Logic \& Probabilistic Circuits

Representation

Reasoning

Theory

Guy Van den Broeck

University of California, Los Angeles guyvdb@cs.ucla.edu

YooJung Choi

Arizona State University
yj.choi@asu.edu

Objective

- Circuits are an assembly language for tractable logic and probabilistic reasoning

Even though logic is central to this Simons program,
we will couch this tutorial in probability...

- Most AI and DB interest in tractable logic circuits for the past 15 years has been as a means of doing probabilistic inference
Much richer query languages <3
\square We live in the age of probabilistic generative A/... :-)
We will spare you most of the machine learning details, and instead focus on representations, query languages, reasoning algorithms, and connections to theory.

Objective

\square Circuits are an assembly language for tractable logic and probabilistic reasoning
\square Even though logic is central to this Simons program, we will couch this tutorial in probability...
\square Most AI and DB interest in tractable logic circuits for the past 15 years has been as a means of doing probabilistic inference
Much richer query languages <3
\square We live in the age of probabilistic generative AI... :-)
We will spare you most of the machine learning details, and instead focus on representations, query languages, reasoning algorithms, and connections to theory.

Objective

\square Circuits are an assembly language for tractable logic and probabilistic reasoning

- Even though logic is central to this Simons program, we will couch this tutorial in probability...
- Most AI and DB interest in tractable logic circuits for the past 15 years has been as a means of doing probabilistic inference

:Much richer query languages <3
We live in the age of probabilistic generative AI... :-)
We will spare you most of the machine learning details, and instead focus on representations, query languages, reasoning algorithms, and connections to theory.

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I comnile my favorite model into a circuit? (Yoolung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (Yoolung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn nrobabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive auery we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guv)
8. How to learn probabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn nrobabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions to be answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Acknowledgements

This tutorial is based on our (joint) tutorials and slides from
Antonio Vergari
Robert Peharz
\square Nicola Di Mauro
■ Honghua Zhang

- Benjie Wang

The Alphabet Soup of probabilistic models

Intractable and tractable models

tractability is a spectrum

Expressive models without compromises

a unifying framework for tractable models

Why tractable inference?

or the inherent trade-off of tractability vs. expressiveness

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd.?

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd.?

$$
\begin{aligned}
& \mathbf{X}=\left\{\text { Day }, \text { Time, } \text { Jam }_{\text {Str } 1}, \text { Jam }_{\text {Str2 } 2}, \ldots, \text { Jam }_{\text {StrN }}\right\} \\
& \mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\text { Day }=\text { Mon }, \text { Jam }_{\mathrm{W}_{\text {wood }}}=1\right)
\end{aligned}
$$

© fineartamerica.com

Why probabilistic inference?

q_{1} : What is the probability that today is a Monday and there is a traffic jam on Westwood Blvd.?
$\mathbf{X}=\left\{\right.$ Day, Time, Jam $_{\text {Str1 }}$, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $=$ Mon, $\left.\operatorname{Jam}_{\mathrm{W}_{\mathrm{wood}}}=1\right)$

© fineartamerica.com

Why probabilistic inference?

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
$\mathbf{X}=\left\{\right.$ Day, Time, Jamstr1, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{2}(\mathbf{m})=\operatorname{argmax}_{\mathrm{d}} p_{\mathrm{m}}\left(\right.$ Day $\left.=\mathrm{d} \wedge \bigvee_{i \in \text { route }} \operatorname{Jam}_{\text {Stri }}\right)$

© fineartamerica.com

Why probabilistic inference?

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
$\mathbf{X}=\left\{\right.$ Day, Time, Jamstr1, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{2}(\mathbf{m})=\operatorname{argmax}_{\mathrm{d}} p_{\mathrm{m}}\left(\right.$ Day $\left.=\mathrm{d} \wedge \bigvee_{i \in \text { route }} \operatorname{Jam}_{\text {Stri }}\right)$

© fineartamerica.com

$$
\Rightarrow \text { marginals + MAP + logical events }
$$

Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathrm{q} \in \mathcal{Q}$ and model $\mathrm{m} \in \mathcal{M}$ exactly computing $q(\mathbf{m})$ runs in time $O($ poly $(|\mathbf{m}|))$.

Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $\mathrm{q} \in \mathcal{Q}$ and model $\mathrm{m} \in \mathcal{M}$ exactly computing $q(\mathbf{m})$ runs in time $O($ poly $(|\mathbf{m}|))$.

often poly will in fact be linear!

tractable bands

Complete evidence (EVI)

q_{3} : What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Westwood Blvd.?

© fineartamerica.com

Complete evidence (EVI)

q_{3} : What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Westwood Blvd.?
$\mathbf{X}=\left\{\right.$ Day, Time, Jam $_{\text {Wwood }}$, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{3}(\mathbf{m})=p_{\mathrm{m}}(\mathbf{X}=\{$ Mon, $12.00,1,0, \ldots, 0\})$

© fineartamerica.com

Complete evidence (EVI)

q_{3} : What is the probability that today is a Monday at 12.00 and there is a traffic jam only on Westwood Blvd.?
$\mathbf{X}=\left\{\right.$ Day, Time, Jam $_{\text {Wwood }}$, Jam $_{\text {Str2 }}, \ldots$, Jam $\left._{\text {StrN }}\right\}$
$\mathrm{q}_{3}(\mathbf{m})=p_{\mathbf{m}}(\mathbf{X}=\{$ Mon, $12.00,1,0, \ldots, 0\})$
...fundamental in maximum likelihood learning

© fineartamerica.com

$$
\theta_{\mathrm{m}}^{\mathrm{MLE}}=\operatorname{argmax}_{\theta} \prod_{\mathbf{x} \in \mathcal{D}} p_{\mathrm{m}}(\mathbf{x} ; \theta)
$$

Generative Adversarial Networks

$\min _{\theta} \max _{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\text {data }}(\mathbf{x})}\left[\log D_{\phi}(\mathbf{x})\right]+\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}\left[\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right)\right]$

$\min _{\theta} \max _{\phi} \mathbb{E}_{\mathbf{x} \sim p_{\text {data }}(\mathbf{x})}\left[\log D_{\phi}(\mathbf{x})\right]+\mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})}\left[\log \left(1-D_{\phi}\left(G_{\theta}(\mathbf{z})\right)\right)\right]$

- no explicit likelihood! \Rightarrow adversarial training instead of MLE
\Rightarrow no tractable EVI
- good sample quality
\Rightarrow but lots of samples needed for MC
- unstable training
\Rightarrow mode collapse

Variational Autoencoders

$$
p_{\theta}(\mathbf{x})=\int p_{\theta}(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z}) d \mathbf{z}
$$

\square an explicit likelihood model!

[^0]

$\log p_{\theta}(\mathbf{x}) \geq \mathbb{E}_{\mathbf{z} \sim q_{\phi}(\mathbf{z} \mid \mathbf{x})}\left[\log p_{\theta}(\mathbf{x} \mid \mathbf{z})\right]-\mathbb{K} \mathbb{L}\left(q_{\phi}(\mathbf{z} \mid \mathbf{x}) \| p(\mathbf{z})\right)$
\square an explicit likelihood model!

- ... but computing $\log p_{\theta}(\mathbf{x})$ is intractable
\Rightarrow an infinite and uncountable mixture \Rightarrow no tractable EVIwe need to optimize the ELBO...

\Rightarrow which is "tricky"

Normalizing flows

$$
p_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{Z}}\left(f^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\delta f^{-1}}{\delta \mathbf{x}}\right)\right|
$$

\square an explicit likelihood!
\Rightarrow tractable EVI queries!

- many neural variants
\square RealNVP (Dinh et al. 2016),
MAF (Papamakarios et al. 201.

Normalizing flows

$$
p_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{Z}}\left(f^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\delta f^{-1}}{\delta \mathbf{x}}\right)\right|
$$

\square an explicit likelihood!
\Rightarrow tractable EVI queries!
\square many neural variants
RealNVP (Dinh et al. 2016),
MAF (Papamakarios et al. 2017)
MADE (Germain et al. 2015),
PixelRNN (Oord et al. 2016)

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 1200 and there is a traffic jam on Westwood Blvd.?

© fineartamerica.com

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 2 and there is a traffic jam on Westwood Blvd.?
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $=$ Mon, $\left.\operatorname{Jam}_{\mathrm{W}_{\text {wood }}}=1\right)$

© fineartamerica.com

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 2 and there is a traffic jam on Westwood Blvd.?
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $=$ Mon, $\left.\operatorname{Jam}_{\mathrm{W}_{\text {wood }}}=1\right)$

General: $p_{\mathrm{m}}(\mathbf{e})=\int p_{\mathrm{m}}(\mathbf{e}, \mathbf{H}) d \mathbf{H}$

© fineartamerica.com where $\mathbf{E} \subset \mathbf{X}, \quad \mathbf{H}=\mathbf{X} \backslash \mathbf{E}$

Marginal queries (MAR)

q_{1} : What is the probability that today is a Monday 2 and there is a traffic jam on Westwood Blvd.?
$\mathrm{q}_{1}(\mathbf{m})=p_{\mathrm{m}}\left(\right.$ Day $=$ Mon, $\left.\operatorname{Jam}_{\mathrm{W}_{\text {wood }}}=1\right)$
tractable MAR \Rightarrow tractable conditional queries (CON):

© fineartamerica.com

$$
p_{\mathrm{m}}(\mathbf{q} \mid \mathbf{e})=\frac{p_{\mathrm{m}}(\mathbf{q}, \mathbf{e})}{p_{\mathrm{m}}(\mathbf{e})}
$$

Tractable MAR: scene understanding

Fast and exact marginalization over unseen or "do not care" parts in the scene
Stelzner et al., "Faster Attend-Infer-Repeat with Tractable Probabilistic Models", 2019
Kossen et al., "Structured Object-Aware Physics Prediction for Video Modeling and Planning", 2019

Normalizing flows

$$
p_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{Z}}\left(f^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\delta f^{-1}}{\delta \mathbf{x}}\right)\right|
$$

\square an explicit likelihood!
\Rightarrow tractable EVI queries!

$$
p_{\mathbf{X}}(\mathbf{x})=p_{\mathbf{Z}}\left(f^{-1}(\mathbf{x})\right)\left|\operatorname{det}\left(\frac{\delta f^{-1}}{\delta \mathbf{x}}\right)\right|
$$

- an explicit likelihood!
\Rightarrow tractable EVI queries!

MAR is generally intractable:

 we cannot easily integrate over high-dimensional f

Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

Inference: \quad conditioning (Darwiche 2001; Sang et al. 2005)

- elimination (Zhang et al. 1994; Dechter 1998)
\square message passing (Yedidia et al. 2001; Dechter
et al. 2002; Choi et al. 2010; Sontag et al. 2011)

Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is \#P-hard $\Rightarrow \quad$ (Cooper 1990; Roth 1996)

Approximation complexity: Computing MAR and CON approximately within a relative error of $2^{n^{1-\epsilon}}$ for any fixed ϵ is NP-hard

Treewidth!

Treewidth:

Informally, how tree-like is the graphical model m?

Fixed-parameter tractable: MAR and CON on a graphical model m with treewidth w take time $O\left(|\mathbf{X}| \cdot 2^{w}\right)$ (Dechter 1998; Kolle et al. 2009). $\Rightarrow \quad$ what about bounding the treewidth by design?

Low-treewidth PGMs

Trees
(Meilă et al. 2000)

Polytrees
(Dasgupta 1999)

Thin Junction trees
(Bach et al. 2001)

If treewidth is bounded (e.g. $\cong 20$), exact MAR and CON inference is possible in practice

Tree distributions

A tree-structured BN (Meilă et al. 2000) where each $X_{i} \in \mathbf{X}$ has at most one parent $\mathrm{Pa}_{X_{i}}$.

$$
p(\mathbf{X})=\prod_{i=1}^{n} p\left(x_{i} \mid \mathrm{Pa}_{x_{i}}\right)
$$

Exact querying: EVI, MAR, CON tasks linear for trees: $O(|\mathbf{X}|)$
Exact learning from d examples takes $O\left(|\mathbf{X}|^{2} \cdot d\right)$ with the classical Chow-Liu algorithm ${ }^{1}$

What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

Bounded-treewidth PGMs lose the ability to represent all possible distributions ...

[^1]
Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

$$
p(X)=w_{1} \cdot p_{1}(X)+w_{2} \cdot p_{2}(X)
$$

EVI, MAR, CON queries scale linearly in k

Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

$$
\begin{aligned}
p(X)= & p(Z=1) \cdot p_{1}(X \mid Z=1) \\
& +p(Z=\mathbf{2}) \cdot p_{2}(X \mid Z=\mathbf{2})
\end{aligned}
$$

Mixtures are marginalizing a categorical latent variable Z with k values
\Rightarrow increased expressiveness

Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions
\Rightarrow mixture of Gaussians can approximate any probability density!

[^2]
Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions
\Rightarrow mixture of Gaussians can approximate any probability density!

Expressive efficiency (aka Succinctness):

Ability to represent rich and effective classes of functions compactly \Rightarrow but how many components does a Gaussian mixture need?

Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016

How expressive efficient are mixtures?

How expressive efficient are mixtures?

\Rightarrow solution: deep mixtures as in deep generative models

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?

© fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?

$$
\mathrm{q}_{5}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathbf{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Day }=\mathrm{M}, \text { Time }=9\right)
$$

© fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?
$\mathrm{q}_{5}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid\right.$ Day $=\mathrm{M}$, Time $\left.=9\right)$

General: $\operatorname{argmax}_{\mathbf{q}} p_{\mathrm{m}}(\mathbf{q} \mid \mathbf{e})$

$$
\text { where } \mathbf{Q} \cup \mathbf{E}=\mathbf{X}
$$

(c) fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)
q_{5} : Which combination of roads is most likely to be jammed on Monday at 9am?
...intractable for latent variable models!

$$
\begin{aligned}
\max _{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q} \mid \mathbf{e}) & =\max _{\mathbf{q}} \sum_{\mathbf{z}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{z} \mid \mathbf{e}) \\
& \neq \sum_{\mathbf{z}} \max _{\mathbf{q}} p_{\mathbf{m}}(\mathbf{q}, \mathbf{z} \mid \mathbf{e})
\end{aligned}
$$

© fineartamerica.com

MAP inference: image inpainting

Predicting arbitrary patches

given a single model
without the need of retraining.

[^3]

Marginal MAP (MMAP)

aka Bayesian Network MAP
q_{6} : Which combination of roads is most likely to be jammed at 9am?

© fineartamerica.com

Marginal MAP (MMAP)

aka Bayesian Network MAP
q_{6} : Which combination of roads is most likely to be jammed at 9am?

$$
\mathrm{q}_{6}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Time }=9\right)
$$

© fineartamerica.com

Marginal MAP (MMAP)

aka Bayesian Network MAP
q_{6} : Which combination of roads is most likely to be jammed at 9am?

$$
\mathrm{q}_{6}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Time }=9\right)
$$

General: $\operatorname{argmax}_{\mathbf{q}} p_{\mathrm{m}}(\mathbf{q} \mid \mathbf{e})$

$$
=\operatorname{argmax}_{\mathbf{q}} \sum_{\mathbf{h}} p_{\mathrm{m}}(\mathbf{q}, \mathbf{h} \mid \mathbf{e})
$$

(C) fineartamerica.com

$$
\text { where } \mathbf{Q} \cup \mathbf{H} \cup \mathbf{E}=\mathbf{X}
$$

Marginal MAP (MMAP)

aka Bayesian Network MAP
q_{6} : Which combination of roads is most likely to be jammed at 9am?

$$
\mathrm{q}_{6}(\mathbf{m})=\operatorname{argmax}_{\mathbf{j}} p_{\mathrm{m}}\left(\mathbf{j}_{1}, \mathbf{j}_{2}, \ldots \mid \text { Time }=9\right)
$$

$\Rightarrow N P^{P P}$-complete (Park et al. 2006)
\Rightarrow NP-hard for trees (de Campos 2011)
\Rightarrow NP-hard even for Naive Bayes (ibid.)

