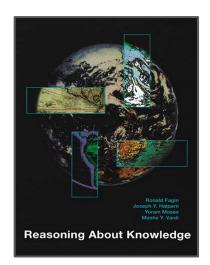
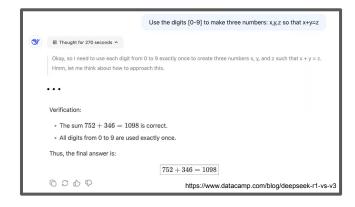


Symbolic Reasoning About Large Language Models

Guy Van den Broeck

Reasoning with Symbolic Al


- Deductive reasoning algorithms
- Logic and probabilistic
- Correct on all problems
- Limited scope
- Intractable

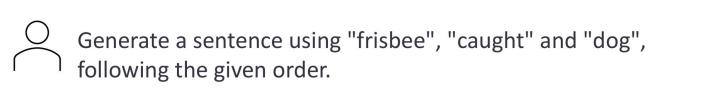


Reasoning with Transformers

- Inductive reasoning from data
- Build chains of thought
- Correct on many problems
- Unlimited scope
- Tractable

Questions for this talk:

1. Do deductive reasoning algorithms still have a purpose in the age of transformers?


2. Where did reasoning algorithms go wrong? What should they look like today?

Questions for this talk:

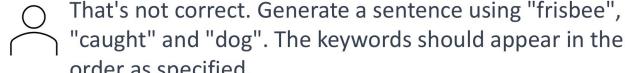
1. Do deductive reasoning algorithms still have a purpose in the age of transformers?

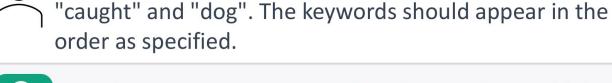
2. Where did reasoning algorithms go wrong? What should they look like today?

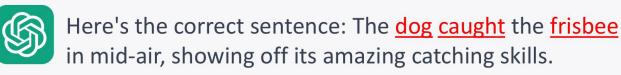
Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

ChatGPT




Generate a sentence using "frisbee", "caught" and "dog", following the given order.

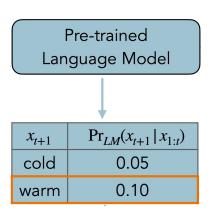


After a perfect throw, the <u>frisbee</u> glided through the air, and the dog, with incredible agility, caught it mid-flight.

ChatGPT

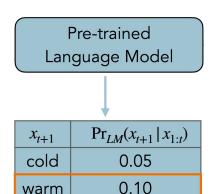
ChatGPT

A <u>frisbee</u> is <u>caught</u> by a <u>dog</u>. A pair of <u>frisbee</u> players are <u>caught</u> in a <u>dog</u> fight.


Ctrl-G

Lexical Constraint α : sentence contains keyword "winter"

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$


Lexical Constraint α : sentence contains keyword "winter"

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Lexical Constraint α : sentence contains keyword "winter"

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Using Bayes rule,

 p_{IM} (next-token | α , prefix)

 ∞

 p_{LM} (next-token | prefix)

 $p_{LM}(\alpha \mid \text{next-token})$

Lexical Constraint α : sentence contains keyword "winter"

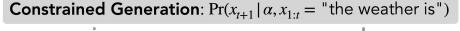
Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Pre-trained Language Model

x_{t+1}	$\Pr_{LM}(x_{t+1} \mid x_{1:t})$
cold	0.05
warm	0.10

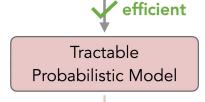
Using Bayes rule,

 p_{IM} (next-token | α , prefix)


 ∞

 p_{LM} (next-token | prefix)

 $p_{LM}(\alpha \mid \text{next-token}, \text{prefix})$ Intractable


Lexical Constraint α : sentence contains keyword "winter"

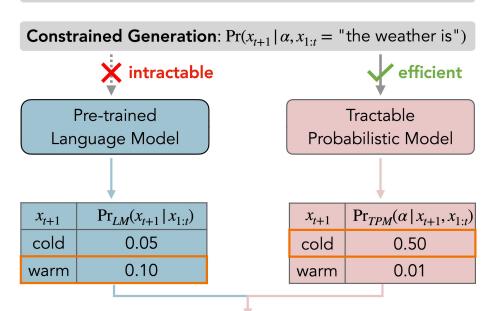
Pre-trained Language Model

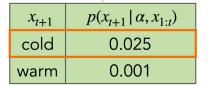
x_{t+1}	$\Pr_{LM}(x_{t+1} \mid x_{1:t})$
cold	0.05
warm	0.10

