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Outline: Reasoning N Learning

1. Deep Learning with Symbolic Knowledge
2. Efficient Reasoning During Learning

3. Probabilistic and Logistic Circults



Deep Learning with
Symbolic Knowledge




Motivation: Vision

if they appear in the same time ¢. We then introduce an
edge potential that enforces mutual exclusion:

1 lf Yt.i ; yt.]
0 otherwise

L'mutux(yt.b yt.j) = { (5)
This potential specifies the constraint that a player can
belappear only once in a frame] For example, if the i-th
detection y; ; has been assign to Bryant, y,; ; cannot have
the same identity because Bryant is impossible to appear

twice in a frame.

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Motivation: Robotics

®

The method developed in this paper can be used in a
broad variety of semantic mapping and object manipulation
tasks, providing an efficient and effective way to incorporate
collision constraints|into a recursive state estimator, obtaining
~optimal or near-optimal solutions.

[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012]



Motivation: Language

* Non-local dependencies:
“At least one verb in each sentence”

« Sentence compression
“If a modifier is kept, its subject is also kept”

 NELL ontology and rules

... and much more!

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],
[Ganchey, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]
... and many many more!



Motivation: Deep Learning

natuvre International weekly journal of science

New
Scientist
ment | Research | Careers & Jobs | Cumrent Issue | Archive | Audio & Video | For ¢

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

 Meet The People Shaping The Future Of Energy: Reinventing Enersy Summit- 25 Novernber in London
< &
= Google's Al reasons its way around the London
DeepMmd’s Al haslearned to Underground
naVIgate the Tube us'ng memory DeepMind’s latest technique uses external memory to solve tasks that require logic and
; = - reasoning — a step toward more human-like Al.
a Controller b Read and write heads < Memory :’.—.yg:noprir:fﬂgfs

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Motivation: Deep Learning

solve tasks that require logic and
reasoning — a step toward more human-like Al.

... but ...
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To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step.

Mariposa &

El Segundo &

Douglas :-

Redondo Beach #

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Learning with Symbolic Knowledge

+ -

1. Must take at least one of Probability (P)
or Logic (L).

2. Probability (P) is a prerequisite for Al (A).

3. The prerequisites for KR (K) is either Al

(A) or Logic (L).




Learning with Symbolic Knowledge

+ -

Today’s machine learning tools

don’t take knowledge as input! ®




Deep Learnlng +[Constraints]

Wlth [Deep Neural ]

Symbolic Knowledge

Neural Network

Output is

probabillity vector p,
not Boolean logic!




Semantic Loss

Q: How close Is output p to satisfying constraint a?
Answer:. Semantic loss function L(a,p)

« Axioms, for example:
— If a fixes the labels, then L(a,p) Is cross-entropy
— If a implies B then L(a,p) 2 L(B,p) (a more strict)

* Implied Properties: __— SEMANTIC
— If a is equivalent to 3 then L(a,p) = L(B,p) Loss!
— If p Is Boolean and satisfies a then L(a,p) =0



Semantic Loss: Definition

Theorem: Axioms imply unique semantic loss:

L(ap)x—log S J[ » I (1-po

x=a ix=X; drm—— X,

. /
Y

Probability of getting state x after
flipping coins with probabillities p

N\ /
Y

Probability of satisfying a after
flipping coins with probabillities p




Simple Example: Exactly-One

« Data must have some label
We agree this must be one of the 10 digits:

« Exactly-one constraint  (x1 Vx,V x3

] —1Xq1 V —1X?9
— For 3 classes: - VRV
« Semantic loss: | X1 V X3
L*(exactly-one, p) o< — log Z o H (1—p;)
i=l  j= 1J$é?

