Computer
UCLA Science

Computational Abstractions of
Probability Distributions

Guy Van den Broeck

PGM - Sep 24, 2020

Manfred Jaeger Tribute Band

1997-2004-2005

Relational Bayesian Networks

Manfred Jaeger
Computer Science Department,
Stanford University, Stanford CA 94305
jaeger@robotics.stunford.edu

In case we ind = ~hont ceveral ob-

Abstract
served events, e, Available online at www,
A new method is developed to represent prob- _/’”'H/‘”'—"(“"?) ;(Lk Science d:aenced’reﬂ som \
s o : . ing a quer ; L . i
ainty Fuzziness &);I;igcprree\ll‘il:\z:; ?(I:lozrelctllgljieb;gzg OC':meaV;?:g- CV%denge agout EI";:/IV* lmema!ional Journa] of(: .Ecr llmu RNT %&LIMWAN%‘E
In Int. J. of Uncertainty; probabilistic rules were used for this purpose,];(f(@,):zj R 42 (2003?3?“"“ Reasom'ng REASONING
www.elsevier.com/locale/ijar
s — Combinir Compij] :
. s aphs — C Fillgge? Mmpiling r, :
Probabilistic Decision ql g s for Probabilistic gf eIatmnaI. Bayesian Networks
" and Al Techniques 10 O exact inf, erence
“fication ——
Verif Inference Mark Chayir, . > Adnan Dypyicp . .
I Darwichg 2 M
by 3 Compuzer Science p G L ’ aHfI‘ed Jaeger e
ST for Dagaly: Dariment, ycy, » Los Angeos
MANFRED JAEGER Datalogi Pt Adborg g e s, & o e St
< Avaﬂab]e online |5 November. 200.; o A”//mrg ” Cenmait

ersitet, Institut for | 5
wlsm‘QQQO Aalborg 0, Denmar

@cs.auc.dk

Aalborg Uni

~drik Bajers Vej 7,
Fredrik Baj jacger

Let me be provocative

Graphical models of variable-level (in)dependence
are a broken abstraction.

[VdB KRR15]

Let me be provocative

Graphical models of variable-level (in)dependence
are a broken abstraction.

3.14 Smokes(x) A
Friends(x,y)

[VdB KRR15]

Let me be provocative

Graphical models of variable-level (in)dependence
are a broken abstraction.

Bean Machine
pr ~ Normal(a, 3)
o ~ Gamma(v, p)
0. ~ Dirichlet(k)
% Categorical(init) ifz =20
’ Categorical(6z;, ,) ifi >0
y; ~ Normal(pz,, 0z,)

[Tehrani et al. PGM20]

Let me be even more provocative

Graphical models of variable-level (in)dependence
are a broken abstraction.

We may have gotten stuck in a local optimum?
e Exact probabilistic inference still independence-based

o Huge effort to extract more local structure from individual tables
e What do you mean, compute probabilities exactly?

o Statistician: inference = Hamiltonian Monte Carlo

o Machine learner: inference = variational

e \Variable-level causality

Let me be provocative

Graphical models of variable-level (in)dependence
are a broken abstraction.

The choice of representing a distribution primarily by its
variable-level (in)dependencies is a little arbitrary...

What if we made some different choices?

Computational Abstractions

Let us think of distributions as
objects that are computed.

Abstraction = Structure of Computation

‘closer to the metal’

