Computer
UCLA Science

Al can learn from data.
But can it learn to reason?
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Integrate reasoning into modern deep learning algorithms
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Kristin and her son Justin went to visit
her mother Carol on a nice Sunday
afternoon. They went out for a movie
together and had a good time.

I

Q: How is Carol related to Justin ?
A: Carol is the grandmother of Justin

!

~

Can Language Models Perform Logical Reasoning?

Language Models achieve high performance on various “reasoning” benchmarks in NLP.

Reasoning Example
from the CLUTRR

J

dataset

N

It is unclear whether they solve the tasks following the rules of logical deduction.

Language Models:
input — ? — Carol is the grandmother of Justin.

Reasoning:
input — Justin in Kristin’s son; Carol is Kristin’'s mother; — Carol is Justin’s mother’s mother; if

X is Y’s mother’s mother then X is Y’s grandmother — Carol is the grandmother of Justin.



Problem Setting: SimplelLogic

The easiest of reasoning problems:

1.

Propositional logic fragment

a. bounded vocabulary & number of rules
b. bounded reasoning depth (< 6)

c. finite space (= 10*360)

No language variance: templated language

Self-contained
No prior knowledge

Purely symbolic predicates
No shortcuts from word meaning

Tractable logic (definite clauses)
Can always be solved efficiently

Facts:
Alice is fast.
Alice is normal.

Rules:

If Alice is fast and smart, then Alice is bad.

If Alice is normal, then Alice is smart.

If Alice is normal and happy, then Alice is sad.

Query 1: Alice is bad. [Answer: True]
Query 2: Alice is sad. [Answer: False]
LMs: BERT, T5

U

True or False




Training a BERT model on SimpleLogic

(1) Randomly sample facts & rules.
Facts: B, C

Rules:A,B>D.B>E.B,C>F. Test accuracy for different reasoning depths
(2) Compute the correct

° e G labels for all predicates given
Test| 0 f 2 B8 4 & B

the facts and rules.
o ‘ . RP | 999 998 99.7 99.3 98.3 975 955

Rule-Priority

Label-Priority ° ‘ ‘

Test | O 1 2 3 4 5 6

= LP [100.0 1000 99.9 99.9 99.7 99.7 99.0
O (2) Set B, C (randomly chosen
@ Q among B, C, E, F) as facts and
(1) Randomly assign labels to sample rules (randomly)
predicates. consistent with the label
True: B, C, E,F. assignments.

False: A, D.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Has BERT learned to reason from data®”?

Easiest of reasoning problems (no variance, self-contained, purely symbolic, tractable)
RP/LP data covers the whole problem space

The learned model has almost 100% test accuracy

e

There exist BERT parameters that compute the ground-truth reasoning function:

Theorem 1: For a BERT model with n layers and 12 attention heads, by construction,
there exists a set of parameters such that the model can correctly solve any
reasoning problem in SimpleLogic that requires at most n — 2 steps of reasoning.

Surely, under these conditions,
BERT has learned the ground-truth reasoning function!

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

The Paradox of Learning to Reason from Data

Train Test | O 1 2 3 4 5 6

RP RP | 999 99.8 99.7 993 983 97.5 955
LP | 99.8 99.8 993 96.0 904 750 57.3

RP | 973 669 53.0 542 595 656 69.2
LP | 100.0 100.0 999 99.9 99.7 99.7 99.0

LP

The BERT model trained on one distribution fails to generalize
to the other distribution within the same problem space.

1. If BERT has learned to reason,
it should not exhibit such generalization failure.

2. If BERT has not learned to reason,
it is baffling how it achieves near-perfect in-distribution test accuracy.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

Why? Statistical Features

Monotonicity of entailment:
Any rules can be freely added to the hypothesis of any proven fact.

{

[ The more rules given, the more likely a predicate will be proved. }

.

[ Pr(label = True | Rule # = x) should increase (roughly) monotonically with x }

N WWWWWWWWWWWWMM Mwm i MMWWWMWMMW vmwmum wwmx mhi\rw\MUn\hN Jh \»“ Ml

(a) Statistics for examples generated by Rule-. ty (RP). (b) St: ty (LP). () S y uniform sampling;




BERT leverages statistical features to make predictions

RP_b downsamples from RP such that Pr(label = True | rule# = x) = 0.5 for all x

Train Test | 0 1 2 3 4 5 6

RP (999 99.8 99.7 993 983 97.5 95.5
RP RP_b[99.0 993 985 97.5 96.7 93.5 883

1. Accuracy drop from RP to RP_b indicates that
the model is using rule# as a statistical feature to make predictions.

2. Though removing one statistical feature from training data can help with model
generalization, there are potentially countless statistical features and it is
computationally infeasible to jointly remove them.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf

First Conclusion

Experiments unveil the fundamental difference between

1. learning to reason, and

2. learning to achieve high performance on benchmarks using statistical features.