J

Only xi =1 after flipping coins

U J
Y

Exactly one true x after flipping coins




Semi-Supervised Learning

* |ntuition: Unlabeled data must have some label
Cf. entropy minimization, manifold learning

e C(Class1 * C(Class1

4 Class 2 . - 4 Class?2

= Unlabeled A, . = Unlabeled
. A I

« Minimize exactly-one semantic loss on unlabeled data

Train with
existing loss + w - semantic loss




3

Accuracy % with # of used labels 100 1000 ALL

AtlasRBF (Pitelis et al., 2014) 919 (+0.95) 96.32 (+£0.12) 98.69

Deep Generative (Kingma et al., 2014) 96.67(+0.14) 97.60 (+0.02) 99.04

Virtual Adversarial (Miyato et al., 2016)  97.67 98.64 99.36

Ladder Net (Rasmus et al., 2015) 98.94 (+0.37) 99.16 (£0.08) 99.43 (+0.02)
Baseline: MLP, Gaussian Noise 78.46 (£1.94) 9426 (£0.31) 99.34 (+0.08)
Baseline: Self-Training 72.55 (£4.21)  87.43(£3.07)

Baseline: MLP with Entropy Regularizer  96.27 (:0.64)  98.32 (£0.34) 99.37 (4+0.12)

MLP with Semantic Loss 98.38 (£0.51) 9878 (+0.17)  99.36 (+0.02)
Accuracy % with # of used labels] 100 500 1000 ALL
Ladder Net (Rasmus et al., 2015)| 81.46 (+0.64 ) | 85.18 (+0.27) 86.48 (+0.15) 90.46
Baseline: MLP, Gaussian Noise 69.45 (£2.03) | 78.12 (£1.41) 80.94 (+0.84) 89.87
MLP with Semantic Loss 86.74 (£0.71) | 89.49 (+0.24) 89.67 (x=0.09) 89.81

Same conclusion on CIFAR10

Experimental Evaluation

Competitive with
state of the art

INn semi-supervised

deep learning

Outperforms SoA!

Accuracy % with # of used labels 4000 ALL
CNN Baseline in Ladder Net 76.67 (=0.61) | 90.73
Ladder Net (Rasmus et al., 2015) 79.60 (=0.47)
Baseline: CNN. Whitening, Cropping | 77.13 90.96
CNN with Semantic Loss 81.79 90.92




Efficient Reasoning
During Learning




But what about real constraints?

o, e .

 Path constraint

= S NS f
e 1

VS.

« Example: 4x4 grids
224 =184 paths + 16,777,032 non-paths
» Easily encoded as logical constraints ©

[Nishino et al., Choi et al.]



How to Compute Semantic Loss?

 |[n general: #P-hard ®

L(a,p)ox—log > ] » J] @-ps)

x=a ixEX; ==X



Reasoning Tool: Logical Circuits

Representation of @

logical sentences: [ L
A

(CA=D)V (=CAD)

alle

C XORD




Reasoning Tool: Logical Circuits

Representation of
logical sentences:

Input:

A B C D

0

1

1

0

A
h g

alG




Tractable for Logical Inference

* Is there a solution? (SAT)
— SAT(a Vv p) Iff SAT(a) or SAT(S) (always)
— SAT(a A B) iff 227



Decomposable Circuits

AR

B,C,D




Tractable for Logical Inference

* |s there a solution? (SAT) v
— SAT(a v B) iff SAT(a) or SAT(B) (always)
— SAT(a A B) iff SAT(a) and SAT(B) (decomposable)

 How many solutions are there? (#SAT)

« Complexity linear in circuit size ©



Deterministic Circuits

£
.
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Deterministic Circuits

A
25"

A -
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How many solutions are there? (#SAT)
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Tractable for Logical Inference

Is there a solution? (SAT) v

How many solutions are there? (#SAT) v
Conjoin, disjoin, equivalence checking, etc. v
Complexity linear in circuit size ©

Compilation into circuit by
— | exhaustive SAT solver
— 1 conjoin/disjoin/negate

[Darwiche and Marquis, JAIR 2002]



How to Compute Semantic Loss?

* |n general: #P-hard ®
* With a logical circuit for a: Linear ©
« Example: exactly-one constraint:

N
S AN

XL L2 —&r3 S| €2 €r3 Pl'(.l.’l) Pl( ﬁ;l’g) Pl'(ﬁ;l':g) Pl'(_kf.'l) Pl‘(;l'g) Pl‘(;l’g)

L(a,p) =L(/ ), p)

X

 Why? Decomposability and determinism!