Two examples:
e Probabilistic Circuits
e Probabilistic Programs

Probabilistic Circuits

v

ovesors aercros | o6
e e T
o e s oes s [s
o [rson] s s [[v
are o [e s Towns

e

The Alphabet Soup of probabilistic models

Fully factorized
e) [

o e s o T s
o [rson] s | s s [s
[s e
e s

Intractable and tractable models

Fully factorized

e [
I e e
I 2 2 2 [
ares o] rT s
reamor s

tractability is a spectrum

VAEs

Flows

Trees

Mixtures

FT TR

Factorized

o: I [G2 Iz I K

less expressive

efficient

Polytrees

Fully factorized
m Trees

larger tractable bands
% [

v

smaller tractable bands

NADEs g BNs
NFs

%

more expressive

efficient

avesersTrnoreaps | ocs
e e T
o s s o e s

2 (T 2 2 [
e 0 [
v

Expressive models without compromises

less expressive

efficient

Fully factorized

m Trees
Polytrees

more tractable queries

%A

PDGs § PSDDs
CNets | AoGs | ACs

h 4

less tractable queries

NADEs g BNs
NFs

=

more expressive

efficient

Tractable Probabilistic Models

.:4:;/Jt57 »r’;f,fﬁ‘\.»? 75] [.25 |
- A e NN
C':J [*J LF(J

()

"Every keynote needs a joke and a literature overview slide, not necessatrily distinct"
- after Ron Graham

Fully factorized

e e T
o e s Taoes s [s
orm [e oo e
o o[reT s
reamor i

a unifying framework for tractable models

X3:0 X4:0

Input nodes are tractable (simple) distributions,
e.g., indicator functions p _(X=1) = [X=1]

Product nodes are factorizations | [;) Pe(X)

Sum nodes are mixture models) | ;.. On.c Po(X)

m ull decomposability gl tractable MAR

If p(x) = >, wipi(X), (smoothness):

—> integrals are “pushed down” to children

[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]

m ul decomposability g tractable MAR
If p(x,y,2z) = p(x)p(y)p(2), (decomposability):

///p(x’y’z)dXdydz:
:/ / / p(x)p(y)p(z)dxdydz =
— / p(x)dx / p(y)dy / il

—> integrals decompose into easier ones

Forward pass evaluation for MAR /Q\

=—> linear in circuit size! @ @ @ @
— AR

E.g. to compute p(x2, 74): Xl/ | | \X1
B leafs over X; and X3 output Z; = [p(x;)dx; ?1/@ @\?z

— for normalized leaf distributions: @ @ @ @
B leafs over X5 and X4 output |37/ T >(T)< >< T

B feedforward evaluation (bottom-up) @ @ @ @

Q:

N XX X
N X X X
N X X X

X XN X

XXNDS
MY X X
N Y X X

v
X
X

2.

SMO

smoothness
consistency
determinism

decomposability

marginal
determinism
structured
decomposability

paired str.
decomposability

smooth dec. det. str.dec.
Arithmetic Circuits (ACs) [Darwiche 2003] & vV Vv X
Sum-Product Networks (SPNSs) [Poon et al. 2011] t/ V X X
Cutset Networks (CNets) [Rahman et al. 2014] V ‘/ V X
Probabilistic Decision Graphs [Jaeger 2004] ‘/ ‘/ ‘/ l/
PSDDs [Kisa et al. 2014a] ‘/ V ‘/ ‘/
AndOrGraphs [Dechter et al. 2007] ‘/ ‘/ V V

less expressive

efficient

Fully factorized
m Trees

more tractable queries

%A

PCs
PCs

v

less tractable queries

NADEs g BN
NFs

S
et

more expressive

efficient

How expressive are probabilistic circuits?

density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -1232 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -2642 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94

pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81

Want to learn more?

Probabilistic

Circuits

Antonio Vergari
University of California, Los Angeles

Robert Peharz
TU Eindhoven

>) oo00/30246

Tutorial (3h)
EL]

Inference
Representations
Learning

YooJung Choi

University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

https://voutu.be/2RAG5-L9R70

Overview Paper (80p)

Probabilistic Circuits:

A Unifying Framework for Tractable Probabilistic Models*

YooJung Choi
Antonio Vergari

Guy Van den Broeck
Computer Science Department
University of California

Los Angeles, CA, USA

Contents
1 Introduction

2 Probabilistic Inference: Models, Queries, and Tractability
2.1 Probabilistic Models
2.2 Probabilistic Queries
2.3 Tractable Probabilistic Inference
2.4 Properties of Tractable Probabilistic Models

© 0 D U

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
Julia> num_examples(data)

17412

Julia= num_edges(structure)
270448

ulia> @btime estimate_parameters(structure , data); —
63 ms | —

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

https://qithub.com/Juice-jl/

https://github.com/Juice-jl/

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models
probabllistic circuits?

Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

(1 09 08 O]
09 097 09 O
08 096 1 O

L 0 0 0 1l

PrL(X1 - 1,X2 = 0,X3 - 1,X4 - O) det(L{llz})

~det(L+ 1)
Computing marginal probabilities is tractable.

[Zhang et al. UAI20]

Representing the Determinant as a PC is not easy

§a955|§n mmsssm) Branching and Division
Elimination

Laplace
Expansion

mmmsm) Exponentially many subdeterminants

[Zhang et al. UAI20]

We cannot tractably represent DPPs
with classes of PCs

No

Deterministic PCs Deterministic PCs
with no negative with negative
parameters parameters

Deterministic and
Decomposable
PCs

More Tractable Fewer Constraints

Decomposable PCs
with no negative

Decomposable PCs
with negative

parameters
parameters

(SPNs)

Stay Tuned! No We don’t know

[Zhang et al. UAI20; Martens & Medabalimi Arxiv15]

The Al Dilemma
R

Pure Logic Pure Learning

The Al Dilemma
R

Pure Logic Pure Learning

 Slow thinking: deliberative, cognitive,
model-based, extrapolation
 Amazing achievements until this day

* “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, ...

The Al Dilemma
R

Pure Logic Pure Learning

 Fast thinking: instinctive, perceptive,
model-free, interpolation
* Amazing achievements recently

* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing labels,
data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

I

Pure Logic Probabilistic World Models Pure Learning

A New Synthesis of
Learning and Reasoning

“Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing labels,
data efficiency, shift in distribution, general robustness and safety

We need to incorporate a sensible probabilistic model of the world

Prediction with Missing Features

X X2 X3 x4 x5y Train > | Classifier
x1
Predict
X X2 X3 X4 X5
X

x2
3 X1
X, X, ?
X5)(3 ?
X
X6 &
7 X, ?
X8 X

Test with missing features

Expected Predictions

Consider all possible complete inputs and reason about
the expected behavior of the classifier

A T O x° = observed features
44X7'72, Np(X”[n, ’X()) [f (X X)] x™ = missing features

Generalizes what P(Cly) = Z P(C,m|y)
we've been doing m

all along...

- Z P(C|m,y) P(mly)

= Em ~pmpy) P(ClM, y)

[Khosravi et al. IJCAI19, NeurlPS20, Artemiss20]

Experiments with simple distributions (Naive Bayes)
to reason about missing data in logistic regression

MNIST Fashion

?75-

= -4- Mean Imp

8 50 —{- Median Imp

= | =% Min Imp

<25 —— NaCL

0 25 50 75 100 0 25 50 75 100

% Missing % Missing

“Conformant learning”

[Khosravi et al. IJCAI19, NeurlPS20, Artemiss20]

What about complex classifiers and distributions?

Tractable expected predictions if the classifier is a regression circuit,
and the feature distribution is a compatible probabilistic circuits

. 3 [
N >
X —5.3
I >. I

Recursion that :
“breaks down”

the computation.

6.1 : —4.3

.

3
—1

D=

| |
For + nodes (n,m), | [& (2
look at subproblems _Ié} |
(1,3), (1,4), (2,3), (2.4) o AN AR
Gl 3] 5] 6] F]] Bel Bl] XS] [Re] Xe]] [£X]

[Khosravi et al. IJCAI19, NeurlPS20, Artemiss20]

Experiments with Probabilistic Circuits

[Khosravi et al. IJCAI19, NeurlPS20, Artemiss20]

MNIST
100 ——FMNIST
- ™ TSI 75 " -
% ey £ N
5 50 --4-- Mean 50 \\ ¥
8 Median ’
< —+— T1 (ours) 25
-4~ MPE ‘m\‘ _______________ e .
25 50 75 25 50 75
% Missing % Missing
Abalone le—4 Delta 1e4 Insurance
Median * 3.5
Sample FNt
—— M (ours) /{/ ‘ix'\ 3.0
--4-- Mean / Iy
—4— Mice / /
-4- MPE ,?;/_f i-; ;‘5 2.5
j 2.0 7
0 50 100 0 50 100 0 50 100
% Missing % Missing % Missing

