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The AI Dilemma

Pure Learning

• Slow thinking: deliberative, cognitive, model-based, extrapolation
• Amazing achievements until this day

 

• “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, …

Pure (Logic) Reasoning



The AI Dilemma

Pure Learning

• Fast thinking: instinctive, perceptive, model-free, interpolation
• Amazing achievements recently
• “Pure learning is brittle”

 
 

    fails to incorporate a sensible model of the world

Pure (Logic) Reasoning

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing 
labels, data efficiency, shift in distribution, general robustness and safety



The AI Dilemma

Pure LearningPure (Logic) Reasoning

• Learn statistical models subject to symbolic knowledge
• Integrate reasoning into modern learning algorithms

 

Today:  Deep learning with structured output constraints
 Learning monotonic neural networks



Knowledge in Vision, Robotics, NLP

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.], [Wong, L. L., Kaelbling, L. 
P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012], [Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],  [Ganchev, 

K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]… and many many more!

People appear at most 
once in a frame

Rigid objects don’t overlap

☹ ☺

At least one verb in each sentence. 
If X and Y are married, then they are people.



Activity Recognition & Task Guidance

Cut the orange before squeezing the orange



Motivation: Deep Learning

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). 
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Motivation: Deep Learning

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). 
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]

… but …

☹



Warcraft Shortest Path
Predicting the minimum-cost path

[Vlastelica et al., 2019]





Predict Loan Amount

Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge): 
Increasing income should increase the approved loan amount



Knowledge vs. Data
• Where did the world knowledge go?

– Python scripts
• Decode/encode cleverly
• Fix inconsistent beliefs

– Rule-based decision systems
– Dataset design
– “a big hack”  (with author’s permission)



Knowledge vs. Data
• Where did the world knowledge go?

– Python scripts
• Decode/encode cleverly
• Fix inconsistent beliefs

– Rule-based decision systems
– Dataset design
– “a big hack”  (with author’s permission)

• In some sense we went backwards
Less principled, scientific, and intellectually satisfying ways of 
incorporating knowledge



Deep Learning with 
Constraints



pylon
A PyTorch Framework for Learning with Constraints

Kareem Ahmed    Tao Li      Thy Ton     Quan Guo, 
Kai-Wei Chang      Parisa Kordjamshidi      Vivek Srikumar

Guy Van den Broeck      Sameer Singh

http://pylon-lib.github.io



Declarative Knowledge of the Output

Neural Network

y
How is the output structured?
Are all possible outputs valid?

                                  vs.

How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively

How can do we inject declarative knowledge into PyTorch training code?



pylon

Library that extends PyTorch to allow injection of declarative knowledge

● Easy to Express Knowledge: users write arbitrary constraints on the output

● Integrates with PyTorch: minimal change to existing code

● Efficient Training: compiles into loss that can be efficiently optimized

○ Exact semantic loss

○ Monte-carlo estimate of loss

○ T-norm approximation

○ your solver?



pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid



pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)



pylon

PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

Specify knowledge as a predicate1

def check(y):
    ...
    return isValid

Add as loss to training2

loss += constraint_loss(check)

loss += constraint_loss(check)(py)
pylon derives the gradients
(solves a combinatorial problem)

3

 



without constraint            with constraint without constraint            with constraint



Is output 
a path?

Are individual 
edge predictions 

correct?

Is prediction
the shortest path?

This is the real task!

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.

https://arxiv.org/pdf/2201.11250.pdf
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Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.

https://arxiv.org/pdf/2201.11250.pdf


Semantic Loss
   Q: How close is output p to satisfying constraint α?
   A: Semantic loss function L(α,p)
 

• Axioms, for example:
– If α constrains to one label, L(α,p) is cross-entropy 
– If α implies β then L(α,p) ≥ L(β,p)     (α more strict)

• Implied Properties: 
– If α is equivalent to β then L(α,p) = L(β,p)
– If p is Boolean and satisfies α then L(α,p) = 0

SEMANTIC
Loss!