Predict Shortest Paths

Add semantic loss
for path constraint

Test accuracy % | Coherent | Incoherent | Constraint
d-layer MLP 5.62 85.91 6.99
Semantic loss 28.51 83.14 69.89
Is prediction Are individual Is output
the shortest path? edge predictions a path?
This is the real task! correct?

(same conclusion for predicting sushi preferences, see paper)



Conclusions 1

Knowledge is (hidden) everywhere in ML
Semantic loss makes logic differentiable
Performs well semi-supervised

Requires hard reasoning in general
— Reasoning can be encapsulated in a circuit
— No overhead during learning

Performs well on structured prediction
A little bit of reasoning goes a long way!



Probabilistic and Logistic Circuits




A False Dilemma?

Classical Al Methods

Hungry? $25?
Am | hungry?
Sleep? Restau
rant?
e 12557 leep
EEE Buy a hamburger

Clear Modeling Assumption
Well-understood

Neural Networks

O O O ] O
\ L)
BEBERAEERROERAARD:
olclolclolololo

“Black Box”
Empirical performance



Inspiration: Probabillistic Circults

Can we turn A Q@ @QA
logic circuits Q ™
Into a
statistical model? 2 8

C -C —D




Probabilistic Circuits

Pr(4,B,C,D) =0.096

0.9 0.1
t g P
% 4
0 02 08 o 0.4 @ 0.6 1
01 @ Q
1 8 3
_ 0.1brdo9 0307
Input: 0.1[]0.90.8] |02
0 0 1 0
A B C D PI‘(A, Ba C? D) B B
1 0
0 1 1 O ?

—(Q
|
Q
|
)
)




Each node represents

: L K P A|Pr(LK,PA)
a normalized 00 00 0.00%
: : : 00 0 1 0.00%
distribution! 00 10 6.00%
00 11 54.00%
01 00 0.00%
ﬁ 01 01 0.00%
| | 01 10 0.00%
01 1 1 10.00% |
10 00 4.40%
110 1|0 . L
1 0 01 0.00%
ﬂ ﬂ ﬂ 10 10 1.00%
TV TV TVip aloaro 1011 0.60%
LK LL1 P AP - P’H(;f;‘;:}) LL —P-A P 1100 17.6%
001 73.557%0 1101 0.00%
0 1| 0.00% 025 Lo 1 1 10 4.00Y%
1 0] 16.67% A-A 1 1 11 2.40%
1 1 10.00%

Can read probabilistic independences off the circuit structure




Parameters are Interpretable

0.6

Probability of course P given L

ﬁL ﬁK L L é
0.75 09/ 101

a5 A —A
Student takes course P

-LK L1 PA —PL

{ Student takes course L




Properties, Properties, Properties!

Read conditional independencies from structure
Interpretable parameters (XAl)

(conditional probabilities of logical sentences) Q
Closed-form parameter learning
Efficient reasoning

— MAP inference: most-likely assignment to x given y
(otherwise NP-hard)

— Computing conditional probabilities Pr(x|y)
(otherwise #P-hard)

— Algorithms linear in circuit size ©

— x and y could even be complex logical circuits



Discrete Density Estimation

LearnPSDD
Datasets | |Var| Ensemble Best-to-Date
NLTCS 16 —5.99f —6.00
MSNBC 17 —6.041 —6.041
KDD 64 —2.11t —2.12
Plants 69 —13.02 —11.997
Audio 100 —39.94 —39.497
Jester 100 —51.29 —41.117
Netflix 100 —55.711 —55.84
Accidents 111 —30.16 —24.871
Retail 135 —10.72t -10.78
Pumsb-Star | 163 —26.12 —22.407
DNA 180 —88.01 —R0.037
Kosarek 190 —10.52t —10.54
MSWeb 294 —9.89 —9.22f
Book 500 —34.97 —30.187
EachMovie | 500 —58.01 —51.147
WebKB 839 —161.09 —150.101
Reuters-52 | 889 —89.61 —80.667
20NewsGrp. | 910 —155.97 —150.881
BBC 1058 —253.19 —233.261
AD 1556 —31.78 —14.367

LearnPSDD

state of the art
on 6 datasets!