	V
x_{t+1}	$\Pr_{TPM}(\alpha \mid x_{t+1}, x_{1:t})$
cold	0.50
warm	0.01

Using Bayes rule,

 p_{IM} (next-token | α , prefix)




 p_{LM} (next-token | prefix)

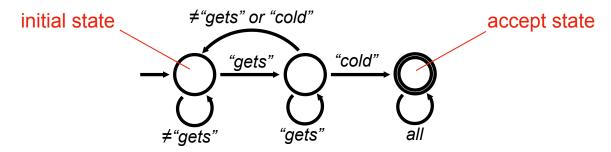
 $p_{LM}(\alpha \mid \text{next-token}, prefix)$ Intractable

Lexical Constraint α : sentence contains keyword "winter"

 p_{CTRL-G} (next-token | α , prefix)

 ∞

 p_{LM} (next-token | prefix)


 $p_{TPM}(\alpha \mid \text{next-token, prefix})$

Representing Logical Constraints

as a deterministic finite automaton (DFA)

Example. Check if a string contains "gets cold".

Can represent:

Phrases/words must/must not appear

Exactly k times. Must end a certain way

Anything over fixed sequence lengths (BDD)

From a restricted vocabulary.

Any regex

. . .

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

```
5 lines of code!
from CtrlG import
prefix = "First they defeated a ..."
suffix = "are few humans left ..."
dfa_list = [
  DFA_all_of("alien mothership",
             "far from over"),
  DFA_word_count(25, 30),
dfa = DFA_logical_and(dfa_list)
lp = CtrlGLogitsProcessor(
       dfa, hmm, prefix, suffix)
llm.generate(logits_processor=lp)
```

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

```
5 lines of code!
from CtrlG import
prefix = "First they defeated a ..."
suffix = "are few humans left ..."
dfa_list = [
  DFA_all_of("alien mothership",
             "far from over"),
  DFA_word_count(25, 30),
dfa = DFA_logical_and(dfa_list)
lp = CtrlGLogitsProcessor(
       dfa, hmm, prefix, suffix)
llm.generate(logits_processor=lp)
```

"First they've defeated a small squad of aliens, then a larger fleet of their ships. Eventually they've even managed to take down the alien mothership. But their problems are far from over. There are few humans left, and despite their magical power, their numbers are getting fewer."

Interactive Text Editing with key phrase (K) or length (L) constraints

	K&L	L	K	None	
					Quality
→ How many stars by humans?	2.74	2.78	2.64	2.68	TULU2
, ,	2.31	2.27	2.22	2.27	GPT3.5
	3.10	3.53	3.33	3.79	GPT4
	3.59	3.73	3.56	3.77	Ctrl-G

Interactive Text Editing with key phrase (K) or length (L) constraints

	None	K	L	K&L	
Quality					
TULU2	2.68	2.64	2.78	2.74	→ How many stars by humans?
GPT3.5	2.27	2.22	2.27	2.31	,
GPT4	3.79	3.33	3.53	3.10	
Ctrl-G	3.77	3.56	3.73	3.59	
Success					
TULU2	-	12%	20%	3%	→ Follows instructions?
GPT3.5	-	22%	54%	10%	
GPT4	-	60%	20%	27%	
Ctrl-G	_	100%	100%	100%	

Interactive Text Editing with key phrase (K) or length (L) constraints

		JUAULI			
	None	K	L	K&L	
Quality					
TULU2	2.68	2.64	2.78	2.74	→ How many stars by humans?
GPT3.5	2.27	2.22	2.27	2.31	,
GPT4	3.79	3.33	3.53	3.10	
Ctrl-G	3.77	3.56	3.73	3.59	
Success					
TULU2	-	12%	20%	3%	→ Follows instructions?
GPT3.5	-	22%	54%	10%	r enerve menerel
GPT4	_	60%	20%	27%	
Ctrl-G	-	100%	100%	100%	
Overall					
TULU2	-	7%	10%	1%	→ ★ ★ ★ ☆ ☆ & Up + Follows instructions?
GPT3.5	-	0%	5%	2%	- Tonotto mediacioner
GPT4	-	41%	17%	14%	
Ctrl-G	-	76%	78%	82%	→ Ctrl-G based on Llama2-7B wipes the floor
			2000003 - 5520056	**************************************	with GPT4, which is a >100x bigger LLM

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = \$3. So each set of two glasses actually costs 5 + 3 = \$8. He wants 16 / 2 = 8 sets of two. That means he needs to pay 8 * 8 = \$64. So the answer is 64.