Honghua Zhang, Liunian Harold Li, Tao Meng, Kai-Wei Chang and Guy Van den Broeck. On the Paradox of Learning to Reason from Data, 2022


http://starai.cs.ucla.edu/papers/ZhangArxiv22.pdf
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Intractable and tractable models




Probabilistic circuits
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a unifying framework for tractable models




Probabillistic circuits

computational graphs that recursively define distributions

@ i %px(x)

@ .
X1 . -
Simple distributions are tractable “black boxes” for:

B EVI: output p(x) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode



Probabilistic circuits

computational graphs that recursively define distributions
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Probabillistic circuits

computational graphs that recursively define distributions

©

—-X w1 w2
X1 X1 X1 Xl X2

p(X1) = wip; (X1) + wapa (X1) p(X1,X2) = p(X1) - p(X2) %
= =
mixtures factorizations



Likelihood p(X; =—1.85,X,=0.5,X3 =—1.3,X; =0.2)




Likelihood p(X1 =-1.85,X, =05, X3 =-1.3,X, =0.2)




Likelihood p(X1 = —1.85, X, =0.5,X3 = —1.3, X4 = 0.2)
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Just sum, products and distributions?
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just arbitrarily compose them like a neural network!



Just sum, products and distributions?
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—> structural constraints needed for tractability



Tractable marginals

A sum node is smooth if its children depend on the same set of variables.

A product node is decomposable if its children depend on disjoint sets of variables.

(X)
W W W
X1 Xo X3

smooth circuit decomposable circuit

wy wa

X1 X1



m ull decomposability gl tractable MAR

If p(x) = >, wipi(X), (smoothness):

—> integrals are “pushed down” to children

[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]



m ul decomposability g tractable MAR
If p(x,y,2z) = p(x)p(y)p(2), (decomposability):

///p(x’y’z)dXdydz:
:/ / / p(x)p(y)p(z)dxdydz =
— / p(x)dx / p(y)dy / il

—> integrals decompose into easier ones




m ] decomposability &

Forward pass evaluation for MAR
—> linear in circuit size!

E.g. to compute p(x2, 24):
B leafs over X; and X3 output Z; = [ p(x;)dx;
—> for normalized leaf distributions:
B leafs over X5 and X4 output | 37/




Forward pass evaluation for MAR /Q\

=—> linear in circuit size! @ @ @ @
— AR

E.g. to compute p(x2, 74): Xl/ | | \X1
B leafs over X; and X3 output Z; = [ p(x;)dx; ?1/@ @\?z

— for normalized leaf distributions: @ @ @ @
B leafs over X5 and X4 output |37/ T >(T)< >< T

B feedforward evaluation (bottom-up) @ @ @ @




Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

Learned CLT structure
captures strong pairwise
dependencies
correlations (X))
x[o[xxIx]x] =
‘ ) () X

6 Variables @

Aniji Liu and Guy Van den Broeck. Tractable Regularization of Probabilistic Circuits, NeurlPS, 2021.


http://starai.cs.ucla.edu/papers/LiuNeurIPS21.pdf

Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

Learned CLT structure Learned HCLT structure
captures strong pairwise
dependencies
correlations @ i
TR I @ ) @ © -G
Xl XZ X3 X4 XS XG © Q @ @ @
‘ ' , ©® @
6 Variables @ )2

|:> Compile into an
equivalent PC

Aniji Liu and Guy Van den Broeck. Tractable Regularization of Probabilistic Circuits, NeurlPS, 2021.


http://starai.cs.ucla.edu/papers/LiuNeurIPS21.pdf

Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

Learned CLT structure Learned HCLT structure
captures strong pairwise
dependencies
correlations @ i
TR I @ ) D2 @ @)
x[o[xxIx]x] = @@ O—@
‘ ' , ©® @
6 Variables @ )2
I:> Compile into an I:> Mini-batch Stochastic

equivalent PC Expectation Maximization

Aniji Liu and Guy Van den Broeck. Tractable Regularization of Probabilistic Circuits, NeurlPS, 2021.


http://starai.cs.ucla.edu/papers/LiuNeurIPS21.pdf

Lossless Data Compression

Decode

Data ﬂ Bitstream ﬂ Reconstructed data

.o IHI»—AIOI»—AI

2L

Determines the theoretical

Expressive probabilistic model p(x) limit of compression rate

_|_

Efficient coding algorithm How close we can approach

the theoretical limit



https://arxiv.org/pdf/2111.11632.pdf

A Typical Streaming Code — Arithmetic Coding

We want to compress a set of variables (e.g., pixels, letters) {x1,X2,..., Xy}
1.0 T 0.5. . _046T
P T L Need to compute
.+~ 0.46
/"‘ X9 p(Xl < 331)
0 e 0.41\. p(X1 < z1)

. ‘Xl \.\. p(X2 < a:2|:1:1)
03 I._ '~ p(Xa < z2|z1)
0.151 N ~. . \'\.\ P(Xg <:B3|331,:132)

o . <
0.0 037 0.41 (X5 < 3|21, 22)

Compress x; with
—log p(x;) bits

Compress X9 with
—log p(x2|x1) bits

Compress x3 with
—log p(x3[x1,%2) bits




Lossless Neural Compression with Probabilistic Circuits

Data

Probabilistic Circuits
- Expressive —

- Fast —

Anii Liu, Stephan Mandt and Guy Van den Broeck. Lossless Compression with Probabilistic Circui

Bitstream Reconstructed data

Decode

I... I»—ili—llolb—dl

o

SoTA likelihood on MNIST.

