Computer
UCLA Science

Reasoning about
Learned Models’ Behavior

Guy Van den Broeck

NeSy - Oct 26, 2021



The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning



The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

 Slow thinking: deliberative, cognitive, model-based, extrapolation
 Amazing achievements until this day '

* “Pure logic is brittle”

noise, uncertainty, incomplete knowledge, ...




The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

 Fast thinking: instinctive, perceptive, model-free, interpolation
 Amazing achievements recently
* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety
fails to incorporate a sensible model of the world




The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

~_ _—

 Learn statistical models subject to symbolic knowledge
* Integrate reasoning into modern learning algorithms

Today: Deep learning with constraints
Learning monotonic neural networks



Deep Learning with
Constraints



Knowledge In Vision, Robotics, NLP
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People appear at most Rigid objects don’t overlap
once in a frame

At least one verb in each sentence.
If X and Y are married, then they are people.

[Lu, W. L., Ting, J. A., Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.], [Wong, L. L., Kaelbling, L.
P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012], [Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge], [Gancheyv,
K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]... and many many more!



Motivation: Deep Learning

New
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Google's Al reasons its way around the London

DeepMind’s Al has learned to Underground
naVigate the Tu be using memory DeepMind’s latest technique uses external memory to solve tasks that require logic and

reasoning — a step toward more human-like Al.
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[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, |., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Motivation: Deep Learning

solve tasks that require logic and
reasoning — a step toward more human-like Al.

... but ...
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e To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node
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s} it also received input triples during the answer phase, indicating the actions cho-
EtSegundo ¢ sen on the previous time-step.
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[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]




Knowledge vs. Data

* Where did the world knowledge go?
— Python scripts

» Decode/encode cleverly
* Fix inconsistent beliefs

— Rule-based decision systems
— Dataset design
— “a b|g haCk” (with author’s permission)



Knowledge vs. Data

* Where did the world knowledge go?
— Python scripts

» Decode/encode cleverly
* Fix inconsistent beliefs

— Rule-based decision systems
— Dataset design
— “a b|g haCk” (with author’s permission)

 |[n some sense we went backwards

Less principled, scientific, and intellectually satisfying ways of
iIncorporating knowledge



pylon

A PyTorch Framework for Learning with Constraints

Kareem Ahmed TaoLi ThyTon Quan Guo,
Kai-Wei Chang  Parisa Kordjamshidi  Vivek Srikumar
Guy Van den Broeck  Sameer Singh

http://pylon-1lib.github.io



Declarative Knowledge of the Output

How is the output structured?
Are all possible outputs valid?

VS.

Neural Network | ———» How are the outputs related to each other?

Learning this from data is inefficient
Much easier to express this declaratively

How can do we inject declarative knowledge into PyTorch training code?

http://pylon-1ib.github.io



pylon

Library that extends PyTorch to allow injection of declarative knowledge
e Easy to Express Knowledge: users write arbitrary constraints on the output
e Integrates with PyTorch: minimal change to existing code
e Efficient Training: compiles into loss that can be efficiently optimized
o Exact semantic loss (see later)
o Monte-carlo estimate of loss
o T-norm approximation

o your solver?

http://pylon-1ib.github.io



pylon
@ Specify knowledge as a predicate

def check(y):

PyTorch Code return isValid
for i in range(train_iters):
py = model(x)

loss = CrossEntropy(py, ...)

http://pylon-1ib.github.io



pylon

PyTorch Code
for i in range(train_iters):

by.= model(x)

loss = CrossEntropy(py, ..

-)

loss += constraint_loss(check) (py)

o

@ Add as loss to training

///// loss += constraint_loss(check)

4

http://pylon-1ib.github.io



pylon

PyTorch Code
for i in range(train_iters):
py = model(x)

loss = CrossEntropy(py, ...)

loss += constraint_loss(check) (py)

7 pylon derives the gradients
(solves a combinatorial problem)

http://pylon-1ib.github.io



Warcraft Shortest Path

Predicting the min-cost simple-path in a grid

[Vlastelica et al., 2019]
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Warcraft min-cost simple-path prediction results

Test accuracy %  Coherent Incoherent Constraint

ResNet-18 44.8 97.7 56.9
Is prediction Are individual Is output
the shortest path? edge predictions a path?

This is the real task! correct?



Warcraft min-cost simple-path prediction results

Test accuracy %  Coherent Incoherent Constraint

ResNet-18 44.8 97.7 56.9
+ Semantic loss  50.9 97.7 67.4




Semantic Loss

Q: How close is output p to satisfying constraint a?
A: Semantic loss function L(a,p)

« Axioms, for example:
— If a constrains to one label, L(a,p) is cross-entropy
— If a implies B then L(a,p) 2 L(B,p) (a more strict)

* Implied Properties: _—— SEMANTIC
— If ais equivalent to 3 then L(a,p) = L(B,p) Loss!

— If p is Boolean and satisfies a then L(a,p) =0



Axioms imply unique semantic loss:

L(a,p)x—log > J] e« ][] (=pa)

x=a exEX X=X
\ J

N
Probability of satisfying constraint a after

sampling from neural net output layer p

In general: #P-hard &

We do this probabilistic-logical reasoning
during learning in a computation graph




Logical Computation Graphs

Logical circuits that can count solutions (#SAT)
Also compute semantic loss efficiently in size of circuit

L(op) =L(), P) = ~-log( - )
N
g =g W g 3 Pr(z;) Pr(-=z3) Pr(-z3) Pr(-z;) Pr(zs)

Compilation into circuit by SAT solvers (once)
Add circuit to neural network output in pytorch/tensorflow/...

Pl'(.l':';



p(yl|r) p(y|z)
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Semantic

a) A network uncertain over Loss

both valid & invalid predictions

Yy

b) A network allocating most of
its mass to an invalid prediction.

p(ylz)

y
— m(a) —

¢) A network allocating most of
its mass to models of the formula



p(yl|r) p(y|z)
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— m(a) — . — m(a) —
Semantic

a) A network uncertain over Loss

both valid & invalid predictions

Yy

b) A network allocating most of
its mass to an invalid prediction.

p(ylr) p(ylz) ﬂ
s
Neuro-Symbolic
Entropy L
y Regularization X
— m(a) — — m(a) —
c) A network allocating most of d) A network allocating most of

its mass to models of the formula mass to one model of formula



Two complementary
neuro-symbolic losses

Neural net P(Y‘x) SemanticLoss> P(CV‘CI?) T: o logP(Oé|iE‘> \l/

Constraint (¥

_EP(Y|:(:,04) [lOg P(Y|$7 CV)]



Warcraft min-cost simple-path prediction results

Test accuracy % Coherent  Incoherent Constraint
ResNet-18 44.8 97.7 56.9
Semantic loss 50.9 97.7 67.4
+ Entropy All 51.5 97.6 67.7
+ Entropy Circuit 55.0 97.9 69.8
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We can compute the probability of the constraint in a bottom-up pass of the circuit.
Complemented with a top-down pass, we get neuro-symbolic entropy-regularization



pylon

Joint entity-relation extraction in natural language processing
Semantic role labeling in natural language processing

Training MNIST recognition network from arithmetic supervision
Training neural net to solve Sudoku

Learning to rank

etc.

http://pylon-1ib.github.io



Joint entity-relation extraction in natural language processing

# Labels 3 5 10 15 25 50 75
Baseline 492+ 1.12 | 724 £1.75 [ 13.66 £ 0.18 | 15.07 £ 1.79 | 21.65 & 3.41 | 28.96 £+ 0.98 | 33.02 & 1.17
- Self-training 7.72 £ 1.21 | 12.83 297 | 16.22 +3.08 | 17.55 £+ 1.41 | 27.00 £ 3.66 | 32.90 + 1.71 | 37.15 + 1.42
o3 Product t-norm 8.80 £5.09 | 14.52 +2.13 | 19.22 +5.81 | 21.80 £ 7.67 | 30.15 £ 1.01 | 34.12 £ 2.75 | 37.35 = 2.53
2‘:) Semantic Loss 12.00 £ 3.81 | 14.92 4= 3.14 | 22.23 + 3.64 | 27.35 4+ 3.10 | 30.78 £ 0.68 | 36.76 & 1.40 | 38.49 + 1.74
+ Entropy All 14.80 + 3.70 | 15.78 = 1.90 | 23.34 - 4.07 | 28.09 + 1.46 | 31.13 £ 2.26 | 36.05 + 1.00 | 39.39 + 1.21
+ Entropy Circuit 14.72 £ 1.57 | 18.38 + 2.50 | 26.41 + 0.49 | 31.17 + 1.68 | 35.85 + 0.75 | 37.62 + 2.17 | 41.28 + 0.46
Baseline 271 £ 1.1 294+ 1.0 349+ 1.8 3.56 £ 1.1 883+ 1.0 | 12.324+3.0 | 1249 +£2.6
) Self-training 356+ 1.4 | 3.04+£09 | 414+26 373 £ 1.1 944 +38 | 1482+ 1.2 | 13.79+39
fx‘.! Product t-norm 6.50 + 2.0 886+ 1.2 | 1092+ 1.6 | 1338 £0.7 | 13.83+£29 | 1920+ 1.7 | 19.54 £ 1.7
3 Semantic Loss 6.47+1.02 | 931 £0.76 | 11.50 4+ 1.53 | 12.97 4 2.86 | 14.07 £ 2.33 | 20.47 + 2.50 | 23.72 + 0.38
+ Entropy All 6.26+1.21 | 8494085 | 11.12 4+ 1.22 | 14.10 £ 2.79 | 17.25 £ 2.75 | 22.42 + 0.43 | 24.37 + 1.62
+ Entropy Circuit  6.19 4 2.40 | 8.11 £3.66 |13.17 + 1.08 | 15.47 + 2.19 | 17.45 + 1.52 | 22.14 £+ 1.46 | 25.11 = 1.03

Table 5: Experimental results for joint entity-relation extraction on ACE(OS5 and SciERC. #Labels indicates the number of
labeled data points made available to the network per relation. The remaining training set is stripped of labels and is utilized in
an unsupervised manner: enforce the constraint or minimize the entropy. We report averages and errors across 3 different runs.



Monotonicity Invariants for
Neural Networks



Predict Loan Amount
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Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge):
Increasing income should increase the approved loan amount



Counterexamples
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Predicted Loan Amount (k USD
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dr,yr <y = flx)> f(y)

Computed using SMT(LRA)
logical reasoning solver

Maximal counterexamples
(largest violation) using OMT



Counterexample-Guided Predictions

Predicted Loan Amount (k USD)
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Monotonic Envelope:

Replace each prediction by its
maximal counterexample
Envelope construction is online
(during prediction)

Guarantees monotonic predictions
for any ReLU neural net

Works for high-dimensional input
Works for multiple
monotonic features



Monotonic Envelope: Performance

Dataset Feature NN, Envelope

Dataset  Feature NN, Envelope
Weight  9.3343.22  9.134341 Trestbps  0.85+0.04 0.85+0.04
Displ. 9334322  9.63+2.61

Auto-MPG Hesit  Chol 0.8540.04 0.85+0.05
W.D 0334322  9.63+2.61 2o e

WDHP 9334322 9.63+2.61 ’ -85=0. -85=£0.
ey Rooms 1437424 14.19+2.28 Adult gap. Gain 8'§j 8'23

OSION Crime 1437424 14.02+2.17 Dote ' ;

Guaranteed monotonicity at little to no cost




Counterexample-Guided Learning

How to use monotonicity to improve model quality?
“Monotonicity as inductive bias”

Data —— Train

f Counterexamples T Epochs
'

Gen.
Counterexample




Counterexample-Guided Learning:

Performance

Dataset Feature NN, CGL Daliet  Teltace NNp CGL
i on e Trestbps  0.85+0.04 0.86+0.02
Auto-MPG  2SP* ' ' » y Heart  Chol. 0.85+0.04 0.85+0.05
W.D 9334322  8.8642.67 e E =BT, D EELDO

WD, HP 9334322  8.63+2.21 ’ : : . .
Cap. Gain 0.84 0.84
Boston Rooms 1437424 12.24+2.87 Adult Hours 0.84 0.84

Crime 1437+£24 11.66+2.89

Monotonicity is a great inductive bias for learning




Counterexample-Guided Monotonicity
Enforced Training (COMET)

Table 4: Monotonicity is an effective inductive bias. COMET outperforms Min-Max networks on all datasets.
COMET outperforms DLN in regression datasets and achieves similar results in classification datasets.

Dataset Features Min-Max DLN CoMET Dataset Features Min-Max DLN COMET
Weight 991+120 16774257 | 8.92+2.93 Trestbps  0.75+£0.04 0.85+0.02 | 0.86-£0.03
Auto-  Displ. 11784220 16.67+2.25 | 9.114+2.25
Heart  Chol. 0.75+0.04 0.85+0.04 | 0.87+0.03
MPG WD 11.60+0.54 16.56+2.27 | 8.89+2.29 g 0751004 6861002 |0861008
WDHP  10.14+1.54 13.34+2.42 | 8.81+1.81 ) : : . ’ . a
Bost Rooms  30.88+13.78 15.93+1.40 [11.54+2.55| Adult gap' Gain 8';; g'g‘s' g'gi
oston - ~vime 25894247 12.06+1.44 |11.07£2.99 o ' : :

COMET = Provable Guarantees + SotA Results



The Al Dilemma
S

Pure (Logic) Reasoning Pure Learning

~_ _—

* Knowledge is (hidden) everywhere in ML
* A little bit of reasoning goes a long way!

Today: Deep learning with constraints
Learning monotonic neural networks



Thanks

This was the work of many wonderful
students/postdoc/collaborators!

References: hitp://starai.cs.ucla.edu/publications/
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