Which constraint improves accuracy?

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = \$3. So each set of two glasses actually costs 5 + 3 = \$8. He wants 16 / 2 = 8 sets of two. That means he needs to pay 8 * 8 = \$64. So the answer is 64.

Use all the numbers in the problem statement!

Advantages of Ctrl-G:

- Constraint α is guaranteed to be satisfied: for any next-token x_{t+1} that would make α unsatisfiable, p(x_{t+1} | x_{1:t},α) = 0.
- 2. Training the tractable deep generative model does not depend on α , which is only imposed at inference (generation) time.
- 3. Generalizes well to <u>unseen reasoning tasks</u>, because all tasks are unseen :-) (baselines train on a distribution over reasoning tasks slow and brittle!)

You can control an intractable generative model using a generative model that is *tractable for reasoning*.

Questions for this talk:

1. Do deductive reasoning algorithms still have a purpose in the age of transformers?

2. Where did reasoning algorithms go wrong? What should they look like today?

Probabilistic Reasoning Task

Marginal inference:

X_1	X_2	Pr
0	0	.1
0	1	.2
1	0	.3
1	1	.4

$$Pr[X_1 = 1] = Pr[X_1 = 1, X_2 = 0] + Pr[X_1 = 1, X_2 = 1]$$

$$= 0.3 + 0.4$$

$$= 0.7$$

Application: Ctrl-G

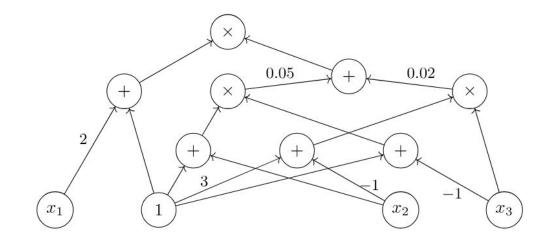
$$\Pr(\text{next-token}|\text{prefix}, \alpha) \propto \sum \Pr(\text{next-token}, \text{text}, \text{prefix}, \alpha)$$

text

Generative Models

polynomials model joint distributions

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .05x_1x_3 - .05x_$$

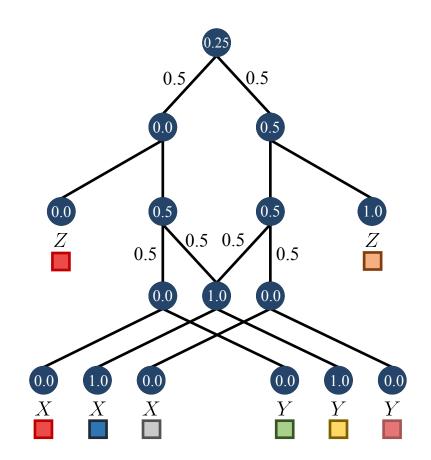

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12

Deep Generative Models

circuit polynomials model joint distributions compactly

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .02x_1x_3 - .07x_2x_3 + .07x_$$

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12

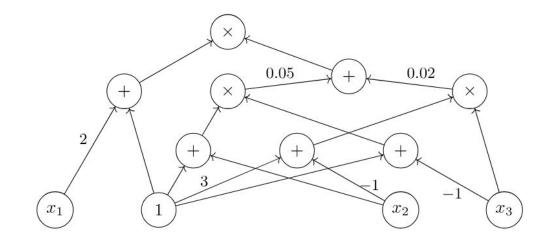

Compute Likelihood

Compute $p(x = \blacksquare, y = \blacksquare, z = \blacksquare) = 0.25$

Readout likelihood from the output node.

 Compute the likelihood of every sum/product node.

 Compute the likelihood of every input node.