Time complexity of
en/decoding 1s O( |p| log(D) ),
where D i1s the # variables and
Ip| 1s the size of the PC.

222222 .

Arithmetic Coding:
p(X1 < 1)



https://arxiv.org/pdf/2111.11632.pdf

Lossless Neural Compression with Probabilistic Circuits

SoTA compression rates

Dataset HCLT (ours) IDF BitSwap BB-ANS JPEG2000 WebP McBits
MNIST 1.24 (1.20) 1.96 (1.90) 1.31(1.27) 1.42(1.39) 3.37 2.09 (1.98)
FashionMNIST 3.37@3.34) 3.50(3.47) 3.35(3.28) 3.69 (3.66) 3.93 462 (3.72)

EMNIST (Letter)  1.84(1.80) 2.02(1.95) 1.90(1.84) 2.29(2.26)  3.62 331 (312)
EMNIST (ByClass) 1.89(1.85) 2.04(1.98) 1.91(1.87) 2.24(223) 3.6l 334 (3.14)

Compress and decompress 5-40x faster than NN methods with similar bitrates

Method # parameters Theoretical bpd Codeword bpd Comp. time (s) Decomp. time (s)
PC (HCLT, M =16) 3.3M 1.26 1.30 9 44
PC (HCLT, M =24) 5.1M 1.22 1.26 I'S 86
PC (HCLT, M =32) 7.0M 1.20 1.24 26 142
IDF 24. 1M 1.90 1.96 288 592

BitSwap 2.8M 1:27 1.31 578 326

Anji Liu, Stephan Mandt and Guy Van den Broeck. Lossless Compression with Probabilistic Circuits, 2021.


https://arxiv.org/pdf/2111.11632.pdf

Lossless Neural Compression with Probabilistic Circuits

Can be effectively combined with Flow models to achieve better
generative performance

Model CIFAR10 ImageNet32 ImageNet64

RealNVP 349 4.28 3.98
Glow 3:35 4.09 3.81
IDF 3.32 4.15 3.90
IDF++ 3.24 4.10 3.81

PC+IDF 3.28 3.99 3.71



https://arxiv.org/pdf/2111.11632.pdf

Tractable and expressive generative models of genetic variation data

Truth HMM GAN HCLT
54 5 5 54 54
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Meihua Dang , Anji Liu , Xinzhu Wei , Sriram Sankararaman, and Guy Van den Broeck, Tractable and expressive generative models of genetic variation data, RECOMB 2022



PC Learners keep getting better! ... stay tuned ...

Table 1: Density estimation performance on MNIST-family datasets in test set bpd.

Dataset | Sparse PC (ours) HCLT RatSPN | IDF BitSwap BB-ANS McBits
MNIST 1.14 1.20 1.67 1.90 1.27 1.39 1.98
EMNIST(MNIST) 1.52 1.77 2.56 2.07 1.88 2.04 2.19
EMNIST(Letters) 1.58 1.80 2.73 1.95 1.84 2.26 3.12
EMNIST(Balanced) 1.60 1.82 2.78 %15 1.96 2.23 2.88
EMNIST(ByClass) 1.54 1.85 212 1.98 1.87 2.23 3.14
FashionMNIST 3.27 3.34 4.29 3.47 3.28 3.66 3072
Dataset PC  Bipartite flow AF/SCF IAF/SCF

Penn Treebank 1.23 1.38 1.46 1.63

Meihua Dang, Anji Liu, Guy Van den Broeck, Sparse Probabilistic Circuits via Pruning and Growing, Sparsity in Neural Networks, 2022
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Queries as pipelines: KLD

KLD( Il q) = | p(x) X log((p(x)/q(x))dX

o l ’_’%O_’f
M B o pe
%0—1 r S

q


http://starai.cs.ucla.edu/papers/VergariNeurIPS21.pdf

Queries as pipelines: Cross Entropy

H(p,q) = | p(x) x log(q(x))dX

P < meend]
D S

%)O#—)%)O => we can reuse the
q T

operations!


