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Deceptive play

Should I bluff?



  

Opponent modeling

Should I bluff?
Is he bluffing?



  

Incomplete information

Should I bluff?

Who has the Ace?

Is he bluffing?



  

Game of chance

Should I bluff?

Who has the Ace? What are the odds?

Is he bluffing?



  

Exploitation

Should I bluff?

Who has the Ace? What are the odds?

Is he bluffing?

I'll bet because he always calls



  

Huge state space

Should I bluff?

Who has the Ace? What are the odds?

Is he bluffing?

What can happen next?

I'll bet because he always calls



  

Risk management & 
Continuous action space

Should I bet $5 or $10?Should I bluff?

Who has the Ace? What are the odds?

Is he bluffing?

What can happen next?

I'll bet because he always calls



  

Take-Away Message:
We can solve all these problems!

Should I bet $5 or $10?Should I bluff?

Who has the Ace? What are the odds?

Is he bluffing?

What can happen next?

I'll bet because he always calls



 

Problem Statement

 A bot for Texas hold'em poker
 No-Limit & > 2 players

 Not done before!

 Exploitative, not game theoretic
 Game tree search + Opponent modeling

 Applies to any problem with either
 incomplete information 
 non-determinism
 continuous actions
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 Minimax trees: deterministic
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Poker Game TreePoker Game Tree

 Minimax trees: deterministic
 Tic-tac-toe, checkers, chess, go,…

 Expecti(mini)max trees: chance
 Backgammon, …

 Miximax trees: hidden information

  max    min

mix

  max

  max

   min

    mix

mix

+ opponent model
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Short ExperimentShort Experiment



 

Opponent ModelOpponent Model

 Set of probability trees
 Weka's M5'
 Separate model for

 Actions

 Hand cards at showdown



 

Fold ProbabilityFold Probability
nbAllPlayerRaises <= 1.5 : 
|    callFrequency <= 0.128 : 
|    |    nbActionsThisRound <= 2.5 : 
|    |    |    potOdds <= 0.28 : 
|    |    |    |    AF <= 2.585 : 0.6904
|    |    |    |    AF >  2.585 : 
|    |    |    |    |    potSize <= 3.388 : 
|    |    |    |    |    |    round=flop <= 0.5 : 0.8068
|    |    |    |    |    |    round=flop >  0.5 : 0.6896
|    |    |    |    |    potSize >  3.388 : 0.8198
|    |    |    potOdds >  0.28 : 
|    |    |    |    stackSize <= 97.238 : 
|    |    |    |    |    callFrequency <= 0.038 : 0.8838
|    |    |    |    |    callFrequency >  0.038 : 
|    |    |    |    |    |    round=flop <= 0.5 : 0.8316
|    |    |    |    |    |    round=flop >  0.5 : 
|    |    |    |    |    |    |    nbSeatedPlayers <= 7.5 : 0.6614
|    |    |    |    |    |    |    nbSeatedPlayers >  7.5 : 0.7793
|    |    |    |    stackSize >  97.238 : 
|    |    |    |    |    potSize <= 4.125 : 
|    |    |    |    |    |    foldFrequency <= 0.813 : 0.7839
|    |    |    |    |    |    foldFrequency >  0.813 : 0.9037
|    |    |    |    |    potSize >  4.125 : 0.8623
|    |    nbActionsThisRound >  2.5 : 
|    |    |    potOdds <= 0.218 : 
|    |    |    |    callFrequency <= 0.067 : 0.8753
|    |    |    |    callFrequency >  0.067 : 0.7661
|    |    |    potOdds >  0.218 : 
|    |    |    |    AF <= 2.654 : 0.8818
|    |    |    |    AF >  2.654 : 0.921



 

(Can also be relational)
 Tilde probability tree [Ponsen08]



 

Opponent RanksOpponent Ranks

 Learn distribution of hand ranks at 
showdown

Rank Bucket

Probability

Number of Raises

Probability
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Traversing the treeTraversing the tree

 Limit Texas Hold’em
 1018 nodes
 Fully traversable

 No-limit
 >1071 nodes
 Too large to traverse
 Sampled, not searched
 Monte-Carlo Tree Search



 

Monte-Carlo 
Tree Search
Monte-Carlo 
Tree Search

[Chaslot08]



 

SelectionSelection

In each node: is an estimate of the reward

is the number of samples
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SelectionSelection

 UCT (Multi-Armed Bandit)

 CrazyStone

In each node: is an estimate of the reward

is the number of samples

exploration

exploitation



 

Expansion
Simulation
Expansion
Simulation



 

BackpropagationBackpropagation
is an estimate of the reward

is the number of samples



 

BackpropagationBackpropagation

 Sample-weighted 
average

is an estimate of the reward

is the number of samples



 

BackpropagationBackpropagation

 Sample-weighted 
average

 Maximum child

is an estimate of the reward

is the number of samples



 

Initial experiments
 1*MCTS + 2*rule based
 Exploitative!