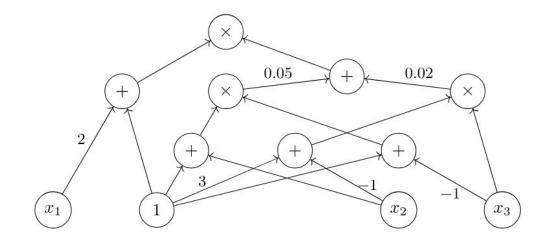


Deep Generative Models

circuit polynomials model joint distributions compactly

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .02x_1x_3 - .07x_2x_3 + .07x_$$

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12



Tractable Deep Generative Models

Multilinear circuit polynomials model joint distributions compactly and allow efficient probabilistic reasoning

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .02x_1x_3 - .07x_2x_3 + .00x_1x_3 - .00x_$$

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12

Computing Marginals

Compute $p(x = \square) = \iint p(x = \square, y, z) dy dz$

■ Sum node ⊕

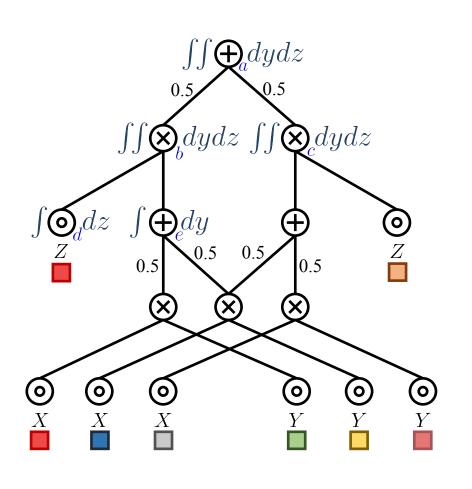
$$\iint p_a(x = \square, y, z) dy dz$$

$$= \iint 0.5 \cdot p_b(x = \square, y, z) + 0.5 \cdot p_c(x = \square, y, z) dy dz$$

$$= 0.5 \iint p_b(x = \square, y, z) dy dz + 0.5 \iint p_c(x = \square, y, z) dy dz$$

$$\iiint \bigotimes dy dz$$

■ Product node ⊗

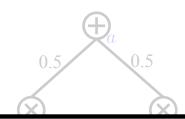

$$\iint p_b(x = \square, y, z) dy dz$$

$$= \iint p_d(z) \cdot p_e(x = \square, y) dy dz$$

$$= \underbrace{\int p_d(z)dz} \cdot \underbrace{\int p_e(x = \square, y)dy}_{\int \bigotimes_e dy}$$

• Input node \bigcirc_d

$$\int p_d(z) = 1$$



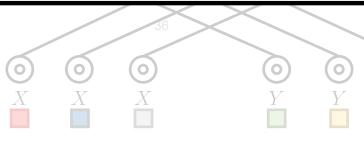
Computing Marginals

Compute
$$p(x = \square) = \iint p(x = \square, y, z) dy dz$$

■ Sum node ⊕

$$\iint p_a(x=\square,y,z)dydz$$

Theorem. Given


- a DFA constraint α with m edges and
- 2. a PC p(.) with h hidden states (representing a Hidden Markov Model), computing $p(\alpha \mid x_{1:t})$ over a sequence of n future tokens takes $O(nmh^2)$ time.

$$= \iint p_d(z) \cdot p_e(x = \square, y) dy dz$$

$$= \iint p_d(z) dz \cdot \iint p_e(x = \square, y) dy$$

$$\int \bigotimes_d dz \qquad \qquad \int \bigotimes_e dy$$

• Input node \bigcirc_d

You Tricked Us

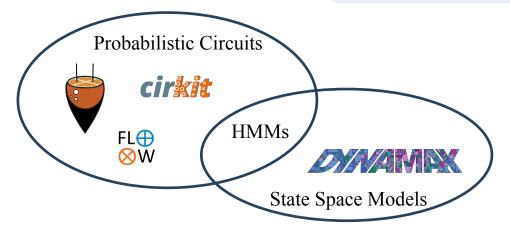
You promised us reasoning algorithms...

... and all we got was another lousy feedforward neural network!

Theorem. If there exists a polynomial time (real RAM) algorithm that computes (virtual evidence) marginals for a family of distributions, then there exist poly-size circuits for their multilinear polynomials.