ADV inference in Julia with Juice.jl

using ProbabilisticCireunits

pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
r¢ = load_logistic circuit(zoo lec file("inpurance.circuit").;

(3. How different is the insurance costs between smokers and non smokers?

groups = make_observations ([["!smoker"], ["smoker"]])
exps, _ = Expectation(pc, rc, groups);
println("Smoker : \$ $(exps([2])");

println("Non-Smoker: \$ $(exps[1])");
println("Difference: \$ $(exps[2] - exps[1])");
Smoker : $ 31355.32630488978

Non-Smoker: $ 8741.747258310648

Difference: $ 22613.57904657913

1)

What If Training Also Has Missingness

This time we consider decision trees as the classifier

1 Y Epyxmixe) [y, fo(x))]

| Dtrain | xoayeDtrain

E(@a Dtrain)

For one decision tree and using MSE loss, can be computed exactly

Lo yeDun Y - Pe(X)/P(X)
Zxo,yEDtra;n pe(x°)/p(x°)

More scenarios such as bagging/boosting in the paper.

[Khosravi et al. IJCAI19, NeurlPS20, Artemiss 20]

Preliminary Experiments

Missing only at Deployment Missing at both Learning and Deployment

o ——— XGBoost = XGBoost
I | = Median Impute 15.0 b | = Median Impute
Expected Prediction ? Expected Prediction
ExpLoss + Expected Prediction

10.0

RMSE x 10
RMSE x 10~

=~
&

N N 5.0 L " N
0.6 0.8 0.2 0.6 0.8

0.4
lity Missing Probability

0.2 0.4
Missing Probabi

[Khosravi et al. JCAI19, NeurlPS20, Artemiss 20]

ADV inference in Julia with Juice.jl

using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
re = load logistic_ecircuit(zeo le_file("ingurance.circuit™), 1);

(lg: Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");

println("Male : \$ $(exps[1])");

printla ("Diff : \$ $(exps[2] - exps[1])");
Female : $§ 14170.125469335406

Male : $§ 13196.548926381849

DifE : $§ 973.5765429535568

Model-Based Algorithmic Fairness: FairPC

Learn classifier given
e features S and X
e training labels D

Fair decision Df should be

independent of
the sensitive attribute S

%o 4
X/ s« Lat\B ® l:‘:'..»‘:sm Reduction
ti » | NlatPC ‘:!.‘.:3“ . Reweight
Gl o pL* o FaireC'?..,. X AX s FairlR
] s T s ‘%g
by **"* o *: &
* * &
A
* A vy
@ @ .
0.50 0.50
-=0.2 -0.1 0.0 0.1 0.2 -0.10 —-0.05 0.00 0.05 0.10
Discrimination Score Discrimination Score

[Choi et al. Arxiv20]

Accuracy
% ¥
»t
i
biog 4
e dF
»»
Accuracy
o
]
2
DA
fti:g

Probabilistic Sufficient Explanations

Goal: explain an instance of
classification

Choose a subset of features s.t.

1. Given only the explanation it
is “probabilistically sufficient”

Under the feature distribution,
it is likely to make
the prediction to be explained

2. Itis minimal and “simple”

[Khosravi et al. IJCAI19, Wang et al. XXAI20]

I

Pure Logic Probabilistic World Models Pure Learning

A New Synthesis of
Learning and Reasoning

“Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing labels,
data efficiency, shift in distribution, general robustness and safety

We need to incorporate a sensible probabilistic model of the world

Probabilistic Programs

What are probabilistic programs?

let x = flip 0.5 in
lety =flip 0.7 in
letz=x|]|yin
let w = if z then

my_func(x,y)
else

in
observe(z);

means “flip a coin, and
output true with probability 2"

Standard (functional) programming
constructs: let, if, ...

means
“reject this execution if z is not true”

Why Probabilistic Programming?