Q: “Help! | need to learn a
discrete probability distribution...”
A: Learn probabillistic circuits!

Strongly outperforms
« Bayesian network learners
« Markov network learners

Competitive SPN learner



Learning Preference Distributions

Special-purpose
distribution:
Mixture-of-Mallows

— # of components
from 1 to 20

— EM with
10 random seeds

— Implementation of
Lu & Boutilier

~13.6 sushi
PSDD

- -3 T
o | e
O _13.8f et
b, —13.9-\_{‘\»"
o _
3 14.0
Q
o -14.1
E
o —14.2
>
©

—-14.3 «  mix-of-mallows (test) |

= psdd (test)
—l44 5 10 15

# of mixture components

20



Compilation for Prob. Inference

Q”P

Ralnbnw

Pr(Rain) = 0.2,

0.1if Rain

P Sun| Radn) = {0.7 if =Rain

1 if Rain A Sun

Eniibon | B3] = {0 otherwise



Collapsed Compilation peues o

To sample a circuit:
1. Compile bottom up until you reach the size limit
2. Pick a variable you want to sample

3. Sample it according to its marginal distribution in
the current circuit

4. Condition on the sampled value
5. (Repeat)

Asymptotically unbiased importance sampler ©



Circuits +
importance weights
approximate any query

>(



Experiments

Table 2: Hellinger distances across methods with internal treewidth and size bounds

Method 50-20 75-26 DBN Grids Segment | linkage frust

EDBP-100k | 2.19e—3 | 3.17e—5 | 6.39e—1 | 1.24e—3 | 1.63e—6 | 6.54e—8 | 4.73e—3
EDBP-1m 7.40e—7 | 2.21e—4 | 6.39e—1 | 1.98e—7 | 1.93e—7 | 5.98¢—8 | 4.73e—3
SS-10 2.51le—2 | 2.22e—3 | 6.37e—1 | 3.10e—1 | 3.11e—7 | 4.93e—2 | 1.05e—2
SS-12 6.96e—3 | 1.02e—3 | 6.27e—1 | 2.48¢—1 | 3.11e—7 | 1.10e—3 | 5.27e—4
SS-15 9.09e—6 | 1.09e—4 | (Exact) 8.74e—4 | 3.11e—7 | 4.06e—6 | 6.23e—3
FD 9.77e—6 | 1.87e—3 | 1.24e—1 | 1.98e—4 | 6.00e—8 | 5.99e—6 | 5.96e—6
MinEnt 1.50e—5 | 3.29¢—2 | 1.83e—2 | 3.6le—3 | 3.40e—7 | 6.16e—5 | 3.10e—2
RBVar 2.66e—2 | 4.39¢e—1 | 6.27e—3 | 1.20e—1 | 3.0le—7 | 2.02¢—2 | 2.30e—3

approximate inference in graphical models.
Outperforms it on several benchmarks!

Competitive with state-of-the-art




But what if | only want to classify Y?

Pr(Y|A, B, C,D)




L ogistic Pr(Y =1|A,B,C, D)

. : 1
Circuits = = 0.869
1+ exp(—1.9)
Logistic function ey Q .
on output weight Q
N .
A
0 1@3 2.3@4
|nput: —4|1 39]|4 =N
A B C D PY|AB,CD) [B -
1 0
o 1 1 0 ? = = - B
1 0 1 0




Alternative Semantics

Represents Pr(Y | A,B,C,D)

« Take all ‘hot’ wires

« Sum their weights

* Push through logistic function

A B C D g¢.(ABCD) Pr(Y =1|ABCD)
1 0 1 1 3 1 4.31%
0 1 1 0 1.9 86.99%
T T 0 e 99.70%




Special Case: Logistic Regression

A

f

» Logistic Regression
/‘

L

:

A - A B - B C -C D - D

1
1+exp(—Ax0,——Ax0_,—Bx0Og—-)

Pr(Y = 1|4,B,C,D) =

Is this a coincidence?
What about more general circuits?