An Open-Source Package: PyJuice

Runtime (in seconds) for training on **60K** samples


	PD (Poon & Domingos, 2011)						
# nodes	172K	344K	688K	1.38M	2.06M		
# edges	15.6M	56.3M	213M	829M	2.03B		
SPFlow	>25000	>25000	>25000	>25000	>25000		
EiNet Juice.il	$34.2_{\pm 0.0}$ $12.6_{\pm 0.5}$		456.1±2.3 141.7+6.9	1534.7±0.5 OOM	OOM OOM		
PyJuice	2.0±0.0	5.3±0.0	15.4 ± 0.0	$57.1_{\pm 0.2}$	203.7±0.1		
]	t al., 2020b					
# nodes	58K	116K	232K	465K	930K		
# edges	616K	2.2M	8.6M	33.4M	132M		
SPFlow	$6372.1_{\pm 4.2}$	>25000	>25000	>25000	>25000		
EiNets	$38.5_{\pm 0.0}$	$83.5{\scriptstyle\pm0.0}$	$193.5{\scriptstyle\pm0.1}$	$500.6{\scriptstyle\pm0.2}$	$2445.1_{\pm 2.6}$		
Juice.jl	$6.0_{\pm 0.3}$	$9.4_{\pm 0.3}$	25.5 ± 2.4 1.6 ± 0.0	84.0±4.0	375.1±3.4		
PyJuice	0.6 ±0.0	0.9±0.1		5.8 ±0.1	13.8±0.0		
	HC	CLT (Liu &	k Van den	Broeck, 20	21)		
# nodes	89K	178K	355K	710K	1.42M		
# edges	2.56M	10.1M	39.9M				
	2.5011	10.111	39.9W	159M	633M		
	22955.6±18.4	>25000	>25000	>25000	>25000		
EiNet	22955.6±18.4 52.5±0.3	>25000 $77.4_{\pm0.4}$	>25000 233.5±2.8	>25000 1170.7±8.9	> 25000 5654.3 ± 17.4		
EiNet Juice.jl	$22955.6_{\pm 18.4} \atop 52.5_{\pm 0.3} \atop 4.7_{\pm 0.2}$	>25000 $77.4_{\pm 0.4}$ $6.4_{\pm 0.5}$	>25000 $233.5_{\pm 2.8}$ $12.4_{\pm 1.3}$	>25000 $1170.7_{\pm 8.9}$ $41.1_{\pm 0.1}$	>25000 5654.3±17.4 143.2±5.1		
EiNet	$22955.6_{\pm 18.4}$ $52.5_{\pm 0.3}$ $4.7_{\pm 0.2}$ $0.8_{\pm 0.0}$	> 25000 $77.4_{\pm 0.4}$ $6.4_{\pm 0.5}$ $1.3_{\pm 0.0}$	>25000 $233.5\pm_{2.8}$ $12.4\pm_{1.3}$ $2.6\pm_{0.0}$	$> 25000 \ 1170.7 \pm 8.9 \ 41.1 \pm 0.1 \ 8.8 \pm 0.0$	> 25000 5654.3 ± 17.4		
EiNet Juice.jl PyJuice	$22955.6_{\pm 18.4}$ $52.5_{\pm 0.3}$ $4.7_{\pm 0.2}$ $0.8_{\pm 0.0}$	> 25000 77.4 ± 0.4 6.4 ± 0.5 1.3 ± 0.0	>25000 233.5±2.8 12.4±1.3 2.6 ±0.0 abiner & J	>25000 1170.7±8.9 41.1±0.1 8.8 ±0.0 uang, 1986	>25000 5654.3±17.4 143.2±5.1 24.9 ±0.1		
EiNet Juice.jl PyJuice # nodes	$\begin{array}{c} 22955.6{\scriptstyle \pm 18.4} \\ 52.5{\scriptstyle \pm 0.3} \\ 4.7{\scriptstyle \pm 0.2} \\ \textbf{0.8}{\scriptstyle \pm 0.0} \end{array}$	>25000 $77.4_{\pm 0.4}$ $6.4_{\pm 0.5}$ $1.3_{\pm 0.0}$ HMM_(Ra	>25000 233.5±2.8 12.4±1.3 2.6 ±0.0 abiner & J	>25000 1170.7±8.9 41.1±0.1 8.8 ±0.0 uang, 1986 259K	>25000 5654.3±17.4 143.2±5.1 24.9 ±0.1		
EiNet Juice.jl PyJuice	$22955.6_{\pm 18.4}$ $52.5_{\pm 0.3}$ $4.7_{\pm 0.2}$ $0.8_{\pm 0.0}$	> 25000 77.4 ± 0.4 6.4 ± 0.5 1.3 ± 0.0	>25000 233.5±2.8 12.4±1.3 2.6 ±0.0 abiner & J	>25000 1170.7±8.9 41.1±0.1 8.8 ±0.0 uang, 1986	>25000 5654.3±17.4 143.2±5.1 24.9 ±0.1		
EiNet Juice.jl PyJuice # nodes # edges Dynamax	22955.6±18.4 52.5±0.3 4.7±0.2 0.8 ±0.0 33K 8.16M 111.3±0.4	>25000 77.4±0.4 6.4±0.5 1.3 ±0.0 HMM_(R: 66K 32.6M 441.2±3.9	>25000 233.5±2.8 12.4±1.3 2.6 ±0.0 abiner & J 130K 130M 934.7±6.3	>25000 1170.7±8.9 41.1±0.1 8.8 ±0.0 uang, 1986 259K 520M 2130.5±19.5	>25000 5654.3±17.4 143.2±5.1 24.9 ±0.1 388K 1.17B 4039.8±38.3		
EiNet Juice.jl PyJuice # nodes # edges	$\begin{array}{c} 22955.6{\scriptstyle \pm 18.4} \\ 52.5{\scriptstyle \pm 0.3} \\ 4.7{\scriptstyle \pm 0.2} \\ \textbf{0.8}{\scriptstyle \pm 0.0} \\ \hline \\ 33K \\ 8.16M \end{array}$	>25000 77.4±0.4 6.4±0.5 1.3 ±0.0 HMM <u>(R:</u> 66K 32.6M	>25000 233.5±2.8 12.4±1.3 2.6 ±0.0 abiner & J 130K 130M	>25000 1170.7±8.9 41.1±0.1 8.8 ±0.0 uang, 1986 259K 520M	> 25000 $5654.3_{\pm 17.4}$ $143.2_{\pm 5.1}$ $24.9_{\pm 0.1}$ 388K 1.17B		