http://starai.cs.ucla.edu/papers/VergariNeurIPS21.pdf

Tractable circuit operations

_ Tractability
Operation : : Hardness
Input properties Output properties

SuM O1p+ 62g (+Cmp) (+SD) NP-hard for Det output
ProODUCT p-q Cmp (+Det, +SD) Dec (+Det, +SD) #P-hard w/o Cmp
o p*.,n €N SD (+Det) SD (+Det) #P-hard w/o SD

p*, oo € R Sm, Dec, Det (+SD) Sm, Dec, Det (+SD) #P-hard w/o Det
QUOTIENT p/q Cmp; q Det (+p Det,+SD)  Dec (+Det,+SD) #P-hard w/o Det
LOG log(p) Sm, Dec, Det Sm, Dec #P-hard w/o Det

Exp exp(p) linear SD #P-hard

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso and Guy Van den Broeck. A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference, NeurlPS, 2021.


http://starai.cs.ucla.edu/papers/VergariNeurIPS21.pdf

Inference by tractable operations

systematically derive tractable inference algorithm of complex queries

Tract. Conditions

Hardness

CROSS ENTROPY
SHANNON ENTROPY

RENYT ENTROPY

MUTUAL INFORMATION

KULLBACK-LEIBLER DI1V.

RENYI’S ALPHA D1v.

ITAKURA-SAITO DI1V.
CAUCHY-SCHWARZ DI1V.

SQUARED LOSS

Query
— [ p(x)log g(x) dX
—> p(x )logp( )
(1—a) tlog [p*(x) dX,a € N
(1 —a) 'log [p*(x )dX
[p(x, y)log(p(, y)/(p(z
Ip(x)log(p(x )/ (z))dX
(1 —a)~tlog [p(z
ﬂ—@)‘llog fp'

og ——J2@a(@)3dX
vV IP2( :c)deq ()dX
[(p(x) — q(x))?d X

aae R
p(y))

O‘(CB) dX, a0 € N
“(x)dX,a R
J’[I’(ZU)/Q( )—10g([)( )/q(x)) —1]d X

Cmp, g Det
Sm, Dec, Det
SD

Sm, Dec, Det
Sm, SD, Det*
Cmp, Det
Cmp, g Det
Cmp, Det
Cmp, Det

Cmp
Cmp

#P-hard w/o Det
coNP-hard w/o Det
#P-hard w/o SD
#P-hard w/o Det
coNP-hard w/o SD
#P-hard w/o Det
#P-hard w/o Det
#P-hard w/o Det
#P-hard w/o Det

#P-hard w/o Cmp
#P-hard w/o Cmp

Antonio Vergari, YooJung Choi, Anji Liu, Stefano Teso and Guy Van den Broeck. A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference, NeurlPS, 2021.


http://starai.cs.ucla.edu/papers/VergariNeurIPS21.pdf
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less expressive

efficient

Fully factorized

m Trees
Polytrees

more tractable queries

%A

PDGs § PSDDs
CNets | AoGs | ACs

h 4

less tractable queries

NADEs g BNs
NFs

=

more expressive

efficient



less expressive

efficient

Polytrees

Fully factorized
m Trees

more tractable queries

%A

b4

less tractable queries

PCs
PCs
NADEs i BN

NFs

S

more expressive

efficient



Learn more about probabilistic circuits?

Tutorial (3h) Overview Paper (80p)
“I Probabilistic Circuits:

A Unifying Framework for Tractable Probabilistic Models*

Inference
Representations
Learning

Probabilistic
Circuits

YooJung Choi
Antonio Vergari

Guy Van den Broeck
Computer Science Department
University of California

Antonio Vergari Yoojung Choi Los Angeles, CA, USA
University of California, Los Angeles University of California, Los Angeles
Robert Peharz Guy Van den Broeck

TU Eindhoven University of California, Los Angeles

Contents
September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020
1 Introduction 3
> b ) oo0)soaie
2 Probabilistic Inference: Models, Queries, and Tractability 4

httDS//VOUtUbe/Z RAGS-LQR?O 2.1 Probabilistic Models . . . . . .. ... 5

2.2 Probabilistic Queries
2.3 Tractable Probabilistic Inference
2.4 Properties of Tractable Probabilistic Models

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf



https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training SotA likelihood full MNIST probabilistic circuit model in ~7 minutes on GPU:
https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/examples/train_mnist_hclt.ipynb

& Juice-jl/ ProbabilisticCircuits.jl & unpin | @unwach 7 v % Fork 8 Stared 72~
Public

<> Code (© lIssues 10 11 Pull requests () Discussions (® Actions [ Projects 00 Wiki
¥ master ~  ProbabilisticCircuits.jl / examples / train_mnist_hclt.ipynb Go to file

liuanji update demo notebook v Latest commit ceee62e 2 days ago ) History

A3 1 contributor

609 lines (609 sloc) 26.5 KB <> D Raw Blame [ Z U
Dataset PC (ours) IDF Hierarchical VAE PixelVAE
MNIST 1.20 2.90 127 1.39
FashionMNIST 3.34 3.47 3.28 3.66
EMNIST (Letter split) 1.80 1.95 1.84 2.26
EMNIST (ByClass split) 1.85 1.98 1.87 2.23

* Note: all reported numbers are bits-per-dimension (bpd). The results are extracted from [1].