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?

$$
\mathrm{q}_{2}(\mathbf{m})=\operatorname{argmax}_{\mathrm{d}} p_{\mathrm{m}}\left(\text { Day }=\mathrm{d} \wedge \bigvee_{i \in \text { route }} \operatorname{Jam}_{\mathrm{Str} i}\right)
$$

$$
\Rightarrow \text { marginals + MAP + logical events }
$$

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
q_{7} : What is the probability of seeing more traffic jams in Westwood than Hollywood?

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
q_{7} : What is the probability of seeing more traffic jams in Westwood than Hollywood?

$$
\Rightarrow \text { counts + group comparison }
$$

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
q_{7} : What is the probability of seeing more traffic jams in Westwood than Hollywood?
q_{8} : Is traffic more uncertain on weekdays?

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
q_{7} : What is the probability of seeing more traffic jams in Westwood than Hollywood?
q_{8} : Is traffic more uncertain on weekdays?

\Rightarrow information-theoretic queries

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
q_{7} : What is the probability of seeing more traffic jams in Westwood than Hollywood?
q_{8} : Is traffic more uncertain on weekdays?
q_{9} : What is the causal effect of doing road works?

© fineartamerica.com

Advanced queries

q_{2} : Which day is most likely to have a traffic jam on my route to campus?
q_{7} : What is the probability of seeing more traffic jams in Westwood than Hollywood?
q_{8} : Is traffic more uncertain on weekdays?
q_{9} : What is the causal effect of doing road works?
\Rightarrow causal backdoor estimation

© fineartamerica.com

Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

$$
p(\mathbf{x})=\prod_{i=1}^{n} p\left(x_{i}\right)
$$

x_{5}

Complete evidence, marginals and MAP, MMAP inference is linear!
\Rightarrow but definitely not expressive...

larger tractable bands

larger tractable bands

Expressive models are not very tractable...

and tractable ones are not very expressive...

probabilistic circuits are at the "sweet spot"

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (Yoolung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (Yoolung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Probabilistic Circuits

Goal

Given a reasoning task can we design a class of expressive models that is tractable for it?

Goal

Given a reasoning task can we design
a class of deep computational graphs
that is tractable for it?
more tractable

more tractable

Expressive models are not very tractable...

more tractable

Tractable models are not that expressive...

more tractable

Circuits can be both expressive and tractable!

Start simple...

Input distributions

as computational nodes

Base case: a single node encoding a distribution
\Rightarrow e.g., Gaussian PDF continuous random variable

Input distributions

as computational nodes

Base case: a single node encoding a distribution
\Rightarrow e.g., indicators for X or $\neg X$ for Boolean random variable

Input distributions

as computational nodes

Simple distributions are tractable "black boxes" for:
\square EVI: output $p(\mathbf{x})$ (density or mass)
MAR: output 1 (normalized) or Z (unnormalized)
MAP: output the mode

Mixture models

as computational graphs

$$
p(X)=w_{1} \cdot p_{1}\left(X_{1}\right)+w_{2} \cdot p_{2}\left(X_{1}\right)
$$

\Rightarrow translating inference to data structures...

Mixture models

as computational graphs

$$
p\left(X_{1}\right)=0.2 \cdot p_{1}\left(X_{1}\right)+0.8 \cdot p_{2}\left(X_{1}\right)
$$

\Rightarrow
...e.g., as a weighted sum unit over Gaussian input distributions

Mixture models

as computational graphs

$$
\begin{aligned}
p(X=5) & =0.2 \cdot p_{1}\left(X_{1}=5\right) \\
& +0.8 \cdot p_{2}\left(X_{1}=5\right)
\end{aligned}
$$

\Rightarrow inference $=$ feedforward evaluation

Mixture models

as computational graphs

A simplified notation:
\Rightarrow scopes attached to inputs \Rightarrow edge directions omitted

Factorizations

as computational graphs

$$
p\left(X_{1}, X_{2}, X_{3}\right)=p\left(X_{1}\right) \cdot p\left(X_{2}\right) \cdot p\left(X_{3}\right)
$$

\Rightarrow e.g. modeling a multivariate Gaussian with diagonal covariance matrix...

Factorizations

as computational graphs

$$
p\left(X_{1}, X_{2}, X_{3}\right)=p\left(X_{1}\right) \cdot p\left(X_{2}\right) \cdot p\left(X_{3}\right)
$$

\Rightarrow...with a product node over some univariate Gaussian distribution

Factorizations

as computational graphs

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{3}\right)
$$

\Rightarrow feedforward evaluation

Factorizations

as computational graphs

$$
p\left(x_{1}, x_{2}, x_{3}\right)=p\left(x_{1}\right) \cdot p\left(x_{2}\right) \cdot p\left(x_{3}\right)
$$

\Rightarrow feedforward evaluation

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

A grammar for tractable models

Recursive semantics of probabilistic circuits

Building PCs in Python with SPFlow

import spn.structure.leaves.parametric.Parametric as param from param import Categorical, Gaussian

$$
\begin{aligned}
& \mathrm{PC}=0.4 * \text { (Categorical }(\mathrm{p}=[0.2,0.8] \text {, scope=0) * } \\
& \text { (0.3 * (Gaussian (mean }=1.0 \text {, stdev=1.0, scope=1) * } \\
& \text { Categorical (p=[0.4, 0.6], scope=2)) } \\
& +0.7 \text { * (Gaussian (mean }=-1.0 \text {, stdev }=1.0 \text {, scope=1) * } \\
& \text { Categorical }(\mathrm{p}=[0.6,0.4], \mathrm{scope}=2))) \text {) \} } \\
{+0.6 \text { * (Categorical (p=[0.2, 0.8], scope=0) * }} \\
{\text { Gaussian (mean }=0.0 \text {, stdev }=0.1 \text {, scope=1) * }} \\
{\text { Categorical (p=[0.4, 0.6], scope=2)) }}
\end{aligned}
$$

Molina et al., "SPFlow: An easy and extensible library for deep probabilistic learning using

EVI queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)
$$

EVI queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)
$$

EVI queries $=$ feedforward evaluation

$$
p\left(X_{1}=-1.85, X_{2}=0.5, X_{3}=-1.3, X_{4}=0.2\right)=0.75
$$

Just sum, products and distributions?

just arbitrarily compose them like a neural network!

Just sum, products and distributions?

Which structural constraints ensure tractability?

Decomposability

A product node is decomposable if its children depend on disjoint sets of variables \Rightarrow just like in factorization!

decomposable circuit

non-decomposable circuit

Smoothness

aka completeness
A sum node is smooth if its children depend of the same variable sets
\Rightarrow otherwise not accounting for some variables

smooth circuit

non-smooth circuit

Smoothness + decomposability $=$ tractable MAR

Computing arbitrary integrations (or summations)

$$
\Rightarrow \quad \text { linear in circuit size! }
$$

E.g., suppose we want to compute Z (the distribution's normalizing constant):

$$
\int \boldsymbol{p}(\mathbf{x}) d \mathbf{x}
$$

Smoothness + decomposability $=$ tractable MAR

$$
\text { If } p(\mathbf{x})=\sum_{i} w_{i} p_{i}(\mathbf{x}), \text { (smoothness): }
$$

$$
\int p(\mathbf{x}) d \mathbf{x}=\int \sum_{i} w_{i} p_{i}(\mathbf{x}) d \mathbf{x}=
$$

$$
=\sum_{i} w_{i} \int p_{i}(\mathbf{x}) d \mathbf{x}
$$

\Rightarrow integrals are "pushed down" to children

Smoothness + decomposability $=$ tractable MAR

$$
\text { If } p(\mathbf{x}, \mathbf{y}, \mathbf{z})=p(\mathbf{x}) p(\mathbf{y}) p(\mathbf{z}) \text {, (decomposability): }
$$

$$
\begin{aligned}
& \iiint p(\mathbf{x}, \mathbf{y}, \mathbf{z}) d \mathbf{x} d \mathbf{y} d \mathbf{z}= \\
= & \iiint p(\mathbf{x}) p(\mathbf{y}) p(\mathbf{z}) d \mathbf{x} d \mathbf{y} d \mathbf{z}= \\
= & \int p(\mathbf{x}) d \mathbf{x} \int p(\mathbf{y}) d \mathbf{y} \int p(\mathbf{z}) d \mathbf{z}
\end{aligned}
$$

\Rightarrow integrals decompose into easier ones

Smoothness + decomposability $=$ tractable MAR

Forward pass evaluation for MAR \Rightarrow linear in circuit size! E.g. to compute $p\left(x_{2}, x_{4}\right)$:

- leafs over X_{1} and X_{3} output $Z_{i}=\int p\left(x_{i}\right) d x_{i}$
leafs over X_{2} and X_{4} output EVI feedforward evaluation (bottom-up)

Smoothness + decomposability $=$ tractable MAR

Forward pass evaluation for MAR

\Rightarrow linear in circuit size!
E.g. to compute $p\left(x_{2}, x_{4}\right)$:

- leafs over X_{1} and X_{3} output $Z_{i}=\int p\left(x_{i}\right) d x_{i}$
\Rightarrow for normalized leaf distributions: 1.0
- leafs over X_{2} and X_{4} output EVI
- feedforward evaluation (bottom-up)

Smoothness + decomposability $=$ tractable MAR

Forward pass evaluation for MAR
\Rightarrow linear in circuit size!
E.g. to compute $p\left(x_{2}, x_{4}\right)$:

- leafs over X_{1} and X_{3} output $Z_{i}=\int p\left(x_{i}\right) d x_{i}$
\Rightarrow for normalized leaf distributions: 1.0
- leafs over X_{2} and X_{4} output EVI
\square feedforward evaluation (bottom-up)

Tractable MAR

Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", 2020

Smoothness + decomposability $=$ tractable CON

Analogously, for arbitrary conditional queries:

$$
p(\mathbf{q} \mid \mathbf{e})=\frac{p(\mathbf{q}, \mathbf{e})}{p(\mathbf{e})}
$$

1. evaluate $p(\mathbf{q}, \mathbf{e}) \Rightarrow$ one feedforward pass
2. evaluate $p(\mathbf{e}) \Rightarrow$ another feedforward pass \Rightarrow...still linear in circuit size!

Tractable CON

Original

Missing

Conditional sample

7	7	7	7	
7	7	7	7	
7	4	7	7	
7	7	7	7	
7	7	7	7	1

Generative models are still hard to control

more reasoning!

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the frisbee glided through the air, and the dog, with incredible agility, caught it mid-flight.

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the frisbee glided through the air, and the dog, with incredible agility, caught it mid-flight.
\bigcirc That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.

Here's the correct sentence: The dog caught the frisbee in mid-air, showing off its amazing catching skills.

Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the frisbee glided through the air, and the dog, with incredible agility, caught it mid-flight.

That's not correct. Generate a sentence using "frisbee", "caught" and "dog". The keywords should appear in the order as specified.

Here's the correct sentence: The dog caught the frisbee in mid-air, showing off its amazing catching skills.

A frisbee is caught by a dog.
A pair of frisbee players are caught in a dog fight.

What do we have?

Prefix: "The weather is"
Constraint α : text contains "winter"
Model only does $p($ next-token \mid prefix $)=$

cold	0.05
warm	0.10

What do we need?

Prefix: "The weather is"
Constraint α : text contains "winter"

Generate from $p($ next-token \mid prefix,$\alpha)=$| cold | 0.50 |
| :--- | :--- |
| warm | 0.01 |

$\propto \sum_{\text {text }} p($ next-token, text, prefix, $\alpha)$

Marginalization!

Computing $p\left(\alpha \mid x_{1: t+1}\right)$

For α in conjunctive normal form (CNF):

$$
\left(w_{1,1} \vee \ldots \vee w_{1, d 1}\right) \wedge \ldots \wedge\left(w_{m, 1} \vee \ldots \vee w_{m, d m}\right)
$$

where each w_{i} is a keyword (i.e. a string of tokens), representing the constraint that w_{ij} appears in the generated text.

Computing $p\left(\alpha \mid x_{1: t+1}\right)$

For $\boldsymbol{\alpha}$ in conjunctive normal form (CNF):

$$
\left(w_{1,1} \vee \ldots \vee w_{1, d 1}\right) \wedge \ldots \wedge\left(w_{m, 1} \vee \ldots \vee w_{m, d m}\right)
$$

where each $w_{i \mathrm{i}}$ is a keyword (i.e. a string of tokens), representing the constraint that $w_{i j}$ appears in the generated text.
e.g., $\alpha=($ "swims" \vee "like swimming") $\wedge($ "lake" \vee "pool")

Efficient algorithm:

For m clauses and sequence length n, time-complexity for generation is $O\left(2^{|m|} n\right)$ when p is a hidden Markov model (see general probabilistic circuit case later).

Trick: dynamic programming with clever preprocessing and local belief updates

CommonGen: a Challenging Benchmark

Given 3-5 concepts (keywords), our goal is to generate a sentence using all keywords, which can appear in any order and any form of inflections. e.g.,

Input: snow drive car

Reference 1: A car drives down a snow covered road.
Reference 2: Two cars drove through the snow.

$$
\left(w_{1,1} \vee \ldots \vee w_{1, \mathrm{~d} 1}\right) \wedge \ldots \wedge\left(w_{m, 1} \vee \ldots \vee w_{m, d m}\right)
$$

Each clause represents the inflections for one keyword.

GeLaTo Overview

Lexical Constraint α : sentence contains keyword "winter"

GeLaTo Overview

Lexical Constraint α : sentence contains keyword "winter"

Step 2: Control $p_{g p t}$ via $p_{h m m}$

Unsupervised

Language model is not
fine-tuned/prompted to satisfy constraints

By Bayes rule:

$$
p_{g p t}\left(x_{t+1} \mid x_{1: t}, \alpha\right) \propto p_{g p t}\left(\alpha \mid x_{1: t+1}\right) \cdot p_{g p t}\left(x_{t+1} \mid x_{1: t}\right)
$$

Assume $p_{h m m}\left(\alpha \mid x_{1: t+1}\right) \approx p_{g p t}\left(\alpha \mid x_{1: t+1}\right)$, we generate from:

$$
p\left(x_{t+1} \mid x_{1: t}, \alpha\right) \propto p_{h m m}\left(\alpha \mid x_{1: t+1}\right) \cdot p_{g p t}\left(x_{t+1} \mid x_{1: t}\right)
$$

Method	Generation Quality								Constraint Satisfaction			
	ROU	E-L									Succe	Rate
Unsupervised	dev	test										
InsNet (Lu et al., 2022a)	-	-	18.7	-	-	-	-	-	100.0	-	100.0	-
NeuroLogic (Lu et al., 2021)	-	41.9	-	24.7	-	14.4	-	27.5	-	96.7	-	-
A*esque (Lu et al., 2022b)	-	44.3	-	28.6	-	15.6	-	29.6	-	97.1	-	-
NADO (Meng et al., 2022)	-	-	26.2	-	-	-	-	-	96.1	-	-	-
GeLaTo	44.6	44.1	29.9	29.4	16.0	15.8	31.3	31.0	100.0	100.0	100.0	100.0

Step 2: Control $p_{g p t}$ via $p_{h m m}$

Supervised

Language model is fine-tuned to perform constrained generation (e.g. seq2seq)

Empirically $p_{H M M}\left(\alpha \mid x_{1: t+1}\right) \approx p_{g p t}\left(\alpha \mid x_{1: t+1}\right)$ does not hold well enough;
we view $p_{H M M}\left(x_{t+1} \mid x_{1: t}, \alpha\right)$ and $p_{g p t}\left(x_{t+1} \mid x_{1: t}\right)$ as classifiers trained for the same task with different biases; thus we generate from their weighted geometric mean:

$$
p\left(x_{t+1} \mid x_{1: t}, \alpha\right) \propto p_{h m m}\left(x_{t+1} \mid x_{1: t}, \alpha\right)^{w} \cdot p_{g p t}\left(x_{t+1} \mid x_{1: t}\right)^{1-w}
$$

Method	Generation Quality								Constraint Satisfaction			
	ROUGE-L		BLEU-4		CIDEr		SPICE		Coverage		Success Rate	
Supervised	dev	test										
NeuroLogic (Lu et al., 2021)	-	42.8	-	26.7	-	14.7	-	30.5	-	97.7	-	$93.9{ }^{\dagger}$
A*esque (Lu et al., 2022b)	-	43.6	-	28.2	-	15.2	-	30.8	-	97.8	-	97.9^{\dagger}
NADO (Meng et al., 2022)	$44.4{ }^{\dagger}$	-	30.8	-	$16.1{ }^{\dagger}$	-	32.0 ${ }^{\dagger}$	-	97.1	-	$88.8{ }^{\dagger}$	-
GeLaTo	46.0	45.6	34.1	32.9	16.7	16.8	31.3	31.9	100.0	100.0	100.0	100.0

Advantages of GeLaTo:

1. Constraint α is guaranteed to be satisfied: for any next-token x_{t+1} that would make α unsatisfiable, $p\left(x_{t+1} \mid x_{1: t^{\prime}} \alpha\right)=0$ for both settings.
2. Training $p_{\text {hmm }}$ does not depend on α, which is only imposed at inference (generation) time. Once $p_{\text {hmm }}$ is trained, we can impose whatever α.
3. We can impose additional tractable constraints:

- The keywords are generated following a particular order.
- (Some) keywords must appear at a particular position.
- (Some) keywords must not appear in the generated sentence.