PPLs are proliferating
HackPPL

g e

““‘-ig F|ga ro

Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability,ProbLog,
PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI,
Bean Machine, etc. ... and many many more

Programming languages are humanity’s biggest
knowledge representation achievement!

Dice probabilistic programming language

http://dicelang.cs.ucla.edu/ https://github.com/SHoltzen/dice

é D = h or jump to Pulls Issues Marketplace Explore
. S g . About GitHub & SHoltzen/ dice @Unwatch ~ 3 o Unstar 15 Y Fok 6
&3 The dice probabilistic programming language
<> Code () Issues 8 1 Pull requests (+) Actions "Il Projects 10 Wiki @ Security

¥ master ~ Go to file Add file ~ About

Exact inference for

dice is a probabilistic programming language focused on fast exact inference for discrete H SHoltzen printing revamp 5 o~ Tdaysage D217 discrete probabilistic
sgs.ga . . < programs. (Research
probabilistic programs. For more information on dice, see the about page. bench Revert "spoed up function calls” 12daysag code, more documentation
benchmarks eager eval is insane 2 months ago and ergonomics to:come)
Below is an online dice code demo. To run the example code, press the "Run" button. - E—— Tdaysage T Readme
— lib Revert "speed up function calls" 12daysage | B Apache-2.0 License
| Run)
1 fun sendChar(key: int(2), observation: int(2)) { resources test iff 2months ago
2 let gen = discrete(©.5, ©.25, 0.125, 0.125) in // sample a Foolang character ot fright shiftbu P—— Releases
3 let enc = key + gen in // encrypt the character g 9 ki
4 observe observation == enc [.gitignore Resolve merge conflicts 2 months ago ©2tags
5
6 O .merlin error upgrade 3 months ago
7 / sample a uniform random key: A=0, B=1, (=2, D=3 Packages
8 [Dockerfile clean dockerfile 2 months ago
9 let key = discrete(9.25, 8.25, ©.25, 08.25) in NG packiges pibbstiad
10 [LICENSE Resolve merge conflicts 2 months ago
11 '/ observe the ciphertext CCCC
12 let tmp = sendChar(key, int{(2, 2)) in [README.md Fixed documentation: double typing in arg... last month)
g0 1et-tnp = sendChar (key, Int{(2, 2)) in [dice.opam clean dockerfile 2 months ago Sontributors @
14 let tmp = sendChar(key, int(2, 2)) in : k
15 let tmp = sendChar(key, int(2, 2)) in P T S 55 T sHoitzen SHolizen
16
17 key [dune-project switch to dune 3 months ago ° ellieyhcheng ellieyhc...

[Holtzen et al. OOPSLA20 (tentative)]

http://dicelang.cs.ucla.edu/
https://github.com/SHoltzen/dice

What is a possible world?

let x = flip 0.4 in
lety =flip 0.7 in
letz=x||yin
let x = if z then
X
else
1

in (x,y)

Execution A

x=1
x=1, y=1
x=1, y=1, z=1

x=1, y=1, z=1

(1,1)
P =0.4*0.7

Execution B

x=1
x=1, y=0
x=1, y=0, z=1

x=1, y=0, z=1

(1,0)
P =0.4*0.3

Execution C

x=0
x=0, y=1
x=0, y=1, z=1

x=0, y=1, z=1

(0,)
P =0.6%0.7

Execution D
x=0
x=0, y=0
x=0, y=0, z=0

x=1, y=0, z=0
(1,0)

P=0.6%0.3

Why should | care? | like PGMSs

Better abstraction:
Beyond variable-level dependencies

modularity through functions
reuse (cf. templative graphical models)

intuitive language for local structure; arithmetic
data structures
« first-class observations

First-Class Observations, Functions

fun EncryptChar(key:int, obs:char):Bool {
let randomChar = ChooseChar() in
let ciphertext = (randomChar + key) % 26 in

let _ = observe ciphertext = obs in
true}
let k = UniformInt(@, 25) in
let _ = EncryptChar(k, 'H') in ---
let _ = EncryptChar(k, 'D') in k

Frequency Analyzer for a Caesar cipher in Dice

What do PGMs bring to the table?