[1] Anji Liu, Stephan Mandt and Guy Van den Broeck. Lossless Compression with Probabilistic Circuits, In
International Conference on Learning Representations (ICLR), 2022.
We start by importing ProbabilisticCircuits.jl and other required packages:

using ProbabilisticCircuits

using MLDatasets
using CUDA

We first load the MNIST dataset from MLDatasets.jl and move them to GPU:


https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/examples/train_mnist_hclt.ipynb

Outline

1. The paradox of learning to reason from data
deepfearnng
2. Tractable deep generative models
probabilistic reasoning + deep learning

3. Learning with symbolic knowledge
logical reasoning + deep learning



The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

 Slow thinking: deliberative, cognitive, model-based, extrapolation
 Amazing achievements until this day '

* “Pure logic is brittle”

noise, uncertainty, incomplete knowledge, ...




The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

 Fast thinking: instinctive, perceptive, model-free, interpolation
 Amazing achievements recently
* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety
fails to incorporate a sensible model of the world




Knowledge in Vision, Robotics, NLP, Activity Recognition

N e
People appear at most
once in a frame

Rigid objects don’t overlap

Cut the orange before @
squeezing the orange

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.], [Wong, L. L., Kaelbling, L.
P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012], [Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge], [Gancheyv,
K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]... and many many more!

A= Atleast one verb
— in each sentence.
If X and Y are married,
then they are people.




Motivation: Deep Learning

nature International weekly journal of science

New
Scientist

HOME NEWS TECHNOLOGY SPACE PHYSICS HEALTH EARTH HUMANS LIFE TOPICS EVENTS JOBS

Home | News & Comment | Research | Careers & Jobs | Current Issue | Archive | Audio & Video | For /

I IDEDITIIT

Meet The People Shaping The Future Of Energy: Reinventing Energy Summit - 25 November in London

< =
T Google's Al reasons its way around the London
DeepMind’s Al has learned to Underground
naVigate the Tube using memory DeepMind’s latest technique uses external memory to solve tasks that require logic and

reasoning — a step toward more human-like Al.

3=

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, |., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Motivation: Deep Learning

solve tasks that require logic and

reasoning — a step toward more human-like Al.

... but ...

» & & & >

o
@ o & a & A 4 S & S
S FSLSSTS & e &
& & & @ ¢ NN
BT L 8 I g

To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

S&l

3 &
A\
o“\\(;&." <

Ry
sLax "; & _:’:_:_
e b it also received input triples during the answer phase, indicating the actions cho-
— sen on the previous time-step.
I
Douglas &
I

Redondo Beach ®

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Warcraft Shortest Path

Predicting the minimum-cost path

[Differentiation of Blackbox Combinatorial Solvers, Marin Vlastelica, Anselm Paulus, Vit Musil, Georg Martius, Michal Rolinek, 2019]



https://arxiv.org/abs/1912.02175

. ine Predicti
Baseline Prediction Baseline Prediction

Baseline Prediction Baseline Prediction




Predict Loan Amount
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o

Predicted Loan Amount (k USD)
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40 60 80 100 120 140
Income (k USD)

Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge):
Increasing income should increase the approved loan amount



Knowledge vs. Data

* Where did the world knowledge go?
— Python scripts

» Decode/encode/search cleverly
* Fix inconsistent beliefs

— Rule-based decision systems
— Dataset design
— “a b|g haCk” (with author’s permission)

 |In some sense we went backwards

Less principled, scientific, and intellectually satisfying ways of
Incorporating knowledge



without constraint

Baseline Prediction

without constraint

Baseline Prediction

°

Baseline Prediction Baseline Prediction




Warcraft min-cost simple-path prediction results

Test accuracy %  Coherent Incoherent Constraint

ResNet-18 44.8 97.7 56.9
Is prediction Are individual Is output
the shortest path? edge predictions a path?

This is the real task! correct?

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.


https://arxiv.org/pdf/2201.11250.pdf

pylon

A PyTorch Framework for Learning with Constraints

Kareem Ahmed TaoLi ThyTon Quan Guo,
Kai-Wei Chang  Parisa Kordjamshidi  Vivek Srikumar
Guy Van den Broeck  Sameer Singh

http://pylon-1lib.github.io



Declarative Knowledge of the Output

Neural Network

—_—

How is the output structured?
Are all possible outputs valid?

VS.

How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively



pylon

Library that extends PyTorch to allow injection of declarative knowledge
e Easy to Express Knowledge: users write arbitrary constraints on the output
e Integrates with PyTorch: minimal change to existing code
e Efficient Training: compiles into loss that can be efficiently optimized
o Exact semantic loss (see later)
o Monte-carlo estimate of loss
o T-norm approximation

o your solver?



pylon

PyTorch Code

for i in range(train_iters):

b§'= model(x)

loss = CrossEntropy(py, ...

