratani Mauá, and Cassio Polpo de Campos (2017). “Approximation Complexity of Maximum A Posteriori Inference in Sum-Product
Networks”. In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence. Ed. by Gal Elidan and Kristian Kersting. AUAI Press, pp. 322–331.

⊕ Kimmig, Angelika, Guy Van den Broeck, and Luc De Raedt (2017). “Algebraic model counting”. In: Journal of Applied Logic 22, pp. 46–62.

⊕ Lagniez, Jean-Marie and Pierre Marquis (2017). “An Improved Decision-DNNF Compiler.”. In: IJCAI. Vol. 17, pp. 667–673.

⊕ Liang, Yitao and Guy Van den Broeck (Aug. 2017). “Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams”. In:
IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI). url: http://starai.cs.ucla.edu/papers/LiangXAI17.pdf.

⊕ Papamakarios, George, Theo Pavlakou, and Iain Murray (2017). “Masked autoregressive flow for density estimation”. In:
Advances in Neural Information Processing Systems, pp. 2338–2347.

⊕ Rathke, Fabian, Mattia Desana, and Christoph Schnörr (2017). “Locally adaptive probabilistic models for global segmentation of pathological oct scans”. In:
International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177–184.

⊕ Van den Broeck, Guy and Dan Suciu (Aug. 2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. doi:
10.1561/1900000052. url: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.

⊕ Butz, Cory J, Jhonatan S Oliveira, André E Santos, André L Teixeira, Pascal Poupart, and Agastya Kalra (2018). “An Empirical Study of Methods for SPN Learning and
Inference”. In: International Conference on Probabilistic Graphical Models, pp. 49–60.

http://starai.cs.ucla.edu/papers/LiangXAI17.pdf
https://doi.org/10.1561/1900000052
http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf

References X
⊕ Choi, YooJung and Guy Van den Broeck (2018). “On robust trimming of Bayesian network classifiers”. In: arXiv preprint arXiv:1805.11243.

⊕ Di Mauro, Nicola, Floriana Esposito, Fabrizio Giuseppe Ventola, and Antonio Vergari (2018). “Sum-Product Network structure learning by efficient product nodes
discovery”. In: Intelligenza Artificiale 12.2, pp. 143–159.

⊕ Jaini, Priyank, Amur Ghose, and Pascal Poupart (2018). “Prometheus: Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks”. In:
International Conference on Probabilistic Graphical Models, pp. 181–192.

⊕ Molina, Alejandro, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and Kristian Kersting (2018). “Mixed Sum-Product Networks: A Deep
Architecture for Hybrid Domains”. In: AAAI.

⊕ Oztok, Umut and Adnan Darwiche (2018). “An exhaustive DPLL algorithm for model counting”. In: Journal of Artificial Intelligence Research 62, pp. 1–32.

⊕ Shen, Yujia, Arthur Choi, and Adnan Darwiche (2018). “Conditional PSDDs: Modeling and learning with modular knowledge”. In:
Thirty-Second AAAI Conference on Artificial Intelligence.

⊕ Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). “Symbolic Exact Inference for Discrete Probabilistic Programs”. In: arXiv preprint arXiv:1904.02079.

⊕ Khosravi, Pasha, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck (2019a). “On Tractable Computation of Expected Predictions”. In:
Advances in Neural Information Processing Systems, pp. 11167–11178.

⊕ Khosravi, Pasha, Yitao Liang, YooJung Choi, and Guy Van den Broeck (2019b). “What to Expect of Classifiers? Reasoning about Logistic Regression with Missing
Features”. In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (IJCAI).

References XI
⊕ Kossen, Jannik, Karl Stelzner, Marcel Hussing, Claas Voelcker, and Kristian Kersting (2019). “Structured Object-Aware Physics Prediction for Video Modeling and
Planning”. In: arXiv preprint arXiv:1910.02425.

⊕ Molina, Alejandro, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, and Kristian Kersting (2019). “SPFlow: An easy and
extensible library for deep probabilistic learning using sum-product networks”. In: arXiv preprint arXiv:1901.03704.

⊕ Peharz, Robert, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani (2019). “Random sum-product
networks: A simple but effective approach to probabilistic deep learning”. In: Proceedings of UAI.

⊕ Shao, Xiaoting, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and Kristian Kersting (2019). “Conditional Sum-Product Networks:
Imposing Structure on Deep Probabilistic Architectures”. In: arXiv preprint arXiv:1905.08550.

⊕ Shih, Andy, Guy Van den Broeck, Paul Beame, and Antoine Amarilli (2019). “Smoothing Structured Decomposable Circuits”. In: arXiv preprint arXiv:1906.00311.

⊕ Stelzner, Karl, Robert Peharz, and Kristian Kersting (2019). “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”. In:
Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning
Research. Long Beach, California, USA: PMLR, pp. 5966–5975. url: http://proceedings.mlr.press/v97/stelzner19a.html.

⊕ Correia, Alvaro, Robert Peharz, and Cassio P de Campos (2020). “Joints in random forests”. In: Advances in neural information processing systems 33, pp. 11404–11415.

⊕ Giunchiglia, Eleonora and Thomas Lukasiewicz (2020). “Coherent hierarchical multi-label classification networks”. In: NeurIPS 33, pp. 9662–9673.

⊕ Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020).
“Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”. In: ICML.

http://proceedings.mlr.press/v97/stelzner19a.html

References XII

⊕ Vlastelica, Marin, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek (2020). “Differentiation of blackbox combinatorial solvers”. In: ICLR.

⊕ Colnet, Alexis de and Stefan Mengel (2021). “A Compilation of Succinctness Results for Arithmetic Circuits”. In:
Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. Vol. 18. 1, pp. 205–215.

⊕ Vergari, Antonio, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck (2021). “A Compositional Atlas of Tractable Circuit Operations: From Simple
Transformations to Complex Information-Theoretic Queries”. In: NeurIPS. arXiv: 2102.06137 [stat.ML].

⊕ Ahmed, Kareem, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari (2022a). “Semantic Probabilistic Layers for Neuro-Symbolic Learning”. In:
arXiv preprint arXiv:2206.00426.

⊕ Ahmed, Kareem, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck (2022b). “Neuro-symbolic entropy regularization”. In: Uncertainty in Artificial Intelligence. PMLR,
pp. 43–53.

⊕ Dang, Meihua, Anji Liu, and Guy Van den Broeck (2022). “Sparse Probabilistic Circuits via Pruning and Growing”. In: NeurIPS. url:
http://starai.cs.ucla.edu/papers/DangNeurIPS22.pdf.

⊕ Liu, Anji, Honghua Zhang, and Guy Van den Broeck (2022). “Scaling Up Probabilistic Circuits by Latent Variable Distillation”. In: arXiv preprint.

https://arxiv.org/abs/2102.06137
http://starai.cs.ucla.edu/papers/DangNeurIPS22.pdf

	Why tractable inference?
	Probabilistic Circuits
	Logical Circuits
	Advanced Reasoning with Probabilistic Circuits
	Building Probabilistic Circuits
	Origins: Compilation
	Parameter Learning
	Structure Learning
	How to construct and learn RGs?
	References