https://github.com/Tractables/pyjuice

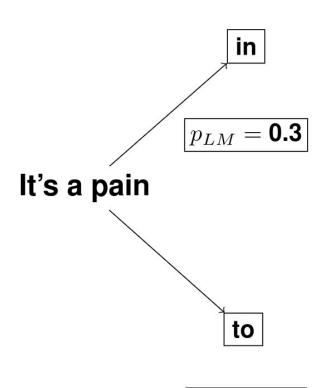
Orders of magnitude faster!

Extremely scalable!

Custom data structure + CUDA kernels

FL⊕ by Cambridge, TU Darmstadt, Max-Planck-Institute et al.

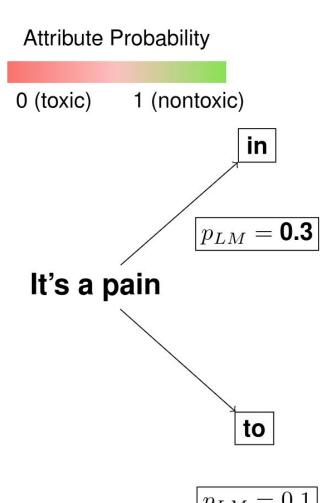
cirkit by Edinburgh, EPFL et al.


DYNAMIN by Google Deepmind et al.

Questions for this talk:

1. Do deductive reasoning algorithms still have a purpose in the age of transformers?

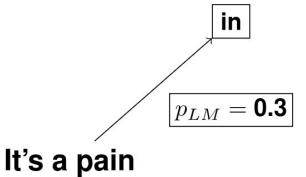
2. Where did reasoning algorithms go wrong? What should they look like today?