Conclusion: you can control an intractable generative model using a tractable probabilistic circuit.

Smoothness + decomposalbility $=$ tractalble MAP

We can also decompose bottom-up a MAP query:

$$
\max _{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})
$$

Smoothness + decomposability = ewetulenna

We cannot decompose bottom-up a MAP query:

$$
\max _{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})
$$

since for a sum node we are marginalizing out a latent variable

$$
\max _{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e})=\max _{\mathbf{q}} \sum_{\mathbf{z}} p(\mathbf{q}, \mathbf{z}, \mathbf{e}) \neq \sum_{\mathbf{z}} \max _{\mathbf{q}} p(\mathbf{q}, \mathbf{z}, \mathbf{e})
$$

\Rightarrow MAP for latent variable models is intractable (Conaty et al. 2017)

Determinism

aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input \Rightarrow e.g. if their distributions have disjoint support

deterministic circuit

non-deterministic circuit

Determinism + decomposability $=$ tractable MAP

Computing maximization with arbitrary evidence \mathbf{e} \Rightarrow linear in circuit size!
E.g., suppose we want to compute:

$$
\max _{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})
$$

Determinism + decomposability $=$ tractable MAP

$$
\text { If } p(\mathbf{q}, \mathbf{e})=\sum_{i} w_{i} \boldsymbol{p}_{i}(\mathbf{q}, \mathbf{e})=\max _{i} w_{i} \boldsymbol{p}_{i}(\mathbf{q}, \mathbf{e})
$$ (deterministic sum node):

$$
\begin{aligned}
\max _{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) & =\max _{\mathbf{q}} \sum_{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) \\
& =\max _{\mathbf{q}} \max _{i} w_{i} p_{i}(\mathbf{q}, \mathbf{e}) \\
& =\max _{i} \max _{\mathbf{q}} w_{i} \boldsymbol{p}_{i}(\mathbf{q}, \mathbf{e})
\end{aligned}
$$

\Rightarrow one non-zero child term, thus sum is max

Determinism + decomposability $=$ tractable MAP

If $p(\mathbf{q}, \mathbf{e})=p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right)=p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}\right) p\left(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right)$ (decomposable product node):

$$
\begin{aligned}
& \max _{\mathbf{q}} p(\mathbf{q} \mid \mathbf{e})=\max _{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) \\
& \quad=\max _{\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right) \\
& \quad=\max _{\mathbf{q}_{\mathbf{x}}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}\right) \cdot \max _{\mathbf{q}_{\mathbf{y}}} p\left(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right) \\
& \quad \Rightarrow \text { solving optimization independently }
\end{aligned}
$$

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down \Rightarrow still linear in circuit size!

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down \Rightarrow still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute Mapstates for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down $\quad \Rightarrow$ still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MAP states for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down \Rightarrow still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MAP states for X_{1} and X_{3} at leaves

Determinism + decomposability $=$ tractable MAP

Evaluating the circuit twice: bottom-up and top-down $\quad \Rightarrow$ still linear in circuit size!
E.g., for $\operatorname{argmax}_{x_{1}, x_{3}} p\left(x_{1}, x_{3} \mid x_{2}, x_{4}\right)$:

1. turn sum into max nodes and distributions into max distributions
2. evaluate $p\left(x_{2}, x_{4}\right)$ bottom-up
3. retrieve max activations top-down
4. compute MAP states for X_{1} and X_{3} at leaves

MAP inference: image segmentation

Input Image

Multiscale sum-product

Semantic segmentation is MAP over joint pixel and label space
Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.

[^4]
How expressive?

Dataset	Sparse PC (ours)	HCLT	RatSPN	IDF	BitSwap	BB-ANS	McBits
MNIST	$\mathbf{1 . 1 4}$	1.20	1.67	1.90	1.27	1.39	1.98
EMNIST(MNIST)	$\mathbf{1 . 5 2}$	1.77	2.56	2.07	1.88	2.04	2.19
EMNIST(Letters)	$\mathbf{1 . 5 8}$	1.80	2.73	1.95	1.84	2.26	3.12
EMNIST(Balanced)	$\mathbf{1 . 6 0}$	1.82	2.78	2.15	1.96	2.23	2.88
EMNIST(ByClass)	$\mathbf{1 . 5 4}$	1.85	2.72	1.98	1.87	2.23	3.14
FashionMNIST	$\mathbf{3 . 2 7}$	3.34	4.29	3.47	3.28	3.66	3.72

competitive with Flows and VAEs!

How scalable?

Dataset	TPMs												DGMs		
	LVD (ours)	HCLT	EiNet	RAT-SPN		Glow	RealNVP	BIVA							
ImageNet32	$\mathbf{4 . 3 9}_{ \pm 0.01}$	4.82	5.63	6.90		4.09	4.28	3.96							
ImageNet64	$\mathbf{4 . 1 2}_{ \pm 0.00}$	4.67	5.69	6.82		3.81	3.98	-							
CIFAR	$\mathbf{4 . 3 8}_{ \pm 0.02}$	4.61	5.81	6.95		3.35	3.49	3.08							

up to billions of parameters

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (Yoolung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Logical Circuits

Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable functions in the probability commutative semiring:

$$
(\mathbb{R},+, \times, 0,1)
$$

analogously efficient computations can be done in other semi-rings:
$\left(\mathbb{S}, \oplus, \otimes, 0_{\oplus}, 1_{\otimes}\right)$
\Rightarrow Algebraic model counting (Kimmig et al. 2017), Semi-ring programming (Belle et al. 2016)
Historically, very well studied for boolean functions:

$$
(\mathbb{B}=\{0,1\}, \vee, \wedge, 0,1) \quad \Rightarrow \text { logical circuits! }
$$

Logical circuits

s/d-D/NNFs
(Darwiche et al. 2002a)

O/BDDs
(Bryant 1986)

SDDs
(Darwiche 2011a)

Logical circuits are compact representations for boolean functions...

Logical circuits

structural properties
...and like probabilitistic circuits, one can define structural properties: (structured) decomposability, smoothness, determinism allowing for tractable computations

Logica/ circuits

a knowledge compilation map
...inducing a hierarchy of tractable logical circuit families

Knowledge Compilation

encoding

NNF Circuits

$$
\begin{aligned}
& P \vee L \\
& A \Rightarrow P \\
& K \Rightarrow(P \vee L) \\
& \hline
\end{aligned}
$$

Decomposability (DNNF)

Darwiche, JACM 2001
SAT in linear time

Determinism (d-DNNF)

Decomposability + determinism $=$ tractable (W)MC

Model counting problem: given a Boolean formula Δ, compute the number of satisfying assignments.

Weighted model counting (WMC):

$$
\operatorname{WMC}(\Delta, w)=\sum_{\mathbf{x} \models \Delta} \prod_{l \in \mathbf{x}} w(l)
$$

\Rightarrow linear in circuit size!

Decomposability + determinism $=$ tractable (W)MC

To compute $\mathrm{WMC}(\Delta, w)$:

- Turn OR gates to sum nodes and AND gates to product nodes
- Renlace each literal l with its weight $\omega(l)$
- bottom-up evaluation

Decomposability + determinism $=$ tractable $(W) M C$

To compute $\mathrm{WMC}(\Delta, w)$:

- Turn OR gates to sum nodes and AND gates to product nodes
- Replace each literal l with its weight $w(l)$
- bottom-up evaluation

Probabilistic inference by WMC

connection to probabilistic circuits through WMC

1. Encode probabilistic model as WMC formula ($\Delta, w)$
2. Compile Δ into a logical circuit (e.g. d-DNNF, OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Answer complex queries tractably by enforcing more structural properties!

Probabilistic inference by WMC

connection to probabilistic circuits through WMC

Resulting compiled WMC circuit equivalent to probabilistic circuit
\Rightarrow parameter variables \rightarrow edge parameters

Compiled circuit of WMC encoding

Equivalent probabilistic circuit

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive auery we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

From tree BN to circuits

via compilation

From tree BN to circuits

via compilation
Bottom-up compilation: starting from leaves...

From tree BN to circuits

via compilation
...compile a leaf CPT

From tree BN to circuits

via compilation
...compile a leaf CPT

From tree BN to circuits

via compilation

...compile a leaf CPT...for all leaves...

From tree BN to circuits

via compilation

...and recurse over parents...

From tree BN to circuits

via compilation

...while reusing previously compiled nodes!...

From tree BN to circuits

via compilation

Hidden Markov Models

as computational graphs

Compilation: probabilistic programming

```
```

x = flip((}\mp@subsup{|}{1}{\prime}\mathrm{);

```
```

x = flip((}\mp@subsup{|}{1}{\prime}\mathrm{);
if(x) {
if(x) {
y = flip((
y = flip((
} else {
} else {
y = x
y = x
}

```
```