Parameter Learning

Reduce to logistic regression:
1
PriY =1 |x) = 1+ex)

Features associated with each wire J

“Global Circuit Flow” features

Learning parameters 6 Is convex optimization!



Logistic Circuit Structure Learning

N N N0 0

B t j -B g—!B
-Al| |B 1*!1 -A

Generate alculate
candidate Gradient
operations Variance

Execute the
best operation




Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET MNIST FASHION
BASELINE: LOGISTIC REGRESSION 85.3 79.3
BASELINE: KERNEL LOGISTIC REGRESSION 97.7 88.3
RANDOM FOREST 97.3 81.6
3-LAYER MLP 97.5 84.8
RAT-SPN (PEHARZ ET AL. 2018) 98.1 89.5
SVM WITH RBF KERNEL 98.5 87.8
5-LAYER MLP 99.3 89.8

£ 2 RIN AR Sy X

LOGISTIC CIRCUIT (REAL-VALUED) 99 4 91.3

CNN WITH 3 CONV LAYERS 99.1 90.7
RESNET (HE ET AL. 2016) 99.5 93.6




Significantly Smaller in Size

NUMBER OF PARAMETERS MNIST FASHION

BASELINE: LOGISTIC REGRESSION <1K <1K
BASELINE: KERNEL LOGISTIC REGRESSION 1,521 K 3.930K

LLOGISTIC CIRCUIT (REAL-VALUED) 182K 467K

OGISTIC CIRCUIT (BINARY 63 K 614K
3-LAYER MLP 1.411K 1.411K
RAT-SPN (PEHARZ ET AL. 2018) 8.500K 650K
CNN WITH 3 CONV LAYERS 2,.196K 2.196K
5-LAYER MLP 2.411K 2.411K

RESNET (HE ET AL. 2016) 4,838K 4,838K




Better Data Efficiency

ACCURACY % WITH % OF TRAINING DATA MNIST FASHION

100% 10% 2% 100% 10%
5-LAYER MLP 99.3 98.2 94.3 89.8 86.5
CNN WITH 3 CONV LAYERS 99.1 08.1 95.3 90.7 87.6
LOGISTIC CIRCUIT (BINARY) 97.4 96.9 94.1 87.6 86.7

LOGISTIC CIRCUIT (REAL-VALUED) 94 97.6 961 91.3 87.8




Logistic vs. Probabilistic Circuits
Pr(Y | A,B,C,D)

Probabilities
become
log-odds

0.9 0.3 0.7
In 55 In 0.5 In o
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2+2 = Reasoning About Classifiers

2 = State-of-the-art (discrete) densities
2 = Non-compromising classifiers

2+2= Tools for reasoning about how a
classifier acts on a distribution

Adversarial
Missing data
Active sensing
Explainability

Fairness
 Robustness
 Unknown unknowns
« Selection bias




What to expect of classifiers? ucas

* Given a predictor Y=F(X), a distribution P(X)
* What is expected prediction of F in P(X|e)?

« Computationally hard
— Even with trivial F (#P-hard)
— Even with trivial P (#P-hard)
— Even with trivial F and P (NP-hard)
« But: we can do this efficiently
on regression circuit F and e
probabilistic circuit P! I




XAl User Study: 5 or 37
! -
.:t E

Misclassified

Correctly
Classified

1

I.

Sufficient Explanations



Compare to
Data Distribution-Unaware explanations

Misclassified

Correctly
Classified



Conclusions 2

Statistical ML
“Probability”

Connectionism

Symbolic Al Deep

“Logic”



Final Conclusions

Knowledge Is everywhere in learning
Some concepts not easily learned from data
Make knowledge first-class citizen in ML

Logical circuits turned statistical models
Strong properties produce strong learners

There is no dilemma between
understanding and accuracy?

A wealth of high-level reasoning approaches
are still absent from ML discussion
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