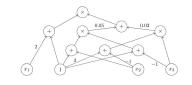
0 (toxic) 1 (nontoxic)

- No longer a logical constraint (no DFA)
- A "soft' attribute with some probability
- a.k.a. an exponentiated reward function

future text	$p_{LM}(x_{>t} \mid x_{\leq t})$			
the ass	0.3			
the butt	0.15			
the neck	0.05			


Intractable to know future expected attribute probability (EAP)

future text	$p_{LM}(x_{>t} \mid x_{\leq t})$
deal with	0.2
handle	0.1

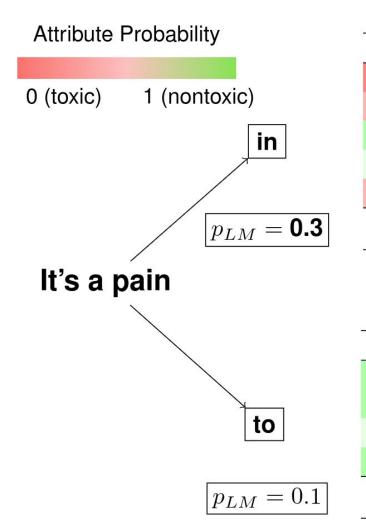

Attribute Probability

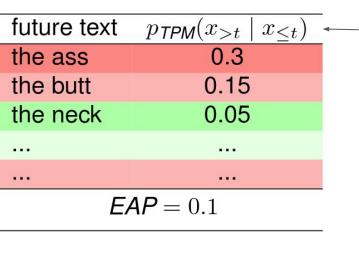
0 (toxic) 1 (nontoxic)

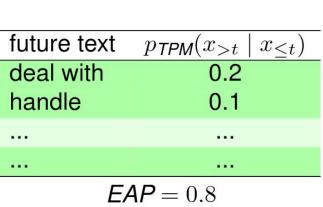
future text	$p_{TPM}(x_{>t} \mid x_{\leq t})$
the ass	0.3
the butt	0.15
the neck	0.05