 }
    ```
```


Chavira et al., "Compiling relational Bayesian networks for exact inference", 2006 Holtzen et al., "Symbolic Exact Inference for Discrete Probabilistic Programs", 2019 De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery."; "A top down interpreter for LPAD and CP-logic"; "Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas"; "Anytime Inference in Probabilistic Logic Programs with Tp-compilation", 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., "Using OBDDs for efficient query evaluation on probabilistic databases"; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., "Exploiting Local and Repeated Structure in Dynamic Bayesian Networks", 2016

Decision Diagrams

\square
FBDDs (Free binary
decision diagrams;
read-once)
OBDDs (Ordered BDDs)
SDDs (Sentential decision diagrams)

$\Rightarrow B D D$ as circuit

Structured Decomposability

Pipatsrisawat \& Darwiche, AAAI 2008

Structured Decomposability

Pipatsrisawat \& Darwiche, AAAI 2008

Structured Decomposability

Pipatsrisawat \& Darwiche, AAAI 2008

Partitioned Determinism (SDDs)

Darwiche, IJCAI 2011

Partitioned Determinism (SDDs)

Darwiche, IJCAI 2011

Decision Diagrams

\square
FBDDs (Free binary decision diagrams; read-once)
\square OBDDs (Ordered BDDs)

- SDDs (Sentential decision diagrams)

$$
\Rightarrow \quad S D D \& O B D D \text { for }
$$

$$
(A \wedge B) \vee(C \wedge D)
$$

(a) vtree

(b) SDD

(c) OBDD

Probability of logical events

© fineartamerica.com

Probability of logical events

q_{8} : What is the probability of having a traffic jam on my route to campus?

$$
\mathrm{q}_{8}(\mathbf{m})=p_{\mathbf{m}}\left(\bigvee_{i \in \text { route }} \operatorname{Jam}_{\operatorname{Str} i}\right)
$$

$$
\Rightarrow \text { marginals + logical events }
$$

© fineartamerica.com

Smoothness + structured decomp. = tractable PR

Computing $\boldsymbol{p}(\alpha)$: the probability of arbitrary logical formula

Multilinear in circuit sizes if the logical circuit:

- is smooth, structured decomposable, deterministic
\square shares the same vtree

Smoothness + structured decomp. = tractable PR

If $p(\mathbf{x})=\sum_{i} w_{i} p_{i}(\mathbf{x}), \alpha=\bigvee_{j} \alpha_{j}$, (smooth p)
(smooth + deterministic α):

$$
p(\alpha)=\sum_{i} w_{i} p_{i}\left(\bigvee_{j} \alpha_{j}\right)=\sum_{i} w_{i} \sum_{j} p_{i}\left(\alpha_{j}\right)
$$

\Rightarrow probabilities are "pushed down" to children

Smoothness + structured decomp. $=$ tractable PR

If $p(\mathbf{x}, \mathbf{y})=p(\mathbf{x}) p(\mathbf{y}), \alpha=\beta \wedge \gamma$,
(structured decomposability):

$$
p(\alpha)=p(\beta \wedge \gamma) \cdot p(\beta \wedge \gamma)=p(\beta) \cdot p(\gamma)
$$

\Rightarrow probabilities decompose into simpler ones

Smoothness + structured decomp. = tractable PR

To compute $p(\alpha)$:
compute the probability for each pair of probabilistic and logical circuit nodes for the same vtree node
$\Rightarrow \quad$ cache the values!

- feedforward evaluation (bottom-up)

Smoothness + structured decomp. = tractable PR

To compute $p(\alpha)$:
compute the probability for each pair of probabilistic and logical circuit nodes for the same vtree node
\Rightarrow cache the values!
feedforward evaluation (bottom-up)

structured decomposability $=$ tractable...

Symmetric and group queries (exactly-k, odd-number, etc.) (Bekker et al. 2015)
For the "right" vtree

- Marginal MAP (Oztok et al. 2016)Probability of logical circuit event in probabilistic circuit (Choi et al. 2015b)Multiply two probabilistic circuits (Shen et al. 2016)KL Divergence between probabilistic circuits (Liang et al. 2017)Same-decision probability (Oztok et al. 2016)
Expected same-decision probability (Choi et al. 2017)
- Expected classifier agreement (Choi et al. 2018)Expected predictions (Khosravi et al. 2019b)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn nrobabilistic circuits from data? (Guy)

Succinctness of circuits

Expressive efficiency
Tractability is defined with respect to the size of the model.
How do structural constraints affect expressive efficiency (succinctness) of probabilistic/logical circuits?

Succinctness of circuits

Expressive efficiency

A family of circuits \mathcal{M}_{1} is at least as succinct as \mathcal{M}_{2}
iff for every $\mathbf{m}_{2} \in \mathcal{M}_{2}$, there exists $\mathbf{m}_{1} \in \mathcal{M}_{1}$ that represents
the same function and $\left|m_{1}\right| \leq\left|\operatorname{poly}\left(m_{2}\right)\right|$.
$\Rightarrow \quad$ denoted $\mathcal{M}_{1} \leq \mathcal{M}_{2}$
\Rightarrow strictly more succinct $\left(\mathcal{M}_{1}<\mathcal{M}_{2}\right)$

$$
\text { iff } \mathcal{M}_{1} \leq \mathcal{M}_{2} \text { and } \mathcal{M}_{1} \nsupseteq \mathcal{M}_{2}
$$

Succinctness of circuits

Expressive efficiency
Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD

Succinctness of circuits

Expressive efficiency
Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD
\square d-DNNF $\not \leq$ DNNF unless the polynomial hierarchy collapses (Darwiche et al. 2002a).

- The Sauerhoff function has DNNF of size $O\left(n^{2}\right)$ but d-DNNF of size $2^{\Omega(n)}$ (Bova et a

Succinctness of circuits

Expressive efficiency
Strict succinctness ordering: DNNF < d-DNNF < FBDD < OBDD
\square d-DNNF $\not \leq$ DNNF unless the polynomial hierarchy collapses (Darwiche et al. 2002a).
The Sauerhoff function has DNNF of size $O\left(n^{2}\right)$ but d-DNNF of size $2^{\Omega(n)}$ (Bova et al. 2016).
\Rightarrow Unconditional exponential separation for d-DNNF $\not \leq$ DNNF
\Rightarrow Using a connection between circuits and communication complexity

Succinctness of circuits

Expressive efficiency
SDD < OBDD: SDDs are strictly more succinct than OBDDsSDD \leq OBDD: OBDDs are SDDs with right-linear vtrees
\square SDD \nsupseteq OBDD: The hidden weighted bit function has SDD of size $O\left(n^{3}\right)$ but OBDD of size $2^{\Omega}(n)$.

Query compilation

Möbius Über Alles

How precise is the characterization of tractable circuits by structural properties?

Smoothness + decomposability $=$ tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedforward (sum-product) evaluation.

Smoothness + decomposability $=$ tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedforward (sum-product) evaluation.
\Rightarrow Are these properties necessary?

Smoothness + decomposability $=$ tractable MAR

Recall: Smoothness and decomposability allow marginal inference by feedforward (sum-product) evaluation.
\Rightarrow Are these properties necessary?
\Rightarrow Yes! Otherwise, integrals do not decompose.

Determinism + decomposability $=$ tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward (max-product) evaluation.

Determinism + decomposability $=$ tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward (max-product) evaluation.
\Rightarrow However, decomposability is not necessary!

Determinism + decomposability $=$ tractable MAP

Recall: Determinism and decomposability allow MAP inference by feedforward (max-product) evaluation.
\Rightarrow However, decomposability is not necessary!
\Rightarrow A weaker condition, consistency, suffices.

Consistency

A product node is consistent if any variable shared between its children appears in a single leaf node
\Rightarrow decomposability implies consistency

consistent circuit

inconsistent circuit

Determinism + consistency $=$ tractable MAP

Determinism + consistency $=$ tractable MAP

If $\max _{\mathbf{q}_{\text {shared }}} p(\mathbf{q}, \mathbf{e})=$ $\max _{\mathbf{q}_{\text {shared }}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}\right) \cdot \max _{\mathbf{q}_{\text {shared }}} p\left(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right)$ (consistent):

$$
\begin{aligned}
\max _{\mathbf{q}} p(\mathbf{q}, \mathbf{e}) & =\max _{\mathbf{q}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}, \mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right) \\
& =\max _{\mathbf{q}_{\mathbf{x}}} p\left(\mathbf{q}_{\mathbf{x}}, \mathbf{e}_{\mathbf{x}}\right) \cdot \max _{\mathbf{q}_{\mathbf{y}}} p\left(\mathbf{q}_{\mathbf{y}}, \mathbf{e}_{\mathbf{y}}\right) \\
& \Rightarrow \text { solving optimization independently }
\end{aligned}
$$

Expressive efficiency of circuits

MAR
smooth \& Decomp.
det. \& cons.
MAP

Are smooth \& decomposable circuits as succinct as deterministic \& consistent ones, or vice versa?

Expressive efficiency of circuits

- Smooth \& decomposable circuits strictly more succinct than deterministic \& decomposable ones

Smooth \& consistent circuits are equally succinct as smooth \& decomposable ones

Expressive efficiency of circuits

Expressive efficiency of circuits

\longrightarrow : strictly more succinct
工 : equally succinct

Expressive efficiency of circuits

工_ : equally succinct

Expressive efficiency of circuits

\longrightarrow : strictly more succinct
工 : equally succinct

Expressive efficiency of circuits

\longrightarrow : strictly more succinct
工 : equally succinct

Expressive efficiency of circuits

\longrightarrow : strictly more succinct
工 : equally succinct

Expressive efficiency of circuits

\longrightarrow : strictly more succinct
工 : equally succinct

Expressive efficiency of circuits

\square Neither smooth \& decomposable nor deterministic \& consistent circuits are more succinct than the other!
\Rightarrow Choose tractable circuit family based on your query
\square More theoretical questions remaining
\Rightarrow "Complete the map"
\longrightarrow : strictly more succinct
工 : equally succinct

Expressive efficiency of circuits

Succinctness map for monotone circuits
\Rightarrow (s)mooth, (d)eterministic, (D)ecomposable, (w)eak (D)ecomposable (i.e. consistent)

Expressive efficiency of circuits

Succinctness map for monotone circuits

Succinctness map for positive circuits (non-negative output, but weights may be negative)
\Rightarrow (s)mooth, (d)eterministic, (D)ecomposable, (w)eak (D)ecomposable (i.e. consistent)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Gocl

Given a class of queries can we systematically find a class of probabilistic circuits that is tractable for it?

A language for queries

Integral expressions that can be formed by composing these operators

$$
+, \times, \text { pow, log, exp and } /
$$

\Rightarrow many divergences and information-theoretic queries

A language for queries

Integral expressions that can be formed by composing these operators

\Rightarrow many divergences and information-theoretic queries

Represented as higher-order computational graphs—pipelines—operating over circuits! \Rightarrow re-using intermediate transformations across queries

$\mathbb{K L L D}(p \| q)=\int_{\text {val }(\mathbf{X})} p(\mathbf{x}) \times \log (p(\mathbf{x}) / q(\mathbf{x})) d \mathbf{X}$

$$
\mathbb{K} \mathbb{L D}(p \| q)=\int_{\text {val }(\mathbf{X})} p(\mathbf{x}) \times \log (p(\mathbf{x}) / q(\mathbf{x})) d \mathbf{X}
$$

$\mathbb{K} \mathbb{L D}(p \| q)=\int_{\text {val }(\mathbf{X})} p(\mathbf{x}) \times \log (p(\mathbf{x}) / q(\mathbf{x})) d \mathbf{X}$

$\mathbb{K L L D}(p \| q)=\int_{\text {val }(\mathbf{X})} p(\mathbf{x}) \times \log (p(\mathbf{x}) / q(\mathbf{x})) d \mathbf{X}$

$\mathbb{X E N T}(p \| q)=\int p(\mathbf{x}) \times \log q(\mathbf{x}) d \mathbf{X}$

$$
\mathbb{E}_{\mathbf{x}^{m} \sim p\left(\mathbf{x}^{m} \mid \mathbf{x}^{o}\right)}\left[q^{\alpha}\left(\mathbf{x}^{m}, \mathbf{x}^{o}\right)\right]
$$

Compatibility

Two circuits are compatible if they have the same hierarchical scope partitioning \Rightarrow generalizes "structured decomposability with same vtree"

compatible circuits

non-compatible circuits

Tractable operators

smooth, decomposable compatible

Tractable operators

smooth, decomposable deterministic

Building an atlas of composable tractable atomic operations

To perform tractable integration we need s to be smooth and decomposable...

hence we need p and r to be smooth, decomposable and compatible...

therefore q must be smooth, decomposable and deterministic...

we can compute $\mathbb{X} \mathbb{E} \mathbb{N} \mathbb{T}$ tractably if \boldsymbol{p} and \boldsymbol{q} are smooth, decomposable, compatible and \boldsymbol{q} is deterministic...

| | Query | Tract. Conditions | Hardness |
| :---: | :---: | :---: | :---: |
| Cross Entropy | $-\int p(\boldsymbol{x}) \log q(\boldsymbol{x}) \mathrm{d} \mathbf{X}$ | Cmp, q Det | \#P-hard w/o Det |
| Shannon Entropy | $-\sum p(x) \log p(\boldsymbol{x})$ | Sm, Dec, Det | coNP-hard w/o Det |
| RÉNyi Entropy | $(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$ | SD | \#P-hard w/o SD |
| | $(1-\alpha)^{-1} \log \int p^{\alpha}(x) d \mathbf{X}, \alpha \in \mathbb{R}_{+}$ | Sm, Dec, Det | \#P-hard w/o Det |
| MUTUAL InFormation | $\int p(\boldsymbol{x}, \boldsymbol{y}) \log (p(\boldsymbol{x}, \boldsymbol{y}) /(p(\boldsymbol{x}) p(\boldsymbol{y}))$) | Sm, SD, Det* | coNP-hard w/o SD |
| Kullback-Leibler Div. | $\int p(\boldsymbol{x}) \log (p(\boldsymbol{x}) / q(\boldsymbol{x})) d \mathbf{X}$ | Cmp, Det | \#P-hard w/o Det |
| RÉNYI'S ALPHA DIV. | $(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$ | Cmp, q Det | \#P-hard w/o Det |
| | $(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{R}$ | Cmp, Det | \#P-hard w/o Det |
| ITAKURA-SAITO DIV. | $\int[p(\boldsymbol{x}) / q(\boldsymbol{x})-\log (p(x) / q(\boldsymbol{x}))-1] d \mathbf{X}$ | Cmp, Det | \#P-hard w/o Det |
| CaUchy-Schwarz Div. | $-\log \frac{\int p(\boldsymbol{x}) q(\boldsymbol{x}) d \mathbf{X}}{\sqrt{\int p^{2}(\boldsymbol{x}) d \mathbf{X} q^{2}(\boldsymbol{x}) d \mathbf{X}}}$ | Cmp | \#P-hard w/o Cmp |
| SQUARED LOSS | $\int(p(\boldsymbol{x})-q(\boldsymbol{x}))^{2} d \mathbf{X}$ | Cmp | \#P-hard w/o Cmp |

compositionally derive the tractability of many more queries

| | Query | Tract. Conditions | Hardness |
| :---: | :---: | :---: | :---: |
| Cross Entropy | $-\int p(\boldsymbol{x}) \log q(\boldsymbol{x}) \mathrm{d} \mathbf{X}$ | Cmp, q Det | \#P-hard w/o Det |
| Shannon Entropy | $-\sum p(x) \log p(\boldsymbol{x})$ | Sm, Dec, Det | coNP-hard w/o Det |
| RÉNyi Entropy | $(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$ | SD | \#P-hard w/o SD |
| | $(1-\alpha)^{-1} \log \int p^{\alpha}(x) d \mathbf{X}, \alpha \in \mathbb{R}_{+}$ | Sm, Dec, Det | \#P-hard w/o Det |
| MUTUAL InFormation | $\int p(\boldsymbol{x}, \boldsymbol{y}) \log (p(\boldsymbol{x}, \boldsymbol{y}) /(p(\boldsymbol{x}) p(\boldsymbol{y}))$) | Sm, SD, Det* | coNP-hard w/o SD |
| Kullback-Leibler Div. | $\int p(\boldsymbol{x}) \log (p(\boldsymbol{x}) / q(\boldsymbol{x})) d \mathbf{X}$ | Cmp, Det | \#P-hard w/o Det |
| RÉNYI'S ALPHA DIV. | $(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{N}$ | Cmp, q Det | \#P-hard w/o Det |
| | $(1-\alpha)^{-1} \log \int p^{\alpha}(\boldsymbol{x}) q^{1-\alpha}(\boldsymbol{x}) d \mathbf{X}, \alpha \in \mathbb{R}$ | Cmp, Det | \#P-hard w/o Det |
| ITAKURA-SAITO DIV. | $\int[p(\boldsymbol{x}) / q(\boldsymbol{x})-\log (p(x) / q(\boldsymbol{x}))-1] d \mathbf{X}$ | Cmp, Det | \#P-hard w/o Det |
| CaUchy-Schwarz Div. | $-\log \frac{\int p(\boldsymbol{x}) q(\boldsymbol{x}) d \mathbf{X}}{\sqrt{\int p^{2}(\boldsymbol{x}) d \mathbf{X} q^{2}(\boldsymbol{x}) d \mathbf{X}}}$ | Cmp | \#P-hard w/o Cmp |
| SQUARED LOSS | $\int(p(\boldsymbol{x})-q(\boldsymbol{x}))^{2} d \mathbf{X}$ | Cmp | \#P-hard w/o Cmp |

and prove hardness when some input properties are not satisfied

Composable tractable sub-routines

```
function kld(p, q)
    r = quotient(p, q)
    s}=\operatorname{log}(r
    t = product(p,s)
    return integrate(t)
end
```

function $x \in n t(p, q)$
$r=\log (q)$
$s=$ product ($p, r)$
return -integrate (s)
$s=\operatorname{product}(p, r)$
return -integrate (s)
end

```
function alphadiv(p, q, alpha=1.5)
    r = real_pow(p, alpha)
    s = real_pow(q, 1.0-alpha)
    t = product(r,s)
    return log(integrate(t)) / (1.0-alpha)
end
```

Efficient inference algorithms in a couple lines of Julia code! ${ }^{2}$

[^5]
Next up...

1. Learning and reasoning with symbolic constraints
2. Expected predictions: handling missing values, fairness
3. Exact inference of causal effects
\Rightarrow using tractable operators

smooth, decomposable compatible

Symbolic constraints

"How can neural nets
reason and learn with
symbolic constraints
reliably and efficiently?"

When?

Ground Truth

e.g. predict shortest path in a map

When?

Ground Truth
given X // e.g. a tile map

structured output prediction (SOP) tasks

When?

Ground Truth
given \mathbf{x} // e.g. a tile map
find $\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) / /$ e.g. a configurations of edges in a grid

structured output prediction (SOP) tasks

When?

Ground Truth
given \mathbf{x} // e.g. a tile map
find $\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) / /$ e.g. a configurations of edges in a grid s.t. $\mathbf{y}=\mathrm{K} / /$ e.g., that form a valid path

structured output prediction (SOP) tasks

When?

Ground Truth
given \mathbf{x} // e.g. a tile map
find $\mathbf{y}^{*}=\operatorname{argmax}_{\mathbf{y}} p_{\theta}(\mathbf{y} \mid \mathbf{x}) / /$ e.g. a configurations of edges in a grid s.t. $\mathbf{y}=\mathrm{K} / /$ e.g., that form a valid path
// for a 12×12 grid, 2^{144} states but only 10^{10} valid ones!

structured output prediction (SOP) tasks

When?

$$
\begin{aligned}
& \text { given } \mathbf{x} / / \text { e.g. a feature map } \\
& \text { find } \mathbf{y}^{*}=\operatorname{argmax} \mathrm{max}_{\boldsymbol{y}}(\mathbf{y} \mid \mathbf{x}) / / \text { e.g. labels of classes } \\
& \qquad \text { s.t. } \mathbf{y} \vDash \mathrm{K} / / \text { e.g., constraints over superclasses }
\end{aligned}
$$

$\mathrm{K}:\left(Y_{\text {cat }} \Longrightarrow Y_{\text {animal }}\right) \wedge\left(Y_{\text {dog }} \Longrightarrow Y_{\text {animal }}\right)$

hierarchical multi-Iabel classification

When?

Ground Truth

ResNet-18
neural nets struggle to satisfy domain constraints!

How?

take an unreliable neural network architecture...

......and replace the last layer with a semantic probabilistic Iayer

$q_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z}))$ is an expressive distribution over labels

$$
c_{\mathrm{K}}(\mathbf{x}, \mathbf{y}) \text { encodes the constraint } \mathbb{1}\{\mathbf{x}, \mathbf{y} \models \mathrm{K}\}
$$

$$
p(\mathbf{y} \mid \mathbf{x})=q_{\boldsymbol{\Theta}}(\mathbf{y} \mid g(\mathbf{z})) \cdot c_{\mathbf{K}}(\mathbf{x}, \mathbf{y}) / \mathcal{Z}(\mathbf{x})
$$

$$
\mathcal{Z}(\mathbf{x})=\sum_{\mathbf{y}} q_{\boldsymbol{\Theta}}(\mathbf{y} \mid \mathbf{x}) \cdot c_{\mathrm{K}}(\mathbf{x}, \mathbf{y})
$$

a conditional circuit $q(\mathbf{y} ; \boldsymbol{\Theta}=g(\mathbf{z}))$

and a logical circuit $c(y, x)$ encoding K

Tractable products

exactly compute \mathcal{Z} in time $O(|q||c|)$

SPL recipe

$$
\begin{aligned}
& \mathrm{K}:\left(Y_{1}=1 \Longrightarrow Y_{3}=1\right) \\
& \wedge\left(Y_{2}=1 \Longrightarrow Y_{3}=1\right)
\end{aligned}
$$

1) Take any
logical constraint

SPL recipe

1) Take any
logical constraint
2) Compile it into
a constraint circuit

SPL recipe

$$
\begin{aligned}
& \mathrm{K}:\left(Y_{1}=1 \Longrightarrow Y_{3}=1\right) \\
& \wedge\left(Y_{2}=1 \Longrightarrow Y_{3}=1\right)
\end{aligned}
$$

1) Take any logical constraint
2) Compile it into
a constraint circuit

3) Multiply it by a circuit distribution

SPL recipe

$\mathrm{K}:\left(Y_{1}=1 \Longrightarrow Y_{3}=1\right)$
$\wedge\left(Y_{2}=1 \Longrightarrow Y_{3}=1\right)$

1) Take any
logical constraint
2) Compile it into
a constraint circuit

3) Multiply it by a circuit distribution

4) train end-to-end by sgd!

Guaranteeing consistency

cost: 39.31

cost: 57.31

cost: ∞

cost: ∞
$\mathcal{L}_{\mathrm{SL}}$

cost: ∞

cost: ∞

SPL

cost: 45.09

cost: 58.09

Expected predictions

Reasoning about the output of a classifier or regressor \boldsymbol{f} given a distribution \boldsymbol{p} over the input features

$$
\mathbb{E}_{p}[f]=\int_{\operatorname{val}(\mathbf{X})} p(\mathbf{x}) \times f(\mathbf{x}) d \mathbf{X}
$$

Handling missing values at test time

Given a partial observation \mathbf{x}^{o}, what is the expected output from f ?

$$
\underset{\mathbf{x}^{m} \sim p\left(\mathbf{x}^{m} \mid \mathbf{x}^{o}\right)}{\mathbb{E}}\left[f\left(\mathbf{x}^{m}, \mathbf{x}^{o}\right)\right]
$$

Fairness analysis

```
using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);
```

q : Is the predictive model biased by gender?

