
Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

Nov. 29th, 2021 - MSR – New England



Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

Nov. 29th, 2021 - MSR – New England



Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

Nov. 29th, 2021 - MSR – New England



Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li∗
Tsinghua University

Zhe Zeng∗
University of California, Los Angeles

Antonio Vergari
University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

Nov. 29th, 2021 - MSR – New England



Problem Setup
A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

Ex∼p,x′∼q[k(x,x
′)].

5/38



Problem Setup
A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

Ex∼p,x′∼q[k(x,x
′)].

⇒ In kernel-based frameworks, expected kernels are omnipresent!

5/38



Problem Setup
A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

Ex∼p,x′∼q[k(x,x
′)].

⇒ In kernel-based frameworks, expected kernels are omnipresent!

5/38



Problem Setup
A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

Ex∼p,x′∼q[k(x,x
′)].

⇒ In kernel-based frameworks, expected kernels are omnipresent!

squared Maximum Mean Discrepancy (MMD)
Ex∼p,x′∼p[k(x,x′)] + Ex∼q,x′∼q[k(x,x′)]− 2Ex∼p,x′∼q[k(x,x′)]

5/38



Problem Setup
A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

Ex∼p,x′∼q[k(x,x
′)].

⇒ In kernel-based frameworks, expected kernels are omnipresent!

(Discrete) Kernelized Stein Discrepancy (KDSD)
Ex,x′∼q[kp(x,x′)]

5/38



Problem Setup
A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel

Ex∼p,x′∼q[k(x,x
′)].

⇒ In kernel-based frameworks, expected kernels are omnipresent!

This talk how to compute the expected kernels exactly and tractably,
by leveraging recent advances in probabilistic circuit representations.

6/38



Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

Approach: Tractable Expected Kernels

Application: Collapsed Black-box Importance Sampling

7/38



Motivation
Example: Support vector regression with missing features

8/38



Motivation
Example: Support vector regression with missing features

Given training data,
data

8/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

data

SVR

8/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

Task at deployment time, what happen if we only observe partial
features and some are missing?

data

SVR

8/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

Task at deployment time, what happen if we only observe partial fea-
tures and some are missing?

⇒ Expected prediction!

data

SVR

8/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

WithMissing Features . . .

data

9/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

WithMissing Features . . .

first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

data

PC

9/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

WithMissing Features . . .

first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

when only featuresXo = xo are observed and featuresXm are
missing, the expected prediction is

Exm∼p(Xm|xo)[f(xo,xm)]

data

PC

9/38



Motivation
Example: Support vector regression with missing features

Given training data, and a learned support vector regression (SVR) model

f(x) =
m∑

i=1

wik(xi,x) + b,

WithMissing Features . . .

first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

when only featuresXo = xo are observed and featuresXm are
missing, the expected prediction is

Exm∼p(Xm|xo)[f(xo,xm)] =
m∑

i=1

wiExm∼p(Xm|xo)[k(xi, (xo,xm))]+b

data

PC

9/38



Motivation
Example: Support vector regression with missing features

0.2 0.4 0.6 0.8
0issing 3rREaEility

0.00025

0.00030

0.00035

0.00040

0.00045

0.00050

50
6E

delta-ailerRns
0edian IPSutatiRn
0A3
ExSected 3redictiRn

0.2 0.4 0.6 0.8
0issing 3robability

2.5

3.0

3.5

abalone

⇒ Expected prediction improves over the baselines 10/38



Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫

x,x′
p(x)q(x′)k(x,x′) dx dx′

11/38



Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫

x,x′
p(x)q(x′)k(x,x′) dx dx′

Tractable if p,q fully factorized

11/38



Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫

x,x′
p(x)q(x′)k(x,x′) dx dx′

Tractable if p,q fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

11/38



Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫

x,x′
p(x)q(x′)k(x,x′) dx dx′

Tractable if p,q fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

Hard to compute in general.⇒ approximate with MC
or variational inference

PRO. Efficient computation
CON. Slow convergence

11/38



Challenge
Reliability vs. Flexibility

Ex∼p,x′∼q[k(x,x
′)] =

∫

x,x′
p(x)q(x′)k(x,x′) dx dx′

Tractable if p,q fully factorized

PRO. Tractable exact computation
CON.Model being too restrictive

trade-off? Hard to compute in general.⇒ approximate with MC
or variational inference

PRO. Efficient computation
CON. Slow convergence

11/38



Expressive distribution models
+

Exact computation of expected kernels?

12/38



Expressive distribution models
+

Exact computation of expectated kernels
=

Circuits!

13/38



Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

Approach: Tractable Expected Kernels

Application: Collapsed Black-box Importance Sampling

14/38



Circuit Representation

Probabilistic Circuits
deep generative models + guarantees

15/38



Circuit Representation

Probabilistic Circuits
deep generative models + guarantees

Kernel Circuits
express kernels as circuits

15/38



Probabilistic Circuits (PCs)
Tractable computational graphs

X1

16/38

I. A simple tractable distribution is a PC

⇒ e.g., a multivariate Gaussian



Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

16/38

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

⇒ e.g., a mixture model



Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

⇥

X1 X2

16/38

I. A simple tractable distribution is a PC

II. A convex combination of PCs is a PC

III. A product of PCs is a PC



Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

⇥

X1 X2

⇥

X1 X2

⇥

X1 X2

w1 w2

16/38



Probabilistic Circuits (PCs)
Tractable computational graphs

X1 X1 X1

w1 w2

⇥

X1 X2

⇥

X1 X2

⇥

X1 X2

w1 w2

⇥ ⇥

⇥ ⇥⇥ ⇥

X1

X2

X1

X2

X3 X4 X3 X4

16/38



Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

X1

X1

X2

X2

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

⇥

⇥

0.5

0.5

0.
6

0.4

X3

X3

⇥

⇥

0.8

0.2

0.
5

0.5

X4

X4

⇥

⇥

0.8

0.2

17/38



Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2)

1.29

0.18

0.35

2.42

�1.85

�1.85

0.5

0.5

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

⇥

⇥

0.5

0.5

0.
6

0.4

1.21

0.67�1.3

�1.3

⇥

⇥

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

⇥

⇥

0.8

0.2

17/38



Probabilistic queries = feedforward evaluation

p(X1 = −1.85, X2 = 0.5, X3 = −1.3, X4 = 0.2) = 0.75

1.29

0.18

0.35

2.42

�1.85

�1.85

0.5

0.5

1.21

0.74

1.80

2.01

0.9

0.1

0.
5

0.5

0.3

0.7

0.
2

0.8

2.18

1.47

1.82

1.90

0.5

0.5

0.
6

0.4

1.21

0.67�1.3

�1.3

1.22

2.29

1.43

1.76

0.8

0.2

0.
5

0.5

0.39

0.540.2

0.2

0.77

0.68

0.75
0.8

0.2

0.75

17/38



PCs = deep learning

PCs are computational graphs

18/38



PCs = deep learning

PCs are computational graphs encoding deep mixture models
⇒ stacking (categorical) latent variables

18/38



PCs = deep learning

PCs are computational graphs encoding deep mixture models
⇒ stacking (categorical) latent variables

PCs are expressive deep generative models!
⇒ we can learn PCs with millions of parameters in minutes on the GPU [Peharz

et al. 2020]

18/38



On par with intractable models!
How expressive are PCs?

Dataset PCs IDF Hierarchical VAE PixelVAE

MNIST 1.20 1.90 1.27 1.39
FashionMNIST 3.34 3.47 3.28 3.66
EMNIST (Letter split) 1.80 1.95 1.84 2.26
EMNIST (ByClass split) 1.85 1.98 1.87 2.23

Model CIFAR10 ImageNet32 ImageNet64

RealNVP 3.49 4.28 3.98
Glow 3.35 4.09 3.81
IDF 3.32 4.15 3.90
IDF++ 3.24 4.10 3.81
PCs+IDF 3.28 3.99 3.71

Liu et al., “Lossless Compression with Probabilistic Circuits”, 2021 19/38



PCs = deep learning + deep guarantees

PCs are expressive deep generative models!

&

Certifying tractability for a class of queries

via
Verifying structural properties of the graph

20/38



Which structural constraints
ensure tractability?

21/38



decomposable PCs

A PC is decomposable if all inputs of product units depend on disjoint sets of variables

⇥

X1 X2 X3

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 22/38



decomposable PCs = …

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 23/38



decomposable PCs = …

MAR sufficient and necessary conditions for computing any marginal

p(y) =

∫
p(z,y) dz

⇒ by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 23/38



decomposable PCs = …

MAR sufficient and necessary conditions for computing any marginal
∫
p(z,y) dz

CON sufficient and necessary conditions for any conditional distribution

p(y | z) = p(y, z)∫
p(y, z) dz

⇒ by two feedforward evaluations

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 23/38



decomposable PCs = …

MAR sufficient and necessary conditions for computing any marginal
∫
p(z,y) dz

CON sufficient and necessary conditions for any conditional p(y,z)∫
p(y,z) dz

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”,
2020 23/38



Can we represent kernels as circuits
to characterize tractability of its queries?

24/38



Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

1 1 1

25/38



Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x′) = exp (−
∑4

i=1 | Xi −X ′
i |2)

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

1 1 1

decomposable if all inputs of product units depend on disjoint sets of variables

25/38



Kernel Circuits (KCs)

Common kernels can be compactly represented as
decomposable KCs:

RBF, (exponentiated) Hamming, polynomial ...

26/38



Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

Approach: Tractable Expected Kernels

Application: Collapsed Black-box Importance Sampling

27/38



Expected Kernel
tractable computation via circuit operations

Main result.

28/38



Expected Kernel
tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

28/38



Expected Kernel
tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

{X1, X2, X3}{X4}

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

{X′
1, X

′
2, X

′
3}{X′

4}

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

1 1 1
k

{(X1, X′
1), (X2, X′

2), (X3, X′
3)}{(X4, X′

4)}

28/38



Expected Kernel
tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

then computing expected kernels can be done tractably by one forward pass
⇒ product of the sizes of each circuit!

28/38



decomposable + compatible = tractable E[k]
[Sum Nodes] p(X) =

∑
i wipi(X), q(X′) =

∑
j w

′
jqj(X′), and kernel k(X,X′) =

∑
l w

′′
l kl(X,X′):

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

k

29/38



decomposable + compatible = tractable E[k]
[Sum Nodes] p(X) =

∑
i wipi(X), q(X′) =

∑
j w

′
jqj(X′), and kernel k(X,X′) =

∑
l w

′′
l kl(X,X′):

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

k

∑
x,x′ p(x)q(x′)k(x,x′)

=
∑

i,j,l wiw′
jw

′′
l pi(x)qj(x′)kl(x,x′)

29/38



decomposable + compatible = tractable E[k]
[Sum Nodes] p(X) =

∑
i wipi(X), q(X′) =

∑
j w

′
jqj(X′), and kernel k(X,X′) =

∑
l w

′′
l kl(X,X′):

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

k

Ep,q[k(x,x′)] =
∑

i,j,l wiw′
jw

′′
l Epi,qj [kl(x,x′)]

⇒ expectation is “pushed down” to children

29/38



decomposable + compatible = tractable E[k]
[Product Nodes] p×(X) =

∏
i pi(Xi), q×(X′) =

∏
i qj(X′

i), and kernel k×(X,X′) =
∏

i ki(Xi,X′
i):

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

k

30/38



decomposable + compatible = tractable E[k]
[Product Nodes] p×(X) =

∏
i pi(Xi), q×(X′) =

∏
i qj(X′

i), and kernel k×(X,X′) =
∏

i ki(Xi,X′
i):

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

k

∑
x,x′ p×(x)q×(x′)k×(x,x′)

=
∑

x,x′
∏

i p(xi)q(xi)ki(xi,x′
i)

=
∏

i(
∑

xi,x′
i
p(xi)q(xi)ki(xi,x′

i))

30/38



decomposable + compatible = tractable E[k]
[Product Nodes] p×(X) =

∏
i pi(Xi), q×(X′) =

∏
i qj(X′

i), and kernel k×(X,X′) =
∏

i ki(Xi,X′
i):

X1

X1

X2

X2

⇥

⇥

X3

X3

⇥

⇥

X4

X4

⇥

⇥ p

X 0
1

X 0
1

X 0
2

X 0
2

⇥

⇥

⇥

⇥

⇥

⇥

X 0
3

X 0
3

⇥

X 0
4

q

exp(�|X1 �X 0
1|2)

exp(�|X2 �X 0
2|2)

⇥ ⇥

exp(�|X3 �X 0
3|2)

⇥

exp(�|X4 �X 0
4|2)

k

Ep×,q× [k×(x,x′)] =
∏

i Ep,q[k(xi,x′
i)]

⇒ expectation decomposes into easier ones

30/38



decomposable + compatible = tractable E[k]

Algorithm 1 Epn,qm [kl]— Computing the expected kernel

Input: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m,n, l are input nodes then
2: return Epn,qm [kl]
3: else if m,n, l are sum nodes then
4: return

∑
i∈in(n),j∈in(m),c∈in(l) wiw′

jw
′′
c Epi,qj [kc]

5: else if m,n, l are product nodes then
6: return EpnL ,qmL

[kL] · EpnR ,qmR
[kR]

Computation can be done in
one forward pass!

31/38



decomposable + compatible = tractable E[k]

Algorithm 2 Epn,qm [kl]— Computing the expected kernel

Input: Two compatible PCs pn and qm, and a KC kl that is
kernel-compatible with the PC pair pn and qm.

1: if m,n, l are input nodes then
2: return Epn,qm [kl]
3: else if m,n, l are sum nodes then
4: return

∑
i∈in(n),j∈in(m),c∈in(l) wiw′

jw
′′
c Epi,qj [kc]

5: else if m,n, l are product nodes then
6: return EpnL ,qmL

[kL] · EpnR ,qmR
[kR]

Computation can be done in
one forward pass!

⇒ squared maximum mean discrepancyMMD [p,q] [Gretton et al. 2012]

⇒ + determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

31/38



Outline

Problem Setup

Motivation: SVR with Missingness

Circuit Representation

Approach: Tractable Expected Kernels

Application: Collapsed Black-box Importance Sampling

32/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD S({ w(i)

weights

, x(i)

samples

}ni=1 ‖ p) = w%Kpw, with [Kp]ij = kp(x(i),x(j))

solving optimization problemw∗ = argminw
{
w%Kpw

∣∣∑n
i=1wi = 1, wi ≥ 0

}

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD S({ w(i)

weights

, x(i)

samples

}ni=1 ‖ p) = w%Kpw, with [Kp]ij = kp(x(i),x(j))

solving optimization problemw∗ = argminw
{
w%Kpw

∣∣∑n
i=1wi = 1, wi ≥ 0

}

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD S({ w(i)

weights

, x(i)

samples

}ni=1 ‖ p) = w%Kpw, with [Kp]ij = kp(x(i),x(j))

solving optimization problemw∗ = argminw
{
w%Kpw

∣∣∑n
i=1wi = 1, wi ≥ 0

}

Complexity quadratic in the number of samplesO(N2)!

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD S({ w(i)

weights

, x(i)

samples

}ni=1 ‖ p) = w%Kpw, with [Kp]ij = kp(x(i),x(j))

solving optimization problemw∗ = argminw
{
w%Kpw

∣∣∑n
i=1wi = 1, wi ≥ 0

}

Complexity quadratic in the number of samplesO(N2)!
Can we use less samples but maintain the same or even better performance?

33/38



Recap Black-box Importance Sampling [Liu et al. 2016]

Given a target distribution p, and samples {x(i)}ni=1,

Task is how to obtain weightsw such that {w(i),x(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

empirical KDSD S({ w(i)

weights

, x(i)

samples

}ni=1 ‖ p) = w%Kpw, with [Kp]ij = kp(x(i),x(j))

solving optimization problemw∗ = argminw
{
w%Kpw

∣∣∑n
i=1wi = 1, wi ≥ 0

}

Complexity quadratic in the number of samplesO(N2)!
Can we use less samples but maintain the same or even better performance?

⇒ Collapsed samples! 33/38



Collapsed Black-box Importance Sampling

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ‖ p) = w%Kp,sw

with [Kp,s]ij = Exc∼pi,x′
c∼pj

[kp(x,x′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w%Kp,sw

∣∣∣∣∣

n∑

i=1

wi = 1, wi ≥ 0

}

34/38



Collapsed Black-box Importance Sampling
Given partial samples {xs

(i)}ni=1, with (Xs,Xc) a partition ofX,

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ‖ p) = w%Kp,sw

with [Kp,s]ij = Exc∼pi,x′
c∼pj

[kp(x,x′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w%Kp,sw

∣∣∣∣∣

n∑

i=1

wi = 1, wi ≥ 0

}

34/38



Collapsed Black-box Importance Sampling
Given partial samples {xs

(i)}ni=1, with (Xs,Xc) a partition ofX,

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ‖ p) = w%Kp,sw

with [Kp,s]ij = Exc∼pi,x′
c∼pj

[kp(x,x′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w%Kp,sw

∣∣∣∣∣

n∑

i=1

wi = 1, wi ≥ 0

}

34/38



Collapsed Black-box Importance Sampling
Given partial samples {xs

(i)}ni=1, with (Xs,Xc) a partition ofX,

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ‖ p) = w%Kp,sw

with [Kp,s]ij = Exc∼pi,x′
c∼pj

[kp(x,x′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w%Kp,sw

∣∣∣∣∣

n∑

i=1

wi = 1, wi ≥ 0

}

34/38



Collapsed Black-box Importance Sampling
Given partial samples {xs

(i)}ni=1, with (Xs,Xc) a partition ofX,

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ‖ p) = w%Kp,sw

with [Kp,s]ij = Exc∼pi,x′
c∼pj

[kp(x,x′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w%Kp,sw

∣∣∣∣∣

n∑

i=1

wi = 1, wi ≥ 0

}

34/38



Collapsed Black-box Importance Sampling
Given partial samples {xs

(i)}ni=1, with (Xs,Xc) a partition ofX,

Represent the conditional distributions p(Xc | xs
(i)) as PCs pi by knowledge

compilation [Shen et al. 2016]

Compile the kernel function k(Xc,Xc
′) as KC k

Empirical KDSD between collapsed samples and the target distribution p

S2
s({xs

(i), wi} ‖ p) = w%Kp,sw

with [Kp,s]ij = Exc∼pi,x′
c∼pj

[kp(x,x′)]

Finally, obtain the importance weightsw by solving

w∗ = argmin
w

{
w%Kp,sw

∣∣∣∣∣

n∑

i=1

wi = 1, wi ≥ 0

}

34/38



Collapsed Black-box Importance Sampling

50 100 150 200
N (# VamSlHV)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

Lo
g 

av
g.

 m
ar

gL
na

l H
Hl

lLn
gH

r d
LV

t. CIS
VS
BBIS
CVS
CBBIS

25 50 75 100 125 150 175 200
N (# samples)

−4.5

−4.0

−3.5

−3.0

−2.5

−2.0

⇒ methods with collapsed samples all outperform their non-collapsed counterparts
⇒ CBBIS performs equally well or better than other baselines

Friedman and Van den Broeck, “Approximate Knowledge Compilation by Online Collapsed
Importance Sampling”, 2018
Liu and Lee, “Black-box importance sampling”, 2016 35/38



Conclusion
Takeaways

#1: You can be both tractable and expressive
#2: Circuits are a foundation for tractable inference over kernels

What else?

What other applications would benefit from the tractable computation
of the expected kernels?

36/38



More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
bi�`�BX+bXm+H�X2/mfT�T2`bfS`Q#*B`+kyXT/7

Probabilistic Circuits: Representations, Inference, Learning and Theory
vQmim#2X+QKfr�i+?\p4k_�:8@GN_dy

Probabilistic Circuits
�``�M;2`Ry99X;Bi?m#XBQfT`Q#�#BHBbiB+@+B`+mBibf

Foundations of Sum-Product Networks for probabilistic modeling
iBMvm`HX+QKfre8TQ8/

37/38

starai.cs.ucla.edu/papers/ProbCirc20.pdf
youtube.com/watch?v=2RAG5-L9R70
arranger1044.github.io/probabilistic-circuits/
tinyurl.com/w65po5d


Questions?

38/38



References I

⊕ Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229–264.

⊕ Liu, Qiang and Jason D Lee (2016). “Black-box importance sampling”. In: arXiv preprint arXiv:1610.05247.

⊕ Friedman, Tal and Guy Van den Broeck (Dec. 2018). “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”. In: Advances in Neural Information Processing
Systems 31 (NeurIPS). URL: ?iiT,ffbi�`�BX+bXm+H�X2/mfT�T2`bf6`B2/K�ML2m`ASaR3XT/7.

⊕ Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”. In:

⊕ Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020). “Einsum
Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”. In: International Conference of Machine Learning.

⊕ Liu, Anji, Stephan Mandt, and Guy Van den Broeck (2021). “Lossless Compression with Probabilistic Circuits”. In: arXiv preprint arXiv:2111.11632.

http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf

	Problem Setup
	Motivation: SVR with missingness
	References