1. Real programs have inherently discrete structure
(e.g. if-statements)

2. Discrete structure is inherent in many domains
(graphs, text/topic models, ranking, etc.)

3. Many existing PPLs assume smooth and differentiable
densities and do not handle these programs correctly.

Discrete probabilistic programming is
the important unsolved open problem!

PGM community knows how to solve this!

Symbolic Compilation to
Probabilistic Circuits

Probabilistic Symbolic Weighted Probabilistic
o Boolean .
Program Compilation Circuit
Formula
Retains Program \
Circuit

Structure o
compilation

Logic Circuit '
(BDD)

7
ﬂ.@* ol
_/<Y" \(. i
{ S3
N A

(a) Network diagram.

Inference In

i fun diamond(s;:Bool):Bool {
let route = flip; 0.5 in
let s = if route then s; else F in
1 let s3 = if route then F else s; in
let drop = flipy 0.0001 in
so V (s3 A —drop)}
diamond(diamond(diamond(T)))

(b) Probabilistic program defining the network.

(c) diamond function.

Network Verification

(d) Final BDD.

PPL benchmarks from PL community

Benchmark Psi (ms) DP (ms) Dice (ms) | #Paths BDD Size
Grass 167 57 1.0 | 9.5x10' 15
Burglar Alarm 98 10 1.1 | 2.5x10% 11
Coin Bias 94 23 1.0 | 4 13
Noisy Or 81 152 1.0 | 1.6x10* 35
Evidencel 48 32 1.0 9 5
Evidence?2 59 28 1.0 | 9 6
Murder Mystery 193 5 1.0 | 1.6x10' 6

Scalable Inference

—Dice e Dice (Inline) —— Psi - Psi DP —— WebPPL Exaet = Rejection
T m T T 11 105 = | T M ‘.:”TU \ \EI 105 1 pu AL BN ‘!
gy . s ".. 4 == .-: : 4 | £ 105 =
@ 10° 10) |10 J -
5 10° =1 103 B 10* F
3 o | b L7 103 B
= 3 102 = g 102 it 2
E 10 101 F 1 : 101 1
= 107 oE 1 10° F <1 10! ,
1 = ool vl S 10 RTINS R SR 100 T ST R M 100 e —]

100101102103104
Characters

10°10110210%10% 101 102 103 10* 100101102103104

Length Length Length

Scalable Inference

Benchmark

Psi (ms) DP (ms) Dice (ms)

Parameters

Paths BDD Size

Cancer [48]
Survey [73]
Alarm [5]
Insurance [7]
Hepar2 [63]
Hailfinder [1]
Pigs

Water [43]
Munin [3]

772
2477

X X X X X X X

46
152

X X X X X X X

1.0

2.0

9.0
75.0
54.0
526.0
32.0
2926.0
1945.0

10
21

509

984

1453
2656
5618

1.0 x 10*
8.1 X 10°

1.1x10% 28
1.3x10% 73
1.0x10% 1.3x10°
1.2x10% 1.0x10°
2.9x10%° 1.3x103
2.0x107° 6.5x10%
7.3x10%42 35
3.2x10°* 5.1x10%
2.1x101%%2 1.1x10*

Alarm Bayesian Network

let HYPOVOLEMIA = flip 0.2 in
let LVFAILURE = flip 0.05 in
let STROKEVOLUME =
if (HYPOVOLEMIA) then
(1f (LVFAILURE) then (discrete(0.98,0.01,0.01)) else (discrete(0.50,0.49,0.01)))
else
(1f (LVFAILURE) then (discrete(0.95,0.04,0.01)) else (discrete(0.05,0.90,0.05)))
in
let LVEDVOLUME =
if (HYPOVOLEMIA) then
(1f (LVFAILURE) then (discrete(0.95,0.04,0.01)) else (discrete(0.01,0.09,0.90)))
else

(1f (LVFAILURE) then (discrete(0.98,0.01,0.01)) else (discrete(0.05,0.90,0.05)))

in

‘.} o
:
vt
e
antral Venous (Cardiae Outpt’)
Puimonary Capillary
Wedge Pressure

Why should | care? | like PGMSs

Better abstraction:
Beyond variable-level dependencies

modularity through functions
reuse (cf. templative graphical models)

intuitive language for local structure; arithmetic
data structures
- first-class observations
Better inference? correctness? analysis?
import PL.¥*

Denotational Semantics

o_ 7

. Goal: associate with every expression “e” a semantic object.