```
groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \\$ \$(exps[2])");
println("Male : \\$ \$(exps[1])");
println("Diff : \\$ \$(exps[2] - exps[1])");
Female : \$ 14170.125469335406
Male : \$ 13196.548926381849
Diff : \$ 973.5765429535568
```


Causal Inference

Given subsets $\boldsymbol{A}, \boldsymbol{Y} \subseteq \boldsymbol{X}$, interested in causal effect $p(\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{A}))$.

Causal Inference

Given subsets $\boldsymbol{A}, \boldsymbol{Y} \subseteq \boldsymbol{X}$, interested in causal effect $p(\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{A}))$. In general, $p(\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{A})) \neq p(\boldsymbol{Y} \mid \boldsymbol{A})$ (correlation is not causation).

Causal Inference

Given subsets $\boldsymbol{A}, \boldsymbol{Y} \subseteq \boldsymbol{X}$, interested in causal effect $p(\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{A}))$. In general, $p(\boldsymbol{Y} \mid d o(\boldsymbol{A})) \neq p(\boldsymbol{Y} \mid \boldsymbol{A})$ (correlation is not causation).

- Specify (qualitative) assumptions on the system using a causal diagram $G($ here $\boldsymbol{A}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{K} \subseteq \boldsymbol{X})$) :

(a) Backdoor

(b) Napkin

Causal Inference

Given subsets $\boldsymbol{A}, \boldsymbol{Y} \subseteq \boldsymbol{X}$, interested in causal effect $p(\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{A}))$. In general, $p(\boldsymbol{Y} \mid \operatorname{do}(\boldsymbol{A})) \neq p(\boldsymbol{Y} \mid \boldsymbol{A})$ (correlation is not causation).

- Specify (qualitative) assumptions on the system using a causal diagram $G($ here $\boldsymbol{A}, \boldsymbol{Y}, \boldsymbol{Z}, \boldsymbol{K} \subseteq \boldsymbol{X})$) :

(a) Backdoor

(b) Napkin
- Given causal diagram G, can derive expressions for causal effect $p(\boldsymbol{Y} \mid \boldsymbol{A})$ using do-calculus (Pearl 1995).

$$
\sum_{\boldsymbol{Z}} p(\boldsymbol{Z}) p(\boldsymbol{Y} \mid \boldsymbol{A}, \boldsymbol{Z})
$$

$$
\frac{\sum_{K} p(\boldsymbol{A}, \boldsymbol{Y} \mid K, \boldsymbol{Z}) p(K)}{\sum_{K} p(\boldsymbol{A} \mid K, \boldsymbol{Z}) p(K)}
$$

(a) Backdoor
(b) Napkin

Tractability of Exact Causal Inference

Consider the backdoor query, for fixed values of the treatment a and outcome \boldsymbol{y} :

$$
p(\boldsymbol{y} \mid d o(\boldsymbol{a})):=\sum_{\boldsymbol{Z}} p(\boldsymbol{Z}) \times p(\boldsymbol{y} \mid \boldsymbol{a}, \boldsymbol{Z})
$$

Tractability of Exact Causal Inference

Consider the backdoor query, for fixed values of the treatment a and outcome \boldsymbol{y} :

$$
p(\boldsymbol{y} \mid d o(\boldsymbol{a})):=\sum_{\boldsymbol{Z}} p(\boldsymbol{Z}) \times p(\boldsymbol{y} \mid \boldsymbol{a}, \boldsymbol{Z})
$$

Theorem (Wang \& Kwiatkowska 2023)

If p is given as a structured decomposable and deterministic circuit, then the backdoor query is \#P-hard to compute.

Applying the Atlas of Tractable Operations

Break down do-calculus query into compositions of basic operations, such as marginalization, products, and powers:

Applying the Atlas of Tractable Operations

Break down do-calculus query into compositions of basic operations, such as marginalization, products, and powers:

Applying the Atlas of Tractable Operations

Break down do-calculus query into compositions of basic operations, such as marginalization, products, and powers:

Problem: Cannot guarantee that input to POW is deterministic, even if $p(\boldsymbol{X})$ is deterministic.

Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)

Given a subset of variables $\boldsymbol{Q} \subseteq \boldsymbol{X}$, a PC is \boldsymbol{Q}-deterministic if the children of a sum node T correspond to different values of \boldsymbol{Q} (for sum nodes with sc $(T) \cap \boldsymbol{Q} \neq \emptyset)$.

Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)

Given a subset of variables $\boldsymbol{Q} \subseteq \boldsymbol{X}$, a PC is \boldsymbol{Q}-deterministic if the children of a sum node T correspond to different values of \boldsymbol{Q} (for sum nodes with sc $(T) \cap \boldsymbol{Q} \neq \emptyset)$.

(a) $\boldsymbol{Q}=\{A, Z\}$-deterministic
(b) $\boldsymbol{Q}=\{A, Y\}$-deterministic

Marginal Determinism

Definition (Marginal Determinism, Choi et al. 2020)

Given a subset of variables $\boldsymbol{Q} \subseteq \boldsymbol{X}$, a PC is \boldsymbol{Q}-deterministic if the children of a sum node T correspond to different values of \boldsymbol{Q} (for sum nodes with sc $(T) \cap \boldsymbol{Q} \neq \emptyset)$.

(a) $\boldsymbol{Q}=\{A, Z\}$-deterministic
(b) $\boldsymbol{Q}=\{A, Y\}$-deterministic

Motivation: If a circuit is marginally deterministic w.r.t \boldsymbol{Q}, then we can marginalize out $\boldsymbol{X} \backslash \boldsymbol{Q}$ and obtain a deterministic circuit!

Tractable Causal Inference

If (the circuit encoding) $p(\boldsymbol{X})$ is $(\boldsymbol{A} \cup \boldsymbol{Z})$-deterministic, then the input to POW is guaranteed to be deterministic.

Tractable Causal Inference

If (the circuit encoding) $p(\boldsymbol{X})$ is $(\boldsymbol{A} \cup \boldsymbol{Z})$-deterministic, then the input to POW is guaranteed to be deterministic.

(a) Pipeline for $\operatorname{CoND}(\cdot, \boldsymbol{A} \cup \boldsymbol{Z})$

(b) Pipeline for entire backdoor query

Tractable Causal Inference

If (the circuit encoding) $p(\boldsymbol{X})$ is $(\boldsymbol{A} \cup \boldsymbol{Z})$-deterministic, then the input to POW is guaranteed to be deterministic.

(a) Pipeline for $\operatorname{COND}(\cdot, \boldsymbol{A} \cup \boldsymbol{Z})$

(b) Pipeline for entire backdoor query
\Longrightarrow all operations are tractable according to Atlas

Tractable Causal Inference

If (the circuit encoding) $p(\boldsymbol{X})$ is $(\boldsymbol{A} \cup \boldsymbol{Z})$-deterministic, then the input to POW is guaranteed to be deterministic.

(a) Pipeline for $\operatorname{COND}(\cdot, \boldsymbol{A} \cup \boldsymbol{Z})$

(b) Pipeline for entire backdoor query
\Longrightarrow all operations are tractable according to Atlas
\Longrightarrow can compute causal effect in $O\left(|p|^{3}\right)$ time
(can improve to $O\left(|p|^{2}\right)$)

Open Questions

- Are all causal queries derived by the do-calculus tractable in PTIME (for some non-trivial marginal determinism condition)?
- What is the optimal complexity for these queries?

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)
more tractable queries

tractability vs expressive efficiency

Smooth V decomposable V deterministic
 \checkmark structured decomposable PCs?

| | smooth | dec. | det. |
| ---: | ---: | ---: | ---: |
| str.dec. | | | |
| Arithmetic Circuits (ACs) (Darwiche 2003) | | | |
| Sum-Product Networks (SPNs) (Poon et al. 2011) | | | |
| Cutset Networks (CNets) (Rahman et al. 2014) | | | |
| Probabilistic Decision Graphs (Jaeger 2004) | | | |
| (Affine) ADDs (Hoey et al. 1999; Sanner et al. 2005) | | | |
| AndOrGraphs (Dechter et al. 2007) | | | |
| PSDDs (Kisa et al. 2014) | | | |

Low-treewidh PGMs

| Tree, polytrees and | Therefore they support |
| :--- | :---: |
| Thin Junction trees | tractable |
| can be turned into | EVI |
| \square decomposable | MAR/CON |
| \square smooth | MAP |
| \square deterministic | |
| circuits | |

Arithmetic Circuits (ACs)

ACs (Darwiche 2003) are
\square decomposable
\square smooth
\square deterministic

They support tractable
EVI

- MAR/CON
- MAP

parameters are attached to the leaves $\Rightarrow \quad$...but can be moved to the sum node edges (Rooshenas et al. 2014)

Sum-Product Networks (SPNs)

\Rightarrow deterministic SPNs are also called selective (Peharz et al. 2014)

Cutset Networks (CNets)

CNets

(Rahman et al. 2014) are
decomposable
smooth
\square deterministic

They support tractable
EVI
MAR/CON
MAP

Rahman et al., "Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees", 2014
Di Mauro et al., "Learning Accurate Cutset Networks by Exploiting Decomposability", 2015

Probabilistic Sentential Decision Diagrams

PSDDs (Kisa et al. 2014) are
\square structured decomposable
\square smooth
deterministic

They support tractable
EVI
MAR/CON

- MAP

Complex queries!

[^6]
Probabilistic Decision Graphs

PDGs (Jaeger 2004) are
structured decomposable
smooth
\square deterministic

They support tractable
EVI
MAR/CON
MAP
Complex queries!

Jaeger, "Probabilistic decision graphs-combining verification and AI techniques for probabilistic inference", 2004
Jaeger et al., "Learning probabilistic decision graphs", 2006

AndOrGraphs

AndOrGarphs
(Dechter et al. 2007) are
structured
decomposable
smooth
deterministic

They support tractable
EVI
MAR/CON
MAP
Complex queries!

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$
\begin{aligned}
& L=\left[\begin{array}{cccc}
1 & 0.9 & 0.8 & 0 \\
0.9 & 0.97 & 0.96 & 0 \\
0.8 & 0.96 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& \operatorname{Pr}_{L}\left(X_{1}=1, X_{2}=0, X_{3}=1, X_{4}=0\right)=\frac{1}{\operatorname{det}(L+I)} \operatorname{det}\left(L_{\{1,2\}}\right)
\end{aligned}
$$

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$
L=\left[\begin{array}{cccc}
1 & 0.9 & 0.8 & 0 \\
0.9 & 0.97 & 0.96 & 0 \\
0.8 & 0.96 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Tractable likelihoods and marginals
\square
Global Negative Dependence

Diversity in recommendation systems

$$
\operatorname{Pr}_{L}\left(X_{1}=1, X_{2}=0, X_{3}=1, X_{4}=0\right)=\frac{1}{\operatorname{det}(L+I)} \operatorname{det}\left(L_{\{1,2\}}\right)
$$

Are all tractable probabilistic models probabilistic circuits?

Relationship between PCs and DPPs

We cannot tractably represent DPPs with subclasses of PCs

We cannot tractably represent DPPs with subclasses of PCs

We cannot tractably represent DPPs with subclasses of PCs

We cannot tractably represent DPPs with subclasses of PCs

PCs and Circuit Lower Bounds

Theorem (Martens and Medabalimi, 2014). Let P_{n} be the uniform distribution over spanning trees on K_{n}. For $n \geq 20$, the size of any smooth and decomposable $P C$ that represents P_{n} is at least $2^{n / 30240}$.

Based on arithmetic circuit lower bounds by Ran Raz and Amir Yehudayoff

Decomposable PCs are Syntactically Multilinear Arithmetic Circuits:

Definition 7 (Multilinear Arithmetic Circuit) If every node of an arithmetic circuit Φ over y computes a multilinear polynomial in y, Φ is said to be a (semantically) multilinear arithmetic circuit. And if for every product node in Φ, the scopes of its child nodes are pair-wise disjoint, Φ is said to be a syntactically multilinear arithmetic circuit.

DPPs have No Compact Decomposable PCs

Theorem (Snell, 1995). The uniform distribution over spanning trees on the complete graph K_{n} is a DPP over $\binom{n}{2}$ edges.

Theorem (Martens and Medabalimi, 2014). Let P_{n} be the uniform distribution over spanning trees on K_{n}. For $n \geq 20$, the size of any smooth and decomposable $P C$ that represents P_{n} is at least $2^{n / 30240}$.

Probabilistic Generating Circuits

A Tractable Unifying Framework for PCs and DPPs

Probability Generating Functions

| X_{1} | X_{2} | X_{3} | $\operatorname{Pr}_{\beta}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0.02 |
| 0 | 0 | 1 | 0.08 |
| 0 | 1 | 0 | 0.12 |
| 0 | 1 | 1 | 0.48 |
| 1 | 0 | 0 | 0.02 |
| 1 | 0 | 1 | 0.08 |
| 1 | 1 | 0 | 0.04 |
| 1 | 1 | 1 | 0.16 |

$$
\begin{aligned}
g_{\beta}= & \underbrace{0.16 z_{1} z_{2} z_{3}}+0.04 z_{1} z_{2}+0.08 z_{1} z_{3}+0.02 z_{1} \\
& +0.48 z_{2} z_{3}+0.12 z_{2}+0.08 z_{3}+0.02 .
\end{aligned}
$$

Probability Generating Functions

| X_{1} | X_{2} | X_{3} | $\operatorname{Pr}_{\beta}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0.02 |
| 0 | 0 | 1 | 0.08 |
| 0 | 1 | 0 | 0.12 |
| 0 | 1 | 1 | 0.48 |
| 1 | 0 | 0 | 0.02 |
| 1 | 0 | 1 | 0.08 |
| 1 | 1 | 0 | 0.04 |
| 1 | 1 | 1 | 0.16 |

$$
\begin{aligned}
g_{\beta}= & \underbrace{0.16 z_{1} z_{2} z_{3}}+0.04 z_{1} z_{2}+0.08 z_{1} z_{3}+0.02 z_{1} \\
& +0.48 z_{2} z_{3}+0.12 z_{2}+0.08 z_{3}+0.02
\end{aligned}
$$

Probabilistic Generating Circuits (PGCs)

$$
g_{\beta}=\left(0.1\left(z_{1}+1\right)\left(6 z_{2}+1\right)-0.4 z_{1} z_{2}\right)\left(0.8 z_{3}+0.2\right)
$$

1. Sum nodes \bigoplus with weighted edges to children.
2. Product nodes \bigotimes with unweighted edges to children.
3. Leaf nodes: z_i or constant.

PCs as PGCs

(Smooth \& Decomposable) PCs represents probability mass functions:

$$
\begin{aligned}
m_{\beta}= & 0.16 X_{1} X_{2} X_{3}+0.04 X_{1} X_{2} \overline{X_{3}}+0.08 X_{1} \overline{X_{2}} X_{3}+0.02 X_{1} \overline{X_{2}} \overline{X_{3}} \\
& +0.48 \overline{X_{1}} X_{2} X_{3}+0.12 \overline{X_{1}} X_{2} \overline{X_{3}}+0.08 \overline{X_{1}} \overline{X_{2}} X_{3}+0.02 \overline{X_{1}} \overline{X_{2}} \overline{X_{3}}
\end{aligned}
$$

PGCs represent probability generating functions:

$$
\begin{aligned}
g_{\beta}= & 0.16 z_{1} z_{2} z_{3}+0.04 z_{1} z_{2}+0.08 z_{1} z_{3}+0.02 z_{1} \\
& +0.48 z_{2} z_{3}+0.12 z_{2}+0.08 z_{1} z_{3}+0.02
\end{aligned}
$$

Given a smooth \& decomposable PC, by setting $\overline{X_{i}}$ to 1 , and X_{i} to z_{i}, we obtain a PGC that represents the PC.

Tractable Likelihood (EVID) or Marginals (MAR)?

PGCs Support Tractable Likelihoods/Marginals

PGCs Support Tractable Likelihoods/Marginals

$$
z_{i}=\left\{\begin{array}{lr}
t . & X_{i}=1 \\
0, & X_{i}=0 \\
1, & \text { otherwise }
\end{array}\right.
$$

$$
\operatorname{Pr}\left(X_{1}=1, X_{2}=0, \ldots\right)=?
$$

- Monomials setting to true variables that must be false are 0-ed out
- Other monomials contribute to result.
- Only monomials that set all required variables to true have max degree.
- Sum those up

PGCs Support Tractable Likelihoods/Marginals

Example

Example

Example

| X_{1} | X_{2} | X_{3} | $\operatorname{Pr}_{\beta}$ |
| :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0.02 |
| 0 | 0 | 1 | 0.08 |
| 0 | 1 | 0 | 0.12 |
| 0 | 1 | 1 | 0.48 |
| 1 | 0 | 0 | 0.02 |
| 1 | 0 | 1 | 0.08 |
| 1 | 1 | 0 | 0.04 |
| 1 | 1 | 1 | 0.16 |

Inference Time Complexity

Given a PGC of size m (\#edges) over n random variables.
Algorithm 1 (Zhang et al., ICML 2021):

| Bottom-up pass
 $\mathrm{w} / \mathrm{z} _\mathrm{i}=\mathrm{t}, 0$ or 1 |
| :--- |
| Product/sum of degree-n
 polynomials at each node |
| |
| or $O(m n \log \mathrm{n} \log \log \mathrm{n})$ |

Inference Time Complexity

Given a PGC of size m (\#edges) over n random variables.
Algorithm 1 (Zhang et al., ICML 2021):

| Product/sum of degree-n |
| :--- |
| polynomials at each node |$\rightleftharpoons O\left(m n^{2}\right)$

or $O(m n \log n \log \log n)$
Algorithm 2 (Harviainen et al., UAI 2023):
observation: the output of a PGC is a degree-n polynomial w/ respect to t

$$
\left.\begin{array}{c}
\text { Bottom-up pass } \\
\mathrm{w} / \mathrm{t}=0,1, \ldots, \mathrm{n}
\end{array}\right) \quad O(m n)
$$

Syntactic vs. Semantic Restrictions

+ PGCs are tractable when semantically multilinear
+ No need for PC decomposability/syntactic multilinearity or other properties...
- Checking Validity of PGCs is Hard

Theorem (Harviainen et al.). It is NP-hard to check if a PGC encodes a valid probability generating polynomial

DPPs as PGCs

The generating polynomial for a DPP with kernel L is given by:

$$
g_{L}=\frac{1}{\operatorname{det}(L+I)} \operatorname{det}\left(I+L \operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)\right)
$$

We need it as a sum of products to obtain a Probabilistic Generating Circuit

DPPs as PGCs

The generating polynomial for a DPP with kernel L is given by:

$$
g_{L}=\frac{1}{\operatorname{det}(L+I)} \operatorname{det}\left(I+L \operatorname{diag}\left(z_{1}, \ldots, z_{n}\right)\right) .
$$

Constant

We need it as a sum of products to obtain a Probabilistic Generating Circuit

DPPs as PGCs

The generating polynomial for a DPP with kernel L is given by:

Experiment Results: Amazon Baby Registries

| | DPP | Strudel | EiNet | MT | SimplePGC |
| :---: | :---: | :---: | :---: | :---: | :---: |
| apparel | -9.88 | -9.51 | -9.24 | -9.31 | $-9.10{ }^{*+\circ}$ |
| bath | -8.55 | -8.38 | -8.49 | -8.53 | $-8.29{ }^{* \dagger}{ }^{\text {a }}$ |
| bedding | -8.65 | -8.50 | -8.55 | -8.59 | $-8.41^{* \dagger}{ }^{\text {a }}$ |
| carseats | -4.74 | -4.79 | -4.72 | -4.76 | $-4.64{ }^{* \dagger}$ |
| diaper | -10.61 | -9.90 | -9.86 | -9.93 | $-9.72{ }^{* \dagger}$ |
| feeding | -11.86 | -11.42 | -11.27 | -11.30 | $-11.17^{*+\circ}$ |
| furniture | -4.38 | -4.39 | -4.38 | -4.43 | $-4.34^{* \dagger}$ |
| gear | -9.14 | -9.15 | -9.18 | -9.23 | $-9.04{ }^{* \dagger}{ }^{\text {a }}$ |
| gifts | -3.51 | -3.39 | -3.42 | -3.48 | -3.47° |
| health | -7.40 | -7.37 | -7.47 | -7.49 | $-7.24{ }^{* \dagger}$ |
| media | -8.36 | -7.62 | -7.82 | -7.93 | $-7.69{ }^{\text {¢o }}$ |
| moms | -3.55 | -3.52 | -3.48 | -3.54 | $-3.53{ }^{\circ}$ |
| safety | -4.28 | -4.43 | -4.39 | -4.36 | $-4.28{ }^{*+}$ |
| strollers | -5.30 | -5.07 | -5.07 | -5.14 | $-5.00^{* \dagger}$ |
| toys | -8.05 | -7.61 | -7.84 | -7.88 | $-7.62{ }^{\dagger}$ |

Beyond DPPs: Strongly Rayleigh Distributions

DPPs are strongly Rayleigh distributions

Definition. A probability distribution over binary random variables X_{1}, \ldots, X_{n} (or equivalently, subsets of $[n]:=\{1,2, \ldots, n\}$) is strongly Rayleigh if its probability generating polynomial g is real-stable; that is, for $z_{i} \in \mathbb{C}$, if $\operatorname{Im}\left(z_{i}\right)>0$ for all z_{i}, then $g\left(z_{1}, \cdots, z_{n}\right) \neq 0$.

We can efficiently sample from strongly Rayleigh distributions by MCMC (with polynomial bound on mixing time)

Efficient Sampling from SR Distributions

Theorem (Li et al., 2016). Let π be a strongly Rayleigh distribution over $[n]$, we can efficiently sample from π by sampling from its symmetric homogenization $\pi_{s h}$; for $S \subset[2 n]$, define

$$
\pi_{s h}(S):=\left\{\begin{array}{l}
\pi(S \cap[n])\binom{n}{S \cap[n]}^{-1}, \quad \text { if }|S|=n \\
0, \quad \text { otherwise }
\end{array}\right.
$$

in particular, $\pi_{s h}$ is also strongly Rayleigh and the mixing time of a Gibbsexchange sampler with initial set S_{0} is bounded as

$$
\tau(\epsilon) \leq 2 n^{2}\left(\log \binom{n}{\left|S_{0}\right|}+\log \pi\left(S_{0}\right)^{-1}+\log \epsilon^{-1}\right)
$$

Relationship between PGCs and SR Distributions

Relationship between PGCs and SR Distributions

Not All SR Distributions have Compact PGCs (Bläser 2023)

Let $K_{m, n}=(U \cup V, E)$ be a complete bipartite graph, the signed double function generating polynomial is defined as

$$
D F_{m, n}(e)=\sum_{F, H}(-1)^{|F|+|H|} \prod_{(i, j) \in F} e_{i, j} \prod_{\left(i^{\prime}, j^{\prime}\right) \in H} e_{i^{\prime}, j^{\prime}}
$$

where the sum is taken over all partial functions $U \rightarrow V$ and $V \rightarrow U$, respectively. Each pair of (F, H) is a double function of $K_{m, n}$.

Figure 4. The thick edges are a matching of size two.

Figure 5. The thick edges form a total function $U \rightarrow V$, which is not injective.

Figure 6. The thick edges form a partial function from V to U.

Figure 7. A double function.

Not All SR Distributions have Compact PGCs (Bläser 2023)

$$
D F_{m, n}(e)=\sum_{F, H}(-1)^{|F|+|H|} \prod_{(i, j) \in F} e_{i, j} \prod_{\left(i^{\prime}, j^{\prime}\right) \in H} e_{i^{\prime}, j^{\prime}}
$$

\square Generalize to bipartite multigraph $K_{m, n}^{(d)}$
d : each edge from U to V has d copies

$$
D F_{m, n}^{(d)}\left(e^{(d)}\right)=\sum_{F, H}(-1)^{|F|+|H|} \prod_{(i, j) \in F \backslash H} \sum_{\delta=1}^{d} e_{i, j}^{(\delta)} \prod_{\left(i^{\prime}, j^{\prime}\right) \in H \cap F} \sum_{1 \leq \delta^{\prime}<\gamma \leq d} e_{i, j^{\prime}, j^{\prime}}^{\left(\delta^{\prime}\right)}, e_{i^{(\lambda), j j^{\prime}}}^{\left(\lambda^{\prime}\right)} \prod_{\left(i^{\prime}, j^{\prime}\right) \in H \backslash F \mid} \sum_{\delta^{\prime \prime}=1}^{d} e_{i}^{\left(i^{\prime \prime}, j^{\prime \prime}\right)}
$$

$$
D F_{n, n}^{(n+2)} \text { is real-stable and its evaluation is \#P-hard. }
$$

$$
D F_{n, n}^{(n+2)} \text { does not define an SR distribution as it has negative coefficients }
$$

Not All SR Distributions have Compact PGCs (Bläser 2023)

Definition. For a polynomial $f\left(z_{1}, \ldots, z_{n}\right)$ with z_{i} of degree k_{i}, the inversion of f is defined as $\prod_{i} z_{i}{ }^{k_{i}} f\left(-1 / z_{1}, \ldots,-1 / z_{i}, \ldots,-1 / z_{n}\right)$.

The inversion of a real stable polynomial is also real stable

Let P_{n} be the inversion of $D F_{n, n}^{(n+2)}$, then P_{n} is a mutilinear and real stable polynomial with all coefficients non-negative.

Theorem (Bläser, 2023). Assuming $P^{\# P} \nsubseteq P /$ Poly. Let \hat{P}_{n} be the normalized P_{n}, then \hat{P}_{n} cannot be represented as polynomial-size PGCs.

Relationship between PGCs and SR Distributions

Probabilistic generating circuits seem awfully general.

Are all tractable probabilistic models probabilistic generating circuits?

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Questions answered today

1. What are probabilistic queries? Are current models tractable? (Guy)
2. What are probabilistic circuits and why are they tractable? (Guy)
3. What is the connection to logical circuit languages? (YooJung)
4. How do I compile my favorite model into a circuit? (YooJung)
5. How are circuit size and tractability related? (YooJung)
6. What's the most impressive query we can efficiently compute? (YooJung)
7. Are all tractable distributions probabilistic circuits? (Guy)
8. How to learn probabilistic circuits from data? (Guy)

Building Probabilistic Circuits

Information Prior Knowledge domain assumptions constraints other models
 Data
 experimental data samples measurements
 learning
 Circuits
 decomposability smoothness
 determinism
 compatibility
 Structure

 Parameters
 $\boldsymbol{\theta}, \boldsymbol{w} \quad$ generative discriminative Bayesian
 credal

Origins: Compilation

Compiling probabilistic graphical models

Arithmetic circuits

(Darwiche 2002, 2003, 2009)

- Compile a given Bayesian network into an arithmetic circuit-a smooth, decomposable and deterministic PCs
\square
Either via logic encoding of Bayesian network + knowledge compilation
\square Or record "execution trace" (sum and product operations) of traditional inference algorithms (junction tree, variable elimination)

Compilation

Selected references
Logic circuits, interplay between structural properties and tractable reasoning (Darwiche et al. 2002a)
Converting probabilistic graphical models via knowledge compilation
(Darwiche 2002)

Logic circuit compilers

(Darwiche 2004; Muise et al. 2012; Bova et al. 2015; Lagniez et al. 2017; Oztok et al. 2018)
Neuro-symbolic models using logic circuits
(Ahmed et al. 2022a,b)

Parameter Learning

Gradient descent (of course)

PCs are computational graphs
\square Hence we can just learn them as any other neural net using SGD
\square Use re-parameterization if parameters should satisfy constraints:
soft-max for sum-weights (non-negative, sum-to-one)
soft-plus for variances
low-rank plus diagonal for covariance matrices

- Allows for conditional distributions

Conditional PCs

(Shao et al. 2019)

chain rule of probabilities

Maximum Iikelihood (frequentist)

PCs can be interpreted as hierarchical latent variable models, where each sum node corresponds to a discrete latent variable (Peharz et al. 2016). This allows to perform classical maximum-likelihood estimation.

Closed-form maximum Ikellhood

When the circuit is deterministic, there is even an closed-form ML solution, which is incredible fast:

```
julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
julia> num_examples(data)
17412
julia> num_edges(structure)
270448
julia> @btime estimate_parameters(structure, data);
    63.585 ms (1182350 allocations: 65.97 MiB)
```

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

Expectation-Maximization

When the PC is not deterministic, we can still apply expectation-maximization (Peharz et al. 2016). EM can piggy-back on autodfiff:

```
train_x, valid_x, test_x = get_mnist_images([7])
graph = Graph.poon_domingos_structure(shape=(28,28), delta=[7])
args = EinsumNetwork.Args(num_var=train_x.shape [1], num_dims=1,
    num_classes=1, num_sums=28,
    num_input_distributions=28,
    exponential_family=EinsumNetwork.BinomialArray,
    exponential_family_args={'N':255},
    online_em_frequency=1, online_em_stepsize=0.05)
```

PC = EinsumNetwork.EinsumNetwork(graph, args)
PC.initialize()
PC.to('cuda')

Expectation-Maximization

```
for epoch_count in range(10):
    train_ll, valid_ll, test_ll = compute_loglikelihood()
    start_t = time.time()
    for idx in get_batches(train_x, 100):
        outputs = PC.forward(train_x[idx, :])
        log_likelihood = EinsumNetwork.log_likelihoods(outputs).sum()
        log_likelihood.backward()
        PC.em_process_batch()
    print_performance(epoch_count, train_ll, valid_ll, test_ll, time.time() - start_t)
```


Expectation-Maximization