@ Specify knowledge as a predicate
def check(y):

return isValid



pylon

1 ) Specify knowledge as a predicate

(y):

isValid

PyTorch Code

for i in range(train_iters):
. @ Add as loss to training

py = model(x)
///// loss += constraint_loss(check)

iéés = CrossEntropy(py, ...)
-

loss += constraint_loss(check) (py)

4




pylon

PyTorch Code
for i in range(train_iters):
py = model(x)

loss = CrossEntropy(py, ...)

loss += constraint_loss(check) (py)

4

1

2

Specify knowledge as a predicate

(y):

isValid

Add as loss to training

loss += ( )

pylon derives the gradients
(solves a combinatorial problem)



°

without constraint

Baseline Prediction

Baseline Prediction

with constraint

SL Prediction

without constraint

Baseline Prediction

with constraint

SL Prediction
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Warcraft min-cost simple-path prediction results

Test accuracy %  Coherent Incoherent Constraint

ResNet-18 44.8 97.7 56.9
+ Semantic loss  50.9 97.7 67.4

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.


https://arxiv.org/pdf/2201.11250.pdf

Semantic Loss

Q: How close is output p to satisfying constraint a?
A: Semantic loss function L(a,p)

« Axioms, for example:
— If a constrains to one label, L(a,p) is cross-entropy
— If a implies B then L(a,p) 2 L(B,p) (a more strict)

— If a is equivalent to 3 then L(a,p) = L(B,p) | oss!

— If p is Boolean and satisfies a then L(a,p) =0



Axioms imply unique semantic loss:

L(a,p)x—log > J] e« ][] (=pa)

x=a exEX X=X
\ J

N
Probability of satisfying constraint a after

sampling from neural net output layer p

In general: #P-hard &

Do this probabilistic-logical reasoning
during learning in a computation graph




Circuits = Computation Graphs

 Logical circuits that can count solutions (#SAT)
also compute semantic loss efficiently in size of circuit

L(a,p) =L(, p) = -log( )
N
L A P Pr(z;) Pr(-z3) Pr(-zs) Pr(-z;) Pr(z) Pr(zs

« Compilation into circuit by SAT solvers (once)
 Add circuit to neural network output in pytorch/tensorflowy/...



a: AAB=>C -log( )

C ~C C
1
0.2
| |
,_I
A -B -4
A -A B -B A -A B -B
1 11

0.3 0.7 0.5 0.5



p(y|x) p(ylx)

Entropy
Regularization
y
— m(a) — pa — m{a) —
1) b) A network allocating most of
a) A network uncertain over both valid C its mass to an invalid prediction.
& invalid predictions 5 3
2o
(yl2) =3
p\y|r > T
33 p(ylz)
v & ﬂ
3
Neuro-Symbolic
y Entropy Regularization L y
— m(a) — > — m(a) —
c) A network allocating most of d) A network allocating most of

its mass to models of constraint mass to one model of formula



Two complementary
neuro-symbolic losses

Neural net P(Y‘x) SemanticLoss> P(CV‘CI?) T: o logP(Oé|iE‘> \l/

Constraint (¥

_EP(Y|:(:,04) [lOg P(Y|$7 CV)]



Warcraft min-cost simple-path prediction results

Test accuracy % Coherent Incoherent Constraint
ResNet-18 44.8 91.7 56.9
Semantic loss  50.9 91.7 67.4
+ Full Entropy 51.5 91.6 67.7
+ NeSy Entropy 55.0 97.9 69.8

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2021.


https://arxiv.org/pdf/2201.11250.pdf

—C' Probability

A -B

A -A B -B

-A
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Joint entity-relation extraction in natural language processing