Axioms imply unique semantic loss:

Probability of satisfying constraint α after 
sampling from neural net output layer p

We do this probabilistic-logical reasoning 
during learning in a computation graph

In general: #P-hard ☹



Logical Computation Graphs
• Logical circuits that can count solutions (#SAT)
• Also compute semantic loss efficiently in size of circuit

• Compilation into circuit by SAT solvers (once)
• Add circuit to neural network output in pytorch/tensorflow/...

L(α,p) = L(    , p) =     - log(      )



a) A  network  uncertain  over
both valid & invalid predictions

b) A network allocating most of
its mass to an invalid prediction.

c) A network allocating most of
its mass to models of the formula

Semantic 
Loss

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang and Guy Van den Broeck. A Semantic 
Loss Function for Deep Learning with Symbolic Knowledge, ICML, 2018.

http://starai.cs.ucla.edu/papers/XuICML18.pdf
http://starai.cs.ucla.edu/papers/XuICML18.pdf


d) A network allocating most of
mass to one model of formula

a) A  network  uncertain  over
both valid & invalid predictions

b) A network allocating most of
its mass to an invalid prediction.

c) A network allocating most of
its mass to models of the formula

x

Neuro-Symbolic
Entropy 
Regularization

Semantic 
Loss

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.

https://arxiv.org/pdf/2201.11250.pdf


Neural net Semantic Loss

Neuro-symbolic

Entropy-regularization

Constraint

Two complementary 
neuro-symbolic losses



Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.

https://arxiv.org/pdf/2201.11250.pdf


Joint entity-relation extraction in natural language processing

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.

https://arxiv.org/pdf/2201.11250.pdf


Probabilistic-Logical Reasoning using Circuits



Semantic Probabilistic Layers

● How to give a 100% guarantee that Boolean constraints will be satisfied?
● Bake the constraint into the neural network as a special layer



Warcraft Shortest Path



Hierarchical Multi-Label Classification

“if the image is classified as a dog, it must 
also be classified as an animal”

“if the image is classified as an animal, it 
must be classified as either cat or dog”



Neuro-Symbolic Learning Settings

Learn

1. neural network given symbols and constraints and data

2. neural network and constraints given symbols and data

3. neural network and constraints and symbols given data

Everyone is working on 1. Ongoing work on 2.



Neuro-Symbolic Joint Training

Learn invariant features using neural networks. Learn logic to tie it all together.



Neuro-Symbolic Joint Training

Learn invariant features using neural networks. Learn logic to tie it all together.



Monotonicity Invariants for 
Neural Networks



Predict Loan Amount

Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge): 
Increasing income should increase the approved loan amount



Counterexamples

Computed using SMT(LRA) 
logical reasoning solver

Maximal counterexamples 
(largest violation) using OMT 

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf


Counterexample-Guided Predictions

Monotonic Envelope:

● Replace each prediction by its 
maximal counterexample

● Envelope construction is online
(during prediction)

● Guarantees monotonic predictions
for any ReLU neural net

● Works for high-dimensional input
● Works for multiple 

monotonic features

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf


Monotonic Envelope: Performance

Guaranteed monotonicity at little to no cost

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf


How to use monotonicity to improve model quality?
“Monotonicity as inductive bias”

Counterexample-Guided Learning

TrainData

Gen. 
Counterexample

f Counterexamples T Epochs

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf


Counterexample-Guided Learning: Performance

Monotonicity is a great inductive bias for learning

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf


Counterexample-Guided Monotonicity Enforced Training 
(COMET)

COMET = Provable Guarantees + SotA Results
Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.

http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf


The AI Dilemma

Pure LearningPure (Logic) Reasoning

• Knowledge is (hidden) everywhere in ML
• A little bit of reasoning goes a long way!

 

Deep learning with structured output constraints
Learning monotonic neural networks



Thanks

This was the work of many wonderful 
students/postdoc/collaborators!

References: http://starai.cs.ucla.edu/publications/ 

http://starai.cs.ucla.edu/publications/