MCTS Bot
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MCTS for games 
with uncertainty?
 Expected reward distributions (ERD)
 Sample selection using ERD
 Backpropagation of ERD

[VandenBroeck09]
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ERD selection 
strategy

 Objective?
 Find maximum expected reward
 Sample more in subtrees with 

(1) High expected reward
(2) Uncertain estimate 

 UCT does (1) but not really (2)
 CrazyStone does (1) and (2) for 

deterministic games (Go)
 UCT+ selection:

(1)            (2)
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 Find maximum expected reward
 Sample more in subtrees with 

(1) High expected reward
(2) Uncertain estimate 

 UCT does (1) but not really (2)
 CrazyStone does (1) and (2) for 

deterministic games (Go)
 UCT+ selection:
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ERD selection 
strategy

 Objective?
 Find maximum expected reward
 Sample more in subtrees with 

(1) High expected reward
(2) Uncertain estimate 

 UCT does (1) but not really (2)
 CrazyStone does (1) and (2) for 

deterministic games (Go)
 UCT+ selection:

“Measure of uncertainty due to sampling”
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“When the game 
reaches P, we'll have 
more time to find the 
real              “
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max

  A

…

  B

…

3 4

ERD max-distribution 
backpropagation

A<4 A>4

B<4 0.8*0.5 0.2*0.5

B>4 0.8*0.5 0.2*0.5

P(A>4) = 0.2P(A<4) = 0.8

P(B>4) = 0.5P(B<4) = 0.5

P(max(A,B)>4) = 0.6
                         > 0.5

4.5



 

Experiments

 2*MCTS
 Max-distribution 
 Sample-weighted

 2*MCTS
 UCT+ (stddev)
 UCT
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Dealing with 
continuous actions

 Sample discrete actions

 Progressive 
unpruning [Chaslot08] 
(ignores smoothness of EV function)

 ...
 Tree learning search (work in progress)

relative 
betsize



 

Tree learning search

 Based on regression tree induction 
from data streams
 training examples arrive quickly
 nodes split when significant reduction in stddev
 training examples are immediately forgotten

 Edges in TLS tree are not actions, but sets of 
actions, e.g., (raise in [2,40]), (fold or call)

 MCTS provides a stream of (action,EV) examples
 Split action sets to reduce stddev of EV

(when significant)



 

Tree learning search
max

{Fold, Call}

max

Bet in [0,10]

? ?
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Tree learning search
max

?

{Fold, Call}

max

Bet in [0,10]

?

Optimal split at 4



 

Tree learning search
max

Bet in 
[0,4]

{Fold, Call}

max

Bet in [0,10]

Bet in [4,10]

max max

? ?? ?



 

one action of P1

one action of P2

Tree learning search



 

Selection Phase

Sample 2.4

P1

Each node has EV estimate, which 
generalizes over actions



 

Expansion

Selected Node

P1

P2



 

Expansion

Expanded node
Represents any action of P3

P3

P2

P1



 

Backpropagation

New sample;
Split becomes 
significant
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Online learning of 
opponent model

 Start from (safe) model of general opponent
 Exploit weaknesses of specific opponent

Start to learn model
of specific opponent

(exploration of 
opponent behavior)



 

Multi-agent 
interaction
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Yellow learns model 
for Blue and 
changes strategy



 

Multi-agent 
interaction

Yellow learns model 
for Blue and 
changes strategy

Yellow doesn't profit!



 

Multi-agent 
interaction

Yellow learns model 
for Blue and 
changes strategy

Yellow doesn't profit!

Green profits without 
changing strategy!!
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Concept drift

 While learning from a stream, the training 
examples in the stream change
 In opponent model: changing strategy

 “Changing gears is not just about bluffing, it's 
about changing strategy to achieve a goal.”

 Learning with concept drift
 adapt quickly to changes
 yet robust to noise
 (recognize recurrent concepts)



 

Basic approach to 
concept drift

 Maintain a window of training examples
 large enough to learn
 small enough to adapt quickly
 without 'old' concepts

 Heuristics to adjust window size
 based on FLORA2 framework [Widmer92]



Accuracy

Window size

4 components of a single
opponent model

Start online learning

Concept drift



Bad parameters for heuristic

NOT 
ROBUST

Accuracy

Window size
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Conclusions

 First exploitive poker 
bot for 
 No-limit Holdem
 > 2 players

 Apply in other games
 backgammon
 computational pool
 ...

 Challenge for MCTS
 games with uncertainty
 continuous action space

 Challenge for ML
 online learning
 concept drift
 (relational learning)



 

Thanks for listening!
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