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Let me be provocative
Graphical models of variable-level (in)dependence 
are a broken abstraction.

[VdB KRR15]



Let me be provocative
Graphical models of variable-level (in)dependence 
are a broken abstraction.

3.14  Smokes(x) ∧ 
Friends(x,y) 
⇒ Smokes(y)

[VdB KRR15]



Let me be provocative
Graphical models of variable-level (in)dependence 
are a broken abstraction.

Bean Machine

[Tehrani et al. PGM20]



Let me be even more provocative
Graphical models of variable-level (in)dependence 
are a broken abstraction.

We may have gotten stuck in a local optimum?
● Exact probabilistic inference still independence-based

○ Huge effort to extract more local structure from individual tables
● What do you mean, compute probabilities exactly?

○ Statistician: inference = Hamiltonian Monte Carlo
○ Machine learner: inference = variational

● Variable-level causality



Let me be provocative
Graphical models of variable-level (in)dependence 
are a broken abstraction.

The choice of representing a distribution primarily by its 
variable-level (in)dependencies is a little arbitrary…

What if we made some different choices?



Computational Abstractions
Let us think of distributions as 
objects that are computed.

Abstraction = Structure of Computation

‘closer to the metal’

Two examples:
● Probabilistic Circuits
● Probabilistic Programs



Probabilistic Circuits

















Tractable Probabilistic Models

"Every keynote needs a joke and a literature overview slide, not necessarily distinct" 
- after Ron Graham





Input nodes are tractable (simple) distributions, 
e.g., indicator functions pn(X=1) = [X=1]







[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]













How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81



Want to learn more?

https://youtu.be/2RAG5-L9R70 

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf 

Tutorial (3h) Overview Paper (80p)

https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf


Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits  

julia> using ProbabilisticCircuits;  
julia> data, structure = load(...);  
julia> num_examples(data)
17412
julia> num_edges(structure)  
270448
julia> @btime estimate_parameters(structure , data);

63 ms

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

https://github.com/Juice-jl/

https://github.com/Juice-jl/


Probabilistic circuits seem awfully general. 

Are all tractable probabilistic models 
probabilistic circuits?



Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

 

 

Computing marginal probabilities is tractable.

[Zhang et al. UAI20]



Representing the Determinant as a PC is not easy

Gaussian 
Elimination

Laplace 
Expansion

Branching and Division

Exponentially many subdeterminants

[Zhang et al. UAI20]



PSDDs

More Tractable Fewer Constraints

Deterministic and 
Decomposable 

PCs

Deterministic PCs 
with no negative 

parameters

Deterministic PCs 
with negative 
parameters

Decomposable PCs 
with no negative 

parameters
(SPNs)

Decomposable PCs 
with negative 
parameters

We cannot tractably represent DPPs 
with classes of PCs

No
No

No No

No We don’t knowStay Tuned!
[Zhang et al. UAI20; Martens & Medabalimi Arxiv15]



The AI Dilemma

Pure LearningPure Logic



The AI Dilemma

Pure LearningPure Logic

• Slow thinking: deliberative, cognitive, 
model-based, extrapolation

• Amazing achievements until this day
 

• “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, …



The AI Dilemma

Pure LearningPure Logic

• Fast thinking: instinctive, perceptive, 
model-free, interpolation

• Amazing achievements recently
 

• “Pure learning is brittle”
 
fails to incorporate a sensible model of the world

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing labels, 
data efficiency, shift in distribution, general robustness and safety



Pure LearningPure Logic Probabilistic World Models

A New Synthesis of 
Learning and Reasoning

 

“Pure learning is brittle”
 

 
 

 We need to incorporate a sensible probabilistic model of the world

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing labels, 
data efficiency, shift in distribution, general robustness and safety



Prediction with Missing Features

X1 X2 X3 X4 X5 Y 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

Train Classifier

?

?

?

X1 X2 X3 X4 X5 

x1 

x2 

x3 

x4 

x5 

x6 

Test with missing features

Predict



Expected Predictions
Consider all possible complete inputs and reason about 
the expected behavior of the classifier 

Generalizes what 
we’ve been doing 
all along...

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]



Experiments with simple distributions (Naive Bayes) 
to reason about missing data in logistic regression

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

“Conformant learning”



What about complex classifiers and distributions?

Tractable expected predictions if the classifier is a regression circuit, 
and the feature distribution is a compatible probabilistic circuits

Recursion that 
“breaks down”
the computation.

For + nodes (n,m), 
look at subproblems 
(1,3), (1,4), (2,3), (2,4)

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]



Experiments with Probabilistic Circuits

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]





What If Training Also Has Missingness
This time we consider decision trees as the classifier

For one decision tree and using MSE loss, can be computed exactly

More scenarios such as bagging/boosting in the paper.

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss 20]



Preliminary Experiments

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss 20]





Model-Based Algorithmic Fairness: FairPC
Learn classifier given
● features S and X
● training labels D

Fair decision Df should be 
independent of 
the sensitive attribute S

[Choi et al. Arxiv20]



Probabilistic Sufficient Explanations
Goal: explain an instance of 
classification
Choose a subset of features s.t.
1. Given only the explanation it 

is “probabilistically sufficient”
Under the feature distribution,
it is likely to make 
the prediction to be explained 

2. It is minimal and “simple”

[Khosravi et al. IJCAI19, Wang et al. XXAI20]



Pure LearningPure Logic Probabilistic World Models

A New Synthesis of 
Learning and Reasoning

 

“Pure learning is brittle”
 

 
 

 We need to incorporate a sensible probabilistic model of the world

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing labels, 
data efficiency, shift in distribution, general robustness and safety



Probabilistic Programs



What are probabilistic programs?

means “flip a coin, and 
output true with probability ½”

let x = flip 0.5 in
let y = flip 0.7 in
let z = x || y in
let w = if z then 

my_func(x,y)
else

...
in
observe(z);

means 
“reject this execution if z is not true”

Standard (functional) programming 
constructs: let, if, ...