```
# train sample: 5175
# parameters: 1573486
```

[epoch 0] train LL -140936.80
[epoch 1] train LL -15916.14
[epoch 2] train LL -10865.67
[epoch 3] train LL -10388.53
[epoch 4] train LL -10264.11
[epoch 5] train LL -10212.66
[epoch 6] train LL -10192.21
[epoch 7] train LL -10153.97
[epoch 8] train LL -10112.95
[epoch 9] train LL -10093.31

| valid LL | -140955.72 | test LL | -141033.80 |
| :--- | :--- | :--- | :--- |
| valid LL | -15693.25 | test LL | -15976.43 |
| valid LL | -10616.72 | test LL | -10943.56 |
| valid LL | -10158.84 | test LL | -10475.49 |
| valid LL | -10041.66 | test LL | -10352.59 |
| valid LL | -10001.09 | test LL | -10319.35 |
| valid LL | -9965.98 | test LL | -10314.84 |
| valid LL | -9920.09 | test LL | -10261.41 |
| valid LL | -9882.48 | test LL | -10236.34 |
| valid LL | -9862.15 | test LL | -10200.94 |

... elapsed time 3.621 sec
... elapsed time 3.438 sec
... elapsed time 3.436 sec
... elapsed time 3.473 sec
... elapsed time 3.497 sec
... elapsed time 3.584 sec
... elapsed time 3.508 sec
... elapsed time 3.446 sec
... elapsed time 3.579 sec
... elapsed time 3.483 sec

Peharz et al., "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits", 2020

Structure Learning

Region graphs

Laying out the PC structure on a high level
\square Region graphs (RGs) describe decompositional structure
\square RGs are bipartite, directed graphs containing regions (\mathcal{R}) and partitions (\mathcal{P})

\squareInput and output nodes of the RG are regions
\square Regions have a scope (receptive field), denoted as $s c(\mathcal{R}) \subseteq \mathbf{X}$
\square For every partition \mathcal{P} it holds that

$$
\begin{array}{ll}
s c\left(\mathcal{R}_{\text {out }}\right)=\bigcup_{\mathcal{\mathcal { R } _ { \text { in } } \in \text { inputs } (\mathcal { P })}} s c\left(\mathcal{R}_{\text {in }}\right) \\
s c\left(\mathcal{R}^{\prime}\right) \cap s c\left(\mathcal{R}^{\prime \prime}\right)=\emptyset, & \mathcal{R}^{\prime} \neq \mathcal{R}^{\prime \prime} \in \operatorname{inputs}(\mathcal{P})
\end{array}
$$

Example region graph

From region graphs to PCs

-••

From region graphs to PCs

Equip each input region with non-linear units
©

From region graphs to PCs

Equip each internal region with sum nodes
©®

From region graphs to PCs

©e

From region graphs to PCs

Equip partitions with products, combining units
©e

\mathcal{P}

From region graphs to PCs

Equip partitions with products, combining units
-••

\mathcal{P}

From region graphs to PCs

Connect products to sum units above

From region graphs to PCs

- Equip each input region (leaf) \mathcal{R} with K units $\phi_{1}, \ldots, \phi_{K}$, which are non-linear functions over $s c(\mathcal{R})$. Usually, $\phi_{1}, \ldots, \phi_{K}$ are probability densities. K can be different for each input region.
- Equip each other region with K sum units. K can be different for each internal region. Often, for the root region $K=1$, when PC is used as density estimator.
\square Equip each partition \mathcal{P} with as many products as there are combinations of units in the input regions to \mathcal{P}, selecting one unit from each region. Formally, if \mathcal{P} has input regions $\mathcal{R}_{1}, \mathcal{R}_{2} \ldots, \mathcal{R}_{I}$, insert one product $\prod_{i=1}^{I} u_{i}$ for each $\left(u_{1}, u_{2}, \ldots, u_{I}\right) \in \mathcal{R}_{1} \times \mathcal{R}_{2} \times \cdots \times \mathcal{R}_{I}$.
- Connect each $\prod_{i=1}^{I} u_{i}$ in \mathcal{P} to all sum units in the output regions of \mathcal{P}.

From region graphs to PCs

\square Resulting PC has alternating sum and product units (not a strong constraint)
\square We can easily scale the PC (overparameterize, increase expressivity) by equipping regions with more units
\square RGs can be seen as a vectorized version of PCs - each region and partition can be seen as as a module
\square Resulting PC will be smooth and decomposable, i.e., we can integrate, marginalize, and take conditionals
\square After the PC has been constructed, we might discard the RG

Scaling up image models

Latent Variable Distillation

| Dataset | TPMs | | | | | | | DGMs | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | LVD (ours) | HCLT | EiNet | RAT-SPN | | Glow | RealNVP | BIVA | | |
| ImageNet32 | $\mathbf{4 . 3 8}$ | 4.82 | 5.63 | 6.90 | | 4.09 | 4.28 | 3.96 | | |
| ImageNet64 | $\mathbf{4 . 1 2}$ | 4.67 | 5.69 | 6.82 | | 3.81 | 3.98 | - | | |
| CIFAR | $\mathbf{4 . 3 7}$ | 4.61 | 5.81 | 6.95 | | 3.35 | 3.49 | 3.08 | | |

How to construct and learn RGs?

Random regions graphs

The "no-learning" option
Generating a random region graph, by recursively splitting \mathbf{X} into two random parts:

Image-tallored circuit structure

"Recursive image slicing"
Images yield a natural region graph by using axis-aligned splits:
\square Start with the full image (=output region)

- Define partitions by applying horizontal and vertical splits
\square Recurse on the newly generated sub-images (internal regions)
- Structure somewhat reminiscent to convolutions
\square Generates RGs which are "true DAGs," i.e. regions get re-used

Data-driven structure Iearning

"Recursive data slicing"

Expand regions with clustering

Data-driven structure Iearning

"Recursive data slicing"

Number of clusters = number of partitions

Data-driven structure learning

"Recursive data slicing"

Try to find independent groups of variables (e.g. independence tests)

Data-driven structure learning

"Recursive data slicing"

Success $\rightarrow \boldsymbol{p a r t i t i o n}$ into new regions

Data-driven structure learning

"Recursive data slicing"

Try to find independent groups of variables (e.g. independence tests)

Data-driven structure learning

"Recursive data slicing"

Success $\rightarrow \boldsymbol{p a r t i t i o n}$ into new regions

Data-driven structure Iearning

"Recursive data slicing"

Single variable

Data-driven structure Iearning

"Recursive data slicing"

Single variable \rightarrow input region

Data-driven structure learning

"Recursive data slicing"

Expand regions with clustering

Data-driven structure learning

"Recursive data slicing"

Number of clusters = number of partitions

And so on...

Data-driven structure learning

"Recursive data slicing"
\square Stopping conditions: minimal number of features, samples, depth, ...
\square Clustering ratios also deliver (initial) parametersSmooth \& Decomposable Circuits
\square Tractable integration

LearnSPN

Selected references

- ID-SPN (Rooshenas et al. 2014)
- LearnSPN-b/T/B (Vergari et al. 2015)
- For heterogeneous data (Molina et al. 2018)
- Using k-means (Butz et al. 2018) or SVD splits (Adel et al. 2015)
\square Learning DAGs (Dennis et al. 2015; Jaini et al. 2018)
■ Approximating independence tests (Di Mauro et al. 2018)

Cutset networks

Besides clustering, decision tree learning can be used as PC learner. Cutset networks, decision trees over simple probabilistic models (Chow-Liu trees) (Rahman et al. 2014):

Cutset networks can easily be converted into smooth, decomposable and deterministic PCs.

Decision trees as PCs

Also vanilla decision tree learners can be used to learn PCs, by augmenting the leaves with distributions over inputs (Correia et al. 2020). Allows to treat missing features and outlier detection.

Information Prior Knowledge domain assumptions constraints other models
 Data
 experimental data samples measurements
 learning
 Circuits
 decomposability smoothness
 determinism
 compatibility
 Structure

 Parameters
 $\boldsymbol{\theta}, \boldsymbol{w}$ generative discriminative Bayesian
 credal

References I

\oplus Chow, C and C Liu (1968). "Approximating discrete probability distributions with dependence trees". In: IEEE Transactions on Information Theory 14.3, pp. 462-467.
\oplus Valiant, Leslie G (1979). "The complexity of enumeration and reliability problems". In: SIAM Journal on Computing 8.3, pp. 410-421.
\oplus Bryant, R(1986). "Graph-based algorithms for boolean manipulation". In: IEEE Transactions on Computers, pp. 677-691.
\oplus Cooper, Gregory $\mathrm{F}(1990)$. "The computational complexity of probabilistic inference using Bayesian belief networks". In: Artificial intelligence 42.2-3, pp. 393-405.
\oplus Dagum, Paul and Michael Luby (1993). "Approximating probabilistic inference in Bayesian belief networks is NP-hard". In: Artificial intelligence 60.1, pp. 141-153.
\oplus Zhang, Nevin Lianwen and David Poole (1994). "A simple approach to Bayesian network computations". In: Proceedings of the Biennial Conference-Canadian Society for Computational Studies of Intelligence, pp. 171-178.
\oplus Roth, Dan (1996). "On the hardness of approximate reasoning". In: Artificial Intelligence 82.1-2, pp. 273-302.
\oplus Dechter, Rina (1998). "Bucket elimination: A unifying framework for probabilistic inference". In: Learning in graphical models. Springer, pp. 75-104.
\oplus Dasgupta, Sanjoy (1999). "Learning polytrees". In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 134-141.
\oplus Hoey, Jesse, Robert St-Aubin, Alan Hu, and Craig Boutilier (1999). "SPUDD: stochastic planning using decision diagrams". In: Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence, pp. 279-288.
(1) Meilă, Marina and Michael I. Jordan (2000). "Learning with mixtures of trees". In: Journal of Machine Learning Research 1, pp. 1-48.

References II

\oplus Bach, Francis R. and Michael I. Jordan (2001). "Thin Junction Trees". In: Advances in Neural Information Processing Systems 14. MIT Press, pp. 569-576.
(1) Darwiche, Adnan (2001). "Recursive conditioning". In: Artificial Intelligence 126.1-2, pp. 5-41.
\oplus Yedidia, Jonathan S, William T Freeman, and Yair Weiss (2001). "Generalized belief propagation". In: Advances in neural information processing systems, pp. 689-695.
\oplus Darwiche, Adnan (2002). "A logical approach to factoring belief networks". In: KR 2, pp. 409-420.
\oplus Darwiche, Adnan and Pierre Marquis (2002a). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17, pp. 229-264.
$\oplus \quad$ (2002b). "A knowledge compilation map". In: Journal of Artificial Intelligence Research 17.1, pp. 229-264.
\oplus Dechter, Rina, Kalev Kask, and Robert Mateescu (2002). "Iterative join-graph propagation". In:
Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. Morgan Kaufmann Publishers Inc., pp. 128-136.
(1) Darwiche, Adnan (2003). "A Differential Approach to Inference in Bayesian Networks". In: J.ACM.
$\oplus \quad-\quad$ (2004). "New advances in compiling CNF to decomposable negation normal form". In: Proc. of ECAI. Citeseer, pp. 328-332.
\oplus Jaeger, Manfred (2004). "Probabilistic decision graphs-combining verification and Al techniques for probabilistic inference". In: International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems 12.supp01, pp. 19-42.
\oplus Sang, Tian, Paul Beame, and Henry A Kautz (2005). "Performing Bayesian inference by weighted model counting". In: AAAI. Vol. 5, pp. 475-481.

References III

\oplus Sanner, Scott and David McAllester (2005). "Affine algebraic decision diagrams (AADDs) and their application to structured probabilistic inference". In: IJCAI. Vol. 2005, pp. 1384-1390.
\oplus Chavira, Mark, Adnan Darwiche, and Manfred Jaeger (2006). "Compiling relational Bayesian networks for exact inference". In: International Journal of Approximate Reasoning 42.1-2, pp. 4-20.
\oplus Jaeger, Manfred, Jens D Nielsen, and Tomi Silander (2006). "Learning probabilistic decision graphs". In: International Journal of Approximate Reasoning 42.1-2, pp. 84-100.
\oplus Park, James D and Adnan Darwiche (2006). "Complexity results and approximation strategies for MAP explanations". In: Journal of Artificial Intelligence Research 21, pp. 101-133.
\oplus De Raedt, Luc, Angelika Kimmig, and Hannu Toivonen (2007). "ProbLog: A Probabilistic Prolog and Its Application in Link Discovery.". In: IJCAI. Vol. 7. Hyderabad, pp. 2462-2467
\oplus Dechter, Rina and Robert Mateescu (2007). "AND/OR search spaces for graphical models". In: Artificial intelligence 171.2-3, pp. 73-106.
\oplus Marinescu, Radu and Rina Dechter (2007). "Best-first AND/OR search for 0/1 integer programming". In: International Conference on Integration of Artificial Intelligence (AI) and Operations Research (OR) Techniques in Constraint Programming. Springer, pp. 171-185.
\oplus Riguzzi, Fabrizio (2007). "A top down interpreter for LPAD and CP-logic". In: Congress of the Italian Association for Artificial Intelligence. Springer, pp. 109-120.
\oplus Chavira, Mark and Adnan Darwiche (2008). "On probabilistic inference by weighted model counting". In: Artificial Intelligence 172.6-7, pp. 772-799.

References IV

\oplus Olteanu, Dan and Jiewen Huang (2008). "Using OBDDs for efficient query evaluation on probabilistic databases". In:
International Conference on Scalable Uncertainty Management. Springer, pp. 326-340.
\oplus Darwiche, Adnan (2009). Modeling and Reasoning with Bayesian Networks. Cambridge.
\oplus Koller, Daphne and Nir Friedman (2009). Probabilistic Graphical Models: Principles and Techniques. MIT Press.
\oplus Choi, Arthur and Adnan Darwiche (2010). "Relax, compensate and then recover". In: JSAI International Symposium on Artificial Intelligence. Springer, pp. 167-180.
\oplus Darwiche, Adnan (2011a). "SDD: A New Canonical Representation of Propositional Knowledge Bases". In:
Proceedings of the Twenty-Second International Joint Conference on Artificial Intelligence - Volume Volume Two. IJCAl'11. Barcelona, Catalonia, Spain. isbn: 978-1-57735-514-4.
$\oplus \quad-\quad$ (2011b). "SDD: A new canonical representation of propositional knowledge bases". In: Twenty-Second International Joint Conference on Artificial Intelligence.
\oplus de Campos, Cassio P (2011). "New complexity results for MAP in Bayesian networks". In: JJCAI. Vol. 11, pp. 2100-2106.
\oplus Poon, Hoifung and Pedro Domingos (2011). "Sum-Product Networks: a New Deep Architecture". In: UAI 2011.
\oplus Sontag, David, Amir Globerson, and Tommi Jaakkola (2011). "Introduction to dual decomposition for inference". In: Optimization for Machine Learning 1, pp. 219-254.
\oplus Muise, Christian, Sheila A Mcllraith, J Christopher Beck, and Eric I Hsu (2012). "Dsharp: fast d-DNNF compilation with sharpSAT". In: Canadian Conference on Artificial Intelligence. Springer, pp. 356-361.

References V

\oplus Gens, Robert and Pedro Domingos (2013). "Learning the Structure of Sum-Product Networks". In: Proceedings of the ICML 2013, pp. 873-880.
\oplus Lowd, Daniel and Amirmohammad Rooshenas (2013). "Learning Markov Networks With Arithmetic Circuits". In:
Proceedings of the 16th International Conference on Artificial Intelligence and Statistics. Vol. 31. JMLR Workshop Proceedings, pp. 406-414.
\oplus Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio (2014). "Generative adversarial nets". In: Advances in neural information processing systems, pp. 2672-2680.
\oplus Kingma, Diederik P and Max Welling (2014). "Auto-Encoding Variational Bayes". In: Proceedings of the 2nd International Conference on Learning Representations (ICLR). 2014.
\oplus Kisa, Doga, Guy Van den Broeck, Arthur Choi, and Adnan Darwiche (July 2014). "Probabilistic sentential decision diagrams". In: Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR). Vienna, Austria.