# 3 5 10 15 25 50 75
Baseline 492 £ 1.12 7.24 £ 1.75 13.66 = 0.18 | 15.07 £ 1.79 | 21.65 &+ 3.41 | 28.96 £ 0.98 | 33.02 £+ 1.17
w»n Self-training 7.72 £ 1.21 12.83 £2.97 | 16.22 £ 3.08 | 17.556 &= 1.41 | 27.00 £ 3.66 | 32.90 &= 1.71 | 37.15 = 1.42
2 Product t-norm 8.89 £+ 5.09 1452 + 2.13 | 19.22 £ 5.81 | 21.80 = 7.67 | 30.15 £ 1.01 | 34.12 £ 2.75 | 37.35 £ 2.53
3 Semantic Loss 12.00 &= 3.81 | 14.92 £ 3.14 | 22.23 + 3.64 | 27.35 £ 3.10 | 30.78 &= 0.68 | 36.76 = 1.40 | 38.49 + 1.74
+ Full Entropy 14.80 = 3.70 | 15.78 £ 1.90 | 23.34 =4.07 | 28.09 £ 1.46 | 31.13 &£ 2.26 | 36.05 £ 1.00 | 39.39 = 1.21
+ NeSy Entropy 14.72 + 1.57 | 18.38 £+ 2.50 | 26.41 £+ 0.49 | 31.17 + 1.68 | 35.85 + 0.75 | 37.62 £+ 2.17 | 41.28 + 0.46
Baseline 2.71 £1.10 2.94 £ 1.00 3.49 = 1.80 3.56 =+ 1.10 8.83 £+ 1.00 12.32 + 3.00 | 12.49 £ 2.60
&) Self-training 3.56 £ 1.40 3.04 £ 0.90 4.14 + 2.60 3.73 £ 1.10 9.44 + 3.80 14.82 +1.20 | 13.79 £ 3.90
?ﬂﬁ Product t-norm 6.50 £+ 2.00 8.86 £ 1.20 10.92 £ 1.60 | 13.38 £0.70 | 13.83 = 2.90 | 19.20 £ 1.70 | 19.54 + 1.70
;-,6) Semantic Loss 6.47 £ 1.02 9.31 £ 0.76 11.50 £ 1.53 | 12.97 £ 2.86 | 14.07 £ 2.33 | 20.47 £ 2.50 | 23.72 £ 0.38
+ Full Entropy 6.26 + 1.21 8.49 + 0.85 11.12 £ 1.22 | 14.10 £2.79 | 17.25 £ 2.75 | 22.42 + 0.43 | 24.37 + 1.62
+ NeSy Entropy 6.19 £+ 2.40 8.11 £ 3.66 13.17 £ 1.08 | 15.47 £ 2.19 | 17.45 £ 1.52 | 22.14 £ 1.46 | 25.11 £+ 1.03

Kareem Ahmed, Eric Wang, Kai-Wei Chang and Guy Van den Broeck. Neuro-Symbolic Entropy Regularization, 2022.


https://arxiv.org/pdf/2201.11250.pdf

Semantic Probabilistic Layers

® How to give a 100% guarantee that Boolean constraints will be satisfied?
® Bake the constraint into the neural network as a special layer

x—>|fl>2z —|S : z |90+ X->Tre | ry|x
| P ply | x)
— L

X
Y c ¥B

Y : SPL

® Secret sauce is again tractable circuits — computation graphs for reasoning

Kareem Ahmed, Stefano Teso, Kai-Wei Chang, Guy Van den Broeck and Antonio Vergari. Semantic Probabilistic Layers for Neuro-Symbolic Learning, 2022.


https://arxiv.org/abs/2206.00426

Warcraft Shortest Path

GROUND TRUTH RESNET-18 SEMANTIC LOSS SPL (ours)




Hierarchical Multi-Label Classification

“if the image is classified as a dog, it must
also be classified as an animal”

“if the image is classified as an animal, it
must be classified as either cat or dog”

DATASET EXACT MATCH
HMCNN MLP+SPL

CELLCYCLE 3.05 :0.11 3.79 + 0.18
DERISI 1.39 4+ 0.47 2.28 + 0.23
EISEN 5.40 &+ 0.15 6.18 + 0.33
EXPR 4201+ 0.21 5.54 + 0.36
GASCHI 3.48 + 0.96 4.65 + 0.30
GASCH2 3.11 + 0.08 3.95 + 0.28
SEQ 5.24 +0.27 7.98 + 0.28
Spo 1.97 4+ 0.06 1.92 4+ 0.11
DIATOMS 48.21 + 0.57 58.71 + 0.68
ENRON 5.97 + 0.56 8.18 + 0.68
IMCLEFO7A  79.75 4+ 0.38 86.08 4+ 0.45
IMCLEFO7D 76.47 + 0.35 81.06 + 0.68




Neuro-Symbolic Learning Settings

Learn

1. neural network given symbols and constraints and data
2. neural network and constraints given symbols and data

3. neural network and constraints and symbols given data

Everyone is working on 1. Ongoing work on 2.



Neuro-Symbolic Joint Training

/ X i I / o Move the top disk
- = —— 1171 e — * on the Ist pillar to
N / V... N / the 3rd pillar
IEIERE y X —1T y
e ~E—8 t Lk T T
4 ,__ —3 Logic rules based on L l l L + l Lo I
|‘ Z |¥ K= single digit perception @ 3 ] T
N : _|and addition N " _.--=""| Logic rules based on
< % 7 "|B.c.. 5+1=6 _’< % / < s size relationships of
‘,___, 9 £, ot :
7 | % VAL top disks

Learn invariant features using neural networks. Learn logic to tie it all together.