. Notation: semantic bracket: [[.]]

- In Bayesian network: [[BN]] = PrBN(.)
 In probabilistic programs: [[e]](.) for all expressions
- Accepting and distributional semantics:

el = Z [e] (0. el p (@) £ —— [e] (v)

[H]A

Idea: don’t need to run ‘flip 0.4’ infinite times to know meaning

Denotational Semantics
+ Formal Inference Rules

[o] (@) £ (8(e0)) (@) [fst (01,02)] (2) = (8(01)) (v)

[[elﬂ (U) ing =T
[if vg then e; else e;] (v) = {[ez] (v) ifvg=F
0 otherwise

1 ifoy=Tando =T,

0 otherwise

[observe v;] (v) £ {

[let x = e; iney] (v) £ Z [e1] (@) x [ea[x — 0']] (v)

[snd (01,02)] (v) £ (5(02))(0)

[flip 0] (v) 241-6 ifo=F

[f @] @) 2((T(H) @) @)

0 ifo=T

0 otherwise

(C-TruE) (C-FALSE) (C-IpENT)

T~ (T,T,0) F~ (F,T.0) x> (xT,0)

fresh f
PN v (f,T, (E 0,T,F - 1- 9))

aexp ~ (o, T,0)
observe aexp ~ (T, ¢, 0)

(C-Fr1p)

(C-Oss)

aexp ~ (@g, T,0) er ~ (o1, Y1, Wr) et ~ (QE, YE, WE)

if aexp then ey else eg ~~ (((gog A Q1) V ((Eg A 9E), ((ng Ayr) V ((Eg A YE), wr U wE)
(C-ITE)

e1 ~ (@1, y1, w1) ey ~ (2, y2, w2)

letx =e;ine; ~ (@2[x = @1l y1 A ya[x = @1], w1 Uwy)

(C-LeT)

Provably Correct Inference!

fresh f;
(x) 0| flipo.4 -
fresh f; xw(,‘, ’ AT G
fllpo.lw(-..,,m) f11p0.4Vx->(@ T .0, w,

let x =flip 0.1 inflip 0.4V x ~~

®
., ,W1 U wy
[

Better Inference?

Exploit modularity

1. Al modularity:
Discover contextual independencies and factorize
2. PL modularity:
Compile procedure summaries and reuse at each call site

Reason about programs! Compiler optimizations.
Quick preview:

3. Flip hoisting optimization

4. Eager compilation

From programs to circuits directly:

let z = flip; 0.5 in
let x = if z then flipy 0.6 else flips 0.7 in
let y = if z then flipg 0.7 else x in (x, y)

(a) Context-specific independence.

fun foo(a:Bool, b:Bool, c:Bool):Bool {
aVbyVvec

}

(c) Structure without independence. (d) Compiled BDD.

Compiler Optimizations (sneak preview)

Benchmark | Naive determinism | flip hoisting + | Eager + Ace baseline
compllatlon determinism fI|p lifting

alarm

water 56,267 65,975 1509 941 605
insurance 140 100 100 128 492
hepar2 95 80 80 80 495
pigs 3,772 2490 2112 186 985
munin >1,000,000 >1,000,000 109,687 16,536 3,500

Inference time in milliseconds

Conclusions

. Are we already in the age of
computational abstractions?
» Probabilistic circuits for
learning deep tractable probabilistic models
« Probabilistic programs as the new
probabilistic knowledge representation language

Programming Languages Artificial Intelligence

Symbolic Execution

Mostract
\nte\'p\‘etat\o

redicate Abstractio,
Predi n
Wode! Checking

Weakest
Precondition

Thanks