\oplus Martens, James and Venkatesh Medabalimi (2014). "On the Expressive Efficiency of Sum Product Networks". In: CoRR abs/1411.7717.
\oplus Peharz, Robert, Robert Gens, and Pedro Domingos (2014). "Learning Selective Sum-Product Networks". In: Workshop on Learning Tractable Probabilistic Models. LTPM.
\oplus Rahman, Tahrima, Prasanna Kothalkar, and Vibhav Gogate (2014). "Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the Accuracy of Chow-Liu Trees". In: Machine Learning and Knowledge Discovery in Databases. Vol. 8725. LNCS. Springer, pp. 630-645.
\oplus Rezende, Danilo Jimenez, Shakir Mohamed, and Daan Wierstra (2014). "Stochastic backprop. and approximate inference in deep generative models". In: arXiv preprint arXiv:1401.4082.

References VI

\oplus Rooshenas, Amirmohammad and Daniel Lowd (2014). "Learning Sum-Product Networks with Direct and Indirect Variable Interactions". In: Proceedings of ICML 2014.
\oplus Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). "Learning the Structure of Sum-Product Networks via an SVD-based Algorithm". In: Uncertainty in Artificial Intelligence.
\oplus Bekker, Jessa, Jesse Davis, Arthur Choi, Adnan Darwiche, and Guy Van den Broeck (2015). "Tractable Learning for Complex Probability Queries". In: Advances in Neural Information Processing Systems 28 (NIPS).
\oplus Bova, Simone, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2015). "On compiling CNFs into structured deterministic DNNFs". In: International Conference on Theory and Applications of Satisfiability Testing. Springer, pp. 199-214.
\oplus Choi, Arthur, Guy Van den Broeck, and Adnan Darwiche (2015a). "Tractable learning for structured probability spaces: A case study in learning preference distributions". In: Twenty-Fourth International Joint Conference on Artificial Intelligence (JCCAI).
\oplus Choi, Arthur, Guy Van Den Broeck, and Adnan Darwiche (2015b). "Tractable Learning for Structured Probability Spaces: A Case Study in Learning Preference Distributions". In: Proceedings of the 24th International Conference on Artificial Intelligence. IJCAl'15. Buenos Aires, Argentina: AAAI Press, pp. 2861-2868. isbn: 978-1-57735-738-4. url: http://dl.acm.org/citation.cfm?id=2832581.2832649
\oplus Dennis, Aaron and Dan Ventura (2015). "Greedy Structure Search for Sum-product Networks". In: IJCAl'15. Buenos Aires, Argentina: AAAI Press, pp. 932-938. isbn: 978-1-57735-738-4.
\oplus Di Mauro, Nicola, Antonio Vergari, and Floriana Esposito (2015). "Learning Accurate Cutset Networks by Exploiting Decomposability". In: Proceedings of AIXIA. Springer, pp. 221-232.

References VII

\oplus Fierens, Daan, Guy Van den Broeck, Joris Renkens, Dimitar Shterionov, Bernd Gutmann, Ingo Thon, Gerda Janssens, and Luc De Raedt (May 2015). "Inference and Learning in Probabilistic Logic Programs using Weighted Boolean Formulas". In: Theory and Practice of Logic Programming 15 (03), pp. 358-401. issn: 1475-3081. doi: 10.1017/S1471068414000076. url: http://starai.cs.ucla.edu/papers/FierensTPLP15.pdf.
\oplus Germain, Mathieu, Karol Gregor, lain Murray, and Hugo Larochelle (2015). "MADE: Masked Autoencoder for Distribution Estimation". In: CoRR abs/1502.03509.
\oplus Peharz, Robert, Sebastian Tschiatschek, Franz Pernkopf, and Pedro Domingos (2015). "On Theoretical Properties of Sum-Product Networks". In: The Journal of Machine Learning Research.
\oplus Vergari, Antonio, Nicola Di Mauro, and Floriana Esposito (2015). "Simplifying, Regularizing and Strengthening Sum-Product Network Structure Learning". In: ECML-PKDD 2015.
\oplus Vlasselaer, Jonas, Guy Van den Broeck, Angelika Kimmig, Wannes Meert, and Luc De Raedt (2015). "Anytime Inference in Probabilistic Logic Programs with Tp-compilation". In: Proceedings of 24th International Joint Conference on Artificial Intelligence (JCAI). url: http://starai.cs.ucla.edu/papers/VlasselaerIJCAI15.pdf.
\oplus Belle, Vaishak and Luc De Raedt (2016). "Semiring Programming: A Framework for Search, Inference and Learning". In: arXiv preprint arXiv:1609.06954.
\oplus Bova, Simone (2016). "SDDs are exponentially more succinct than OBDDs". In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 30. 1.
\oplus Bova, Simone, Florent Capelli, Stefan Mengel, and Friedrich Slivovsky (2016). "Knowledge Compilation Meets Communication Complexity.". In: IJCAI. Vol. 16, pp. 1008-1014.
\oplus Cohen, Nadav, Or Sharir, and Amnon Shashua (2016). "On the expressive power of deep learning: A tensor analysis". In: Conference on Learning Theory, pp. 698-728.

References VIII

\bigoplus Dinh, Laurent, Jascha Sohl-Dickstein, and Samy Bengio (2016). "Density estimation using real nvp". In: arXiv preprint arXiv:1605.08803.
\bigoplus Friesen, Abram L and Pedro Domingos (2016). "Submodular Sum-product Networks for Scene Understanding". In.
\bigoplus Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016). "Pixel recurrent neural networks". In: arXiv preprint arXiv:1601.06759.
\bigoplus Oztok, Umut, Arthur Choi, and Adnan Darwiche (2016). "Solving PP-PP-complete problems using knowledge compilation". In: Fifteenth International Conference on the Principles of Knowledge Representation and Reasoning.
\bigoplus Peharz, Robert, Robert Gens, Franz Pernkopf, and Pedro M. Domingos (2016). "On the Latent Variable Interpretation in Sum-Product Networks". In: IEEE Transactions on Pattern Analysis and Machine Intelligence PP, Issue 99. url: http://arxiv. org/abs/1601. 06180.
\oplus Sguerra, Bruno Massoni and Fabio G Cozman (2016). "Image classification using sum-product networks for autonomous flight of micro aerial vehicles". In: 2016 5th Brazilian Conference on Intelligent Systems (BRACIS). IEEE, pp. 139-144.
\oplus Shen, Yujia, Arthur Choi, and Adnan Darwiche (2016). "Tractable Operations for Arithmetic Circuits of Probabilistic Models". In: Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems 2016, December 5-10, 2016, Barcelona, Spain, pp. 3936-3944.
\oplus Vlasselaer, Jonas, Wannes Meert, Guy Van den Broeck, and Luc De Raedt (Mar. 2016). "Exploiting Local and Repeated Structure in Dynamic Bayesian Networks". In: Artificial Intelligence 232, pp. 43-53. issn: 0004-3702. doi: 10.1016/j . artint.2015.12.001.
\oplus Yuan, Zehuan, Hao Wang, Limin Wang, Tong Lu, Shivakumara Palaiahnakote, and Chew Lim Tan (2016). "Modeling spatial layout for scene image understanding via a novel multiscale sum-product network". In: Expert Systems with Applications 63, pp. 231-240.

References IX

\oplus Choi, YooJung, Adnan Darwiche, and Guy Van den Broeck (2017). "Optimal feature selection for decision robustness in Bayesian networks". In: Proceedings of the 26th International Joint Conference on Artificial Intelligence (JCAI).
\oplus Conaty, Diarmaid, Denis Deratani Mauá, and Cassio Polpo de Campos (2017). "Approximation Complexity of Maximum A Posteriori Inference in Sum-Product Networks". In: Proceedings of the Thirty-Third Conference on Uncertainty in Artificial Intelligence. Ed. by Gal Elidan and Kristian Kersting. AUAI Press, pp. 322-331.
\oplus Kimmig, Angelika, Guy Van den Broeck, and Luc De Raedt (2017). "Algebraic model counting". In: Journal of Applied Logic 22, pp. 46-62.
\oplus Lagniez, Jean-Marie and Pierre Marquis (2017). "An Improved Decision-DNNF Compiler.". In: IJCAI. Vol. 17, pp. 667-673.
\oplus Liang, Yitao and Guy Van den Broeck (Aug. 2017). "Towards Compact Interpretable Models: Shrinking of Learned Probabilistic Sentential Decision Diagrams". In: IJCAI 2017 Workshop on Explainable Artificial Intelligence (XAI). url: http://starai. cs.ucla. edu/papers/LiangXAI17.pdf.
\oplus Papamakarios, George, Theo Pavlakou, and lain Murray (2017). "Masked autoregressive flow for density estimation". In: Advances in Neural Information Processing Systems, pp. 2338-2347.
\oplus Rathke, Fabian, Mattia Desana, and Christoph Schnörr (2017). "Locally adaptive probabilistic models for global segmentation of pathological oct scans". In: International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, pp. 177-184.
\oplus Van den Broeck, Guy and Dan Suciu (Aug. 2017). Query Processing on Probabilistic Data: A Survey. Foundations and Trends in Databases. Now Publishers. doi: 10.1561/1900000052. url: http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf.
\oplus Butz, Cory J, Jhonatan S Oliveira, André E Santos, André L Teixeira, Pascal Poupart, and Agastya Kalra (2018). "An Empirical Study of Methods for SPN Learning and Inference". In: International Conference on Probabilistic Graphical Models, pp. 49-60.

References X

\oplus Choi, YooJung and Guy Van den Broeck (2018). "On robust trimming of Bayesian network classifiers". In: arXiv preprint arXiv:1805.11243.
\oplus Di Mauro, Nicola, Floriana Esposito, Fabrizio Giuseppe Ventola, and Antonio Vergari (2018). "Sum-Product Network structure learning by efficient product nodes discovery". In: Intelligenza Artificiale 12.2, pp. 143-159.
\oplus Jaini, Priyank, Amur Ghose, and Pascal Poupart (2018). "Prometheus: Directly Learning Acyclic Directed Graph Structures for Sum-Product Networks". In: International Conference on Probabilistic Graphical Models, pp. 181-192.
\oplus Molina, Alejandro, Antonio Vergari, Nicola Di Mauro, Sriraam Natarajan, Floriana Esposito, and Kristian Kersting (2018). "Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains". In: AAAI.
\oplus Oztok, Umut and Adnan Darwiche (2018). "An exhaustive DPLL algorithm for model counting". In: Journal of Artificial Intelligence Research 62, pp. 1-32.
\oplus Shen, Yujia, Arthur Choi, and Adnan Darwiche (2018). "Conditional PSDDs: Modeling and learning with modular knowledge". In: Thirty-Second AAAI Conference on Artificial Intelligence.
\oplus Holtzen, Steven, Todd Millstein, and Guy Van den Broeck (2019). "Symbolic Exact Inference for Discrete Probabilistic Programs". In: arXiv preprint arXiv:1904.02079.
\oplus Khosravi, Pasha, YooJung Choi, Yitao Liang, Antonio Vergari, and Guy Van den Broeck (2019a). "On Tractable Computation of Expected Predictions". In: Advances in Neural Information Processing Systems, pp. 11167-11178.
\oplus Khosravi, Pasha, Yitao Liang, YooJung Choi, and Guy Van den Broeck (2019b). "What to Expect of Classifiers? Reasoning about Logistic Regression with Missing Features". In: Proceedings of the 28th International Joint Conference on Artificial Intelligence (JCAI).

References XI

\oplus Kossen, Jannik, Karl Stelzner, Marcel Hussing, Claas Voelcker, and Kristian Kersting (2019). "Structured Object-Aware Physics Prediction for Video Modeling and Planning". In: arXiv preprint arXiv:1910.02425.
\oplus Molina, Alejandro, Antonio Vergari, Karl Stelzner, Robert Peharz, Pranav Subramani, Nicola Di Mauro, Pascal Poupart, and Kristian Kersting (2019). "SPFlow: An easy and extensible library for deep probabilistic learning using sum-product networks". In: arXiv preprint arXiv:1901.03704.
\oplus Peharz, Robert, Antonio Vergari, Karl Stelzner, Alejandro Molina, Xiaoting Shao, Martin Trapp, Kristian Kersting, and Zoubin Ghahramani (2019). "Random sum-product networks: A simple but effective approach to probabilistic deep learning". In: Proceedings of UAI.
\oplus Shao, Xiaoting, Alejandro Molina, Antonio Vergari, Karl Stelzner, Robert Peharz, Thomas Liebig, and Kristian Kersting (2019). "Conditional Sum-Product Networks: Imposing Structure on Deep Probabilistic Architectures". In: arXiv preprint arXiv:1905.08550.
\oplus Shih, Andy, Guy Van den Broeck, Paul Beame, and Antoine Amarilli (2019). "Smoothing Structured Decomposable Circuits". In: arXiv preprint arXiv:1906.00311.
\oplus Stelzner, Karl, Robert Peharz, and Kristian Kersting (2019). "Faster Attend-Infer-Repeat with Tractable Probabilistic Models". In: Proceedings of the 36th International Conference on Machine Learning. Ed. by Kamalika Chaudhuri and Ruslan Salakhutdinov. Vol. 97. Proceedings of Machine Learning Research. Long Beach, California, USA: PMLR, pp. 5966-5975. url: http://proceedings.mlr.press/v97/stelzner19a.html.
\oplus Correia, Alvaro, Robert Peharz, and Cassio P de Campos (2020). "Joints in random forests". In: Advances in neural information processing systems 33, pp. 11404-11415.
\oplus Giunchiglia, Eleonora and Thomas Lukasiewicz (2020). "Coherent hierarchical multi-label classification networks". In: NeurIPS 33, pp. 9662-9673.
\oplus Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020). "Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits". In: ICML.

References XII

\oplus Vlastelica, Marin, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek (2020). "Differentiation of blackbox combinatorial solvers". In: ICLR.
\oplus Colnet, Alexis de and Stefan Mengel (2021). "A Compilation of Succinctness Results for Arithmetic Circuits". In: Proceedings of the International Conference on Principles of Knowledge Representation and Reasoning. Vol. 18. 1, pp. 205-215.
\oplus Vergari, Antonio, YooJung Choi, Anji Liu, Stefano Teso, and Guy Van den Broeck (2021). "A Compositional Atlas of Tractable Circuit Operations: From Simple Transformations to Complex Information-Theoretic Queries". In: NeurIPS. arXiv: 2102.06137 [stat .ML] .
\oplus Ahmed, Kareem, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck, and Antonio Vergari (2022a). "Semantic Probabilistic Layers for Neuro-Symbolic Learning". In: arXiv preprint arXiv:2206.00426.
\oplus Ahmed, Kareem, Eric Wang, Kai-Wei Chang, and Guy Van den Broeck (2022b). "Neuro-symbolic entropy regularization". In: Uncertainty in Artificial Intelligence. PMLR, pp. 43-53.
\oplus Dang, Meihua, Anji Liu, and Guy Van den Broeck (2022). "Sparse Probabilistic Circuits via Pruning and Growing". In: NeurlPS. url: http://starai.cs.ucla.edu/papers/DangNeurIPS22.pdf.
\oplus Liu, Anji, Honghua Zhang, and Guy Van den Broeck (2022). "Scaling Up Probabilistic Circuits by Latent Variable Distillation". In: arXiv preprint.

[^0]: Rezende et al., "Stochastic backprop. and approximate inference in deep generative models", 2014 Kingma and Welling, "Auto-Encoding Variational Bayes", 2014

[^1]: Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016
 Martens and Medabalimi, "On the Expressive Efficiency of Sum Product Networks", 2014

[^2]: Cohen et al., "On the expressive power of deep learning: A tensor analysis", 2016
 Martens and Medabalimi, "On the Expressive Efficiency of Sum Product Networks", 2014

[^3]: Poon and Domingos, "Sum-Product Networks: a New Deep Architecture", 2011
 Sguerra and Cozman, "Image classification using sum-product networks for autonomous flight of micro aerial vehicles", 2016

[^4]: Rathke et al., "Locally adaptive probabilistic models for global segmentation of pathological oct scans", 2017
 Yuan et al., "Modeling spatial layout for scene image understanding via a novel multiscale sum-product network", 2016
 Friesen and Domingos, "Submodular Sum-product Networks for Scene Understanding", 2016

[^5]: ${ }^{2}$ https://github.com/UCLA-StarAI/circuit-ops-atlas

[^6]: Kisa et al., "Probabilistic sentential decision diagrams", 2014
 Choi et al., "Tractable learning for structured probability spaces: A case study in learning preference distributions", 2015
 Shen et al., "Conditional PSDDs: Modeling and learning with modular knowledge", 2018