Ask Yitao Liang, Anji Liu



Neuro-Symbolic Joint Training

Multi-digit addition [test seq length + train/test img] Tower of Hanoi
Sw/test 10 w/test 20 w/test 5 w/train 10 w/train 20 w/ train Task #1 Task #2 Task #3

Model

DeepProbLog”  88.30 77.46 timeout 94.92 89.74 timeout 89.28 97.96 89.33

LSTM 81.40 56.97 39.05 88.92 77.40 63.23 7826  98.32  74.36
DNC 81.49 59.64 33.83 81.88 59.96 37.85 7620 9787  73.87
NToC(ours) 89.82 77.97 63.55 89.97 86.07 71.96 85.16 9794 8549

Learn invariant features using neural networks. Learn logic to tie it all together.

Ask Yitao Liang, Anji Liu



Predict Loan Amount
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Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge):
Increasing income should increase the approved loan amount



Counterexamples

Predicted Loan Amount (k USD)

dv,yx <y = f(z)> f(y)

L Computed using SMT(LRA)
logical reasoning solver

Maximal counterexamples
T g " (largest violation) using OMT

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.


http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf

Counterexample-Guided Predictions

Monotonic Envelope:

=
[

=
o

e Replace each prediction by its

3 s maximal counterexample
£ e Envelope construction is online
g 7 (during prediction)
S e (Guarantees monotonic predictions
£ s for any ReLU neural net
"
T .n::,e(k US:; e e Works for high-dimensional input

e Works for multiple
monotonic features

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.


http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf

Monotonic Envelope: Performance

Dataset Feature NN, Envelope

Dataset  Feature NN, Envelope
Neght  Jobe 20 S Iodl Trestbps ~ 0.85+0.04  0.85+0.04
Displ. 9334322 9631261

Auto-MPG Heart Chol. 0.854+0.04 0.85+0.05
W.D 0334322  9.63+2.61 S e e

WDHP 9334322 9.63+2.61 : sl Sol,
ey Rooms 1437424 14.19+2.28 Adult Eap. Gain 8'31 8'23

OStoN  crime 1437424 14.024+2.17 Dote ' :

Guaranteed monotonicity at little to no cost

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.


http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf

Counterexample-Guided Learning

How to use monotonicity to improve model quality?
“Monotonicity as inductive bias”

Data ——— Train

f Counterexamples T EpOChS

\j

Gen.
Counterexample

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.


http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf

Counterexample-Guided Learning: Performance

Dataset Feature NN, CGL
Weight  9.3343.22  9.04+2.76
Displ.  9.334322  9.08+-2.87
Auto-MPG w1 0334322  8.86-2.67
WD,HP 9334322  8.63+2.21
Bost Rooms 1437424 12.24+2.87
OSION Crime 1437424 11.66+2.89

Monotonicity is a great inductive bias for learning

Dataset  Feature NN, CGL
Trestbps 0.85+0.04 0.86+0.02
Heart Chol. 0.85+0.04 0.85+0.05
T,C 0.854+0.04 0.86+0.06
Cap. Gain 0.84 0.84
Adult Hours 0.84 0.84

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.


http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf

COMET:

Counterexample-Guided Monotonicity Enforced Training

Table 4: Monotonicity is an effective inductive bias. COMET outperforms Min-Max networks on all datasets.
COMET outperforms DLN in regression datasets and achieves similar results in classification datasets.

Dataset Features Min-Max DLN CoMET Dataset Features Min-Max DLN COMET
Weight 991+120 16774257 | 8.9242.93 Trestbps  0.75+0.04 0.85+0.02 | 0.86--0.03

Auto-  Displ. 11784220 16.67+2.25 | 9.1142.25
Heart  Chol. 0.75+0.04 0.85+0.04 | 0.8720.03
MPG WD 11.6040.54 16.56+2.27 | 8.89+2.29 o G 0iion losc o
WDHP 10144154 13344242 | 8.81+1.81 ’ o0, -56=0. 860
Bowoy Rooms 30881378 1593140 |1154=2.55 | Adult gap Gain 8';; g'g‘s' g'gi
oston - ~vime 25.89+247 12.06+1.44 |11.07+2.99 o ' : :

COMET = Provable Guarantees + SotA Results

Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein and Guy Van den Broeck. Counterexample-Guided Learning of Monotonic Neural Networks, NeurIPS, 2020.


http://starai.cs.ucla.edu/papers/SivaramanNeurIPS20.pdf

The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

~_ _—

* Knowledge is (hidden) everywhere in ML
* A little bit of reasoning goes a long way!

Deep learning with structured output constraints
Learning monotonic neural networks



Outline

1. The paradox of learning to reason from data
deepfearnng
2. Tractable deep generative models
probabilistic reasoning + deep learning

3. Learning with symbolic knowledge
logical reasoning + deep learning



The Al Dilemma
S

Pure Reasoning Pure Learning

~_ _—

Integrate reasoning into modern deep learning algorithms



Thanks

This was the work of many wonderful
students/postdocs/collaborators!

References: hitp://starai.cs.ucla.edu/publications/



http://starai.cs.ucla.edu/publications/