Why Probabilistic Programming?
PPLs are  proliferating

Pyro Stan

Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability, ProbLog, 
PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI, 
Bean Machine, etc.      … and many many more

Figaro
Edward

HackPPL

Programming languages are humanity’s biggest 
knowledge representation achievement!



Dice probabilistic programming language 

http://dicelang.cs.ucla.edu/ https://github.com/SHoltzen/dice 

[Holtzen et al. OOPSLA20 (tentative)]

http://dicelang.cs.ucla.edu/
https://github.com/SHoltzen/dice


What is a possible world?

let x = flip 0.4 in
let y = flip 0.7 in
let z = x || y in
let x = if z then 

x
else

1
in (x,y)

x=1
x=1, y=1
x=1, y=1, z=1
 
x=1, y=1, z=1

(1, 1)

x=1
x=1, y=0
x=1, y=0, z=1
 
x=1, y=0, z=1

(1,0)

x=0
x=0, y=1
x=0, y=1, z=1
 
x=0, y=1, z=1

(0,1)

x=0
x=0, y=0
x=0, y=0, z=0
 

x=1, y=0, z=0
(1,0)

Execution A Execution B Execution C Execution D

P = 0.4*0.7 P = 0.4*0.3 P = 0.6*0.7 P = 0.6*0.3



Why should I care? I like PGMs

• Better abstraction:
• Beyond variable-level dependencies
• modularity through functions

reuse (cf. templative graphical models)

• intuitive language for local structure; arithmetic
• data structures
• first-class observations



First-Class Observations, Functions

Frequency Analyzer for a Caesar cipher in Dice



What do PGMs bring to the table?
1. Real programs have inherently discrete structure 

(e.g. if-statements)
2. Discrete structure is inherent in many domains

(graphs, text/topic models, ranking, etc.)
3. Many existing PPLs assume smooth and differentiable 

densities and do not handle these programs correctly.
 

Discrete probabilistic programming is 
the important unsolved open problem!

PGM community knows how to solve this!



Symbolic Compilation to 
Probabilistic Circuits

Probabilistic 
Program

Symbolic 
Compilation

Weighted 
Boolean 
Formula

WMC
Probabilistic 

Circuit

Logic Circuit
(BDD)

Circuit 
compilation

Retains Program
Structure



Inference in Dice

Network Verification



PPL benchmarks from PL community



Scalable Inference



Scalable Inference



let HYPOVOLEMIA = flip 0.2 in
let LVFAILURE = flip 0.05 in
let STROKEVOLUME = 

if (HYPOVOLEMIA) then 
(if (LVFAILURE) then (discrete(0.98,0.01,0.01)) else (discrete(0.50,0.49,0.01))) 

else 
(if (LVFAILURE) then (discrete(0.95,0.04,0.01)) else (discrete(0.05,0.90,0.05))) 

in
let LVEDVOLUME = 

if (HYPOVOLEMIA) then 
(if (LVFAILURE) then (discrete(0.95,0.04,0.01)) else (discrete(0.01,0.09,0.90))) 

else 
(if (LVFAILURE) then (discrete(0.98,0.01,0.01)) else (discrete(0.05,0.90,0.05))) 

in
...

Alarm Bayesian Network



Why should I care? I like PGMs

• Better abstraction:
• Beyond variable-level dependencies
• modularity through functions

reuse (cf. templative graphical models)

• intuitive language for local structure; arithmetic
• data structures
• first-class observations

• Better inference? correctness? analysis?
import PL.*



Denotational Semantics

• Goal: associate with every expression “e” a semantic object.

• Notation: semantic bracket: [[.]]
• In Bayesian network: [[BN]] = Pr

BN
(.)

• In probabilistic programs: [[e]](.) for all expressions
• Accepting and distributional semantics:

• Idea: don’t need to run ‘flip 0.4’ infinite times to know meaning



Denotational Semantics 
+ Formal Inference Rules



Provably Correct Inference!



Better Inference?
Exploit modularity

1. AI modularity:
Discover contextual independencies and factorize

2. PL modularity:
Compile procedure summaries and reuse at each call site

Reason about programs! Compiler optimizations.
Quick preview:

3. Flip hoisting optimization
4. Eager compilation



From programs to circuits directly:



Benchmark Naive 
compilation

determinism flip hoisting + 
determinism

Eager + 
flip lifting

Ace baseline

alarm 156 140 83 69 422

water 56,267 65,975 1509 941 605

insurance 140 100 100 128 492

hepar2 95 80 80 80 495

pigs 3,772 2490 2112 186 985

munin >1,000,000 >1,000,000 109,687 16,536 3,500

Inference time in milliseconds

Compiler Optimizations (sneak preview)



Conclusions
● Are we already in the age of 

computational abstractions?
● Probabilistic circuits for 

learning deep tractable probabilistic models
● Probabilistic programs as the new 

probabilistic knowledge representation language

Abstract 
Interpretation

Model Checking

Symbolic Execution

Predicate Abstraction

Weakest
Precondition

Weighted Model Counting

Bayesian Networks

Programming Languages Artificial Intelligence

Independence
Lifted Inference

Probabilistic 
Predicate Abstraction

Symbolic Compilation

Knowledge Compilation



Thanks