	•••

Tractable	
Probabilistic Mode	اڊ

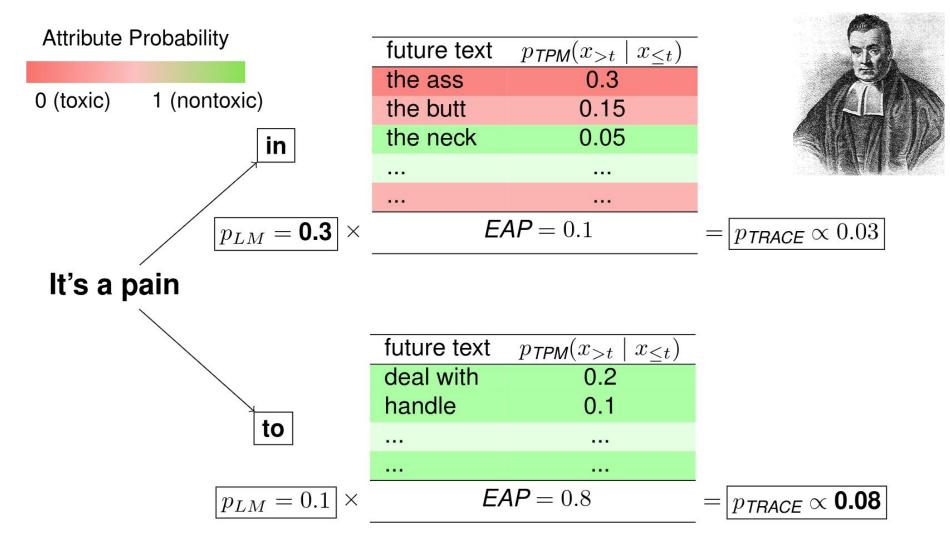



+ Log-Linear Attribute Classifier

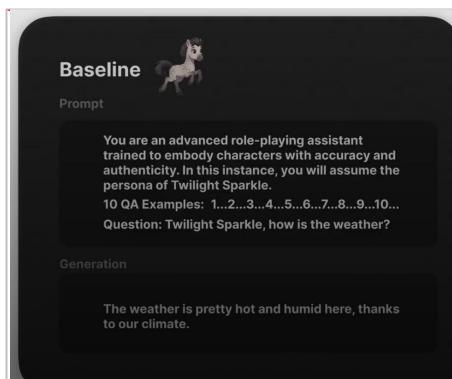

future text	$p_{TPM}(x_{>t} \mid x_{\leq t})$
deal with	0.2
handle	0.1
	•••

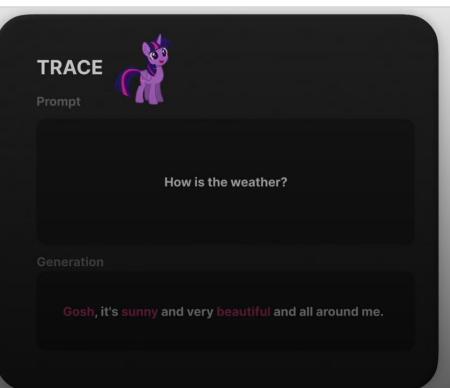
 $p_{LM} = 0.1$

to

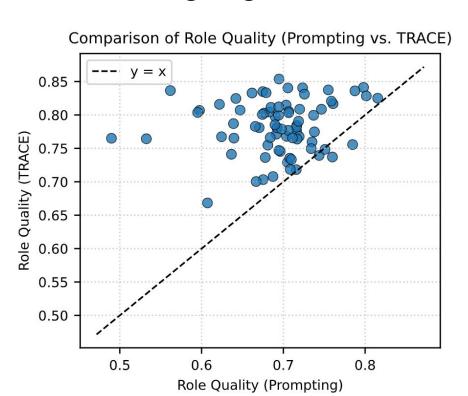


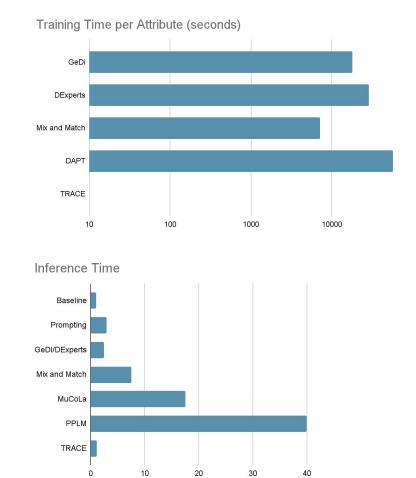
Efficient Expected Attribute Probability!




TRACE: State-of-the-art LLM Detoxification

Model	Toxicity	· (\dagger)	Fluency (\$\dagger\$)	Diversity (†)		Approach Type
	avg. max.	prob.		dist-2	dist-3	
GPT-2 Large Results						
GPT2	0.385	0.254	25.57	0.87	0.86	Baseline
DAPT ⁽¹⁾	0.428	0.360	31.21	0.84	0.84	Finetuning
GeDi ⁽²⁾	0.363	0.217	60.03	0.84	0.83	Decoding (Trained Guide)
FUDGE ⁽³⁾	0.302	0.371	12.97 *	0.78	0.82	Decoding (Trained Guide)
DExperts ⁽⁴⁾	0.314	0.128	32.41	0.84	0.84	Decoding (Trained Guide)
PPLM ⁽⁵⁾	0.520	0.518	32.58	0.86	0.86	Decoding (Logit Control)
MuCoLa ⁽⁶⁾	0.308	0.088	29.92	0.82	0.83	Decoding (Sampling)
$PPO^{(7)}$	0.218	0.044	14.27*	0.80	0.84	RL
Quark ⁽⁸⁾	0.196	0.035	12.47 *	0.80	0.84	RL
$DPO^{(9)}$	0.180	0.026	21.59 *	0.76	0.78	RL
TRACE	0.163	0.016	29.83	0.85	0.85	Decoding (HMM Reasoning)
Gemma-2B Results						
Gemma-2B	0.359	0.23	15.75	0.86	0.85	Baseline
DPO ⁽⁹⁾	0.222	0.06	14.39*	0.74	0.77	RL
TRACE	0.189	0.02	17.68	0.86	0.85	Decoding (HMM Reasoning)


Personalized Language Model: Twilight Sparkle



76 Personalized Language Models

1. Do deductive reasoning algorithms still have a purpose in the age of transformers?

2. Where did reasoning algorithms go wrong?

What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers?
 Yes, more cool applications of reasoning than fit on these slides!
- 2. Where did reasoning algorithms go wrong?

What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers?
 Yes, more cool applications of reasoning than fit on these slides!
- 2. Where did reasoning algorithms go wrong?
 Learn at scale, be tractable
 What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers?
 Yes, more cool applications of reasoning than fit on these slides!
- 2. Where did reasoning algorithms go wrong?
 Learn at scale, be tractable
 What should they look like today?
 Circuits! Circuits! Circuits!

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu