Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li* Zhe Zeng*
Tsinghua Universi i

rsity University of California, Los Angeles
Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

Nov. 29th, 2021 - MSR - New England

Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li* Zhe Zeng*
Tsinghua Universi i

rsity University of California, Los Angeles
Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

Nov. 29th, 2021 - MSR - New England

Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li* Zhe Zeng*
Tsinghua Universi i

rsity University of California, Los Angeles
Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

Nov. 29th, 2021 - MSR - New England

Tractable Computation
of Expected Kernels
by Circuit Representations

Wenzhe Li* Zhe Zeng*
Tsinghua Universi i

rsity University of California, Los Angeles
Antonio Vergari Guy Van den Broeck
University of California, Los Angeles University of California, Los Angeles

Nov. 29th, 2021 - MSR - New England

Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably

Eepmalk(X, X))

5138

Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably
Escop aq[k(x, x7)].

—> In kernel-based frameworks, expected kernels are omnipresent!

5138

Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably
Escop aq[k(x, x7)].
—> In kernel-based frameworks, expected kernels are omnipresent!
D(/p\,Jq)

5138

Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function Kk,

Goal is to compute the expected kernel tractably
Escop aq[k(x, x7)].
—> In kernel-based frameworks, expected kernels are omnipresent!

squared Max1mum Mean Discrepancy (MMD)
D (//\ /\) IEx~p x’Np)] + Ex~q,x’~q [k(X, X)] - QEX’VPﬁxqu [k(X7 XI)]

5138

Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably
Escop aq[k(x, x7)].
—> In kernel-based frameworks, expected kernels are omnipresent!

(Discrete) Kerne//zed Stein Discrepancy (KDSD)
D(/J\ /\) By g [k (%, X))

5138

Problem Setup

A Fundamental Task
Given two distributions p and q, and a kernel function Kk,
Goal is to compute the expected kernel

Exepnqlk(x, X))

—> In kernel-based frameworks, expected kernels are omnipresent!

This talk how to compute the expected kernels exactly and tractably,
by leveraging recent advances in probabilistic circuit representations.

6133

Outline

Motivation: SVR with Missingness

738

Example: Support vector regression with missing features

8338

Example: Support vector regression with missing features

Given training data,

8338

Example: Support vector regression with missing features

Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :

8338

Example: Support vector regression with missing features

Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :

Task at deployment time, what happen if we only observe partial
features and some are missing?

8338

Example: Support vector regression with missing features

Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :

Task at deployment time, what happen if we only observe partial fea-
tures and some are missing?

—> Expected prediction!

8338

Example: Support vector regression with missing features

Given training data, and a lea rned support vector regression (SVR) model

Zwl X, X) + b,

With Missing Features . ..

938

Example: Support vector regression with missing features

Given training data, and a lea rned support vector regression (SVR) model

sz X, X) + b,

With Missing Features . ..

B first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

p(X)

938

Example: Support vector regression with missing features

Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :

With Missing Features . ..

B first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

B when only features X, = X, are observed and features X,,, are p(X)
missing, the expected prediction is

EXmNP(Xm|xo) [f<XO7 Xm)] X
938

Example: Support vector regression with missing features

Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :

With Missing Features . ..

B first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

B when only features X, = X, are observed and features X,,, are p(X)
missing, the expected prediction is

EXmNp(X'rn'xo) [f Xos Xm Z w;lK Xm~P(Xm|%o) [k(xi> (XO’ XM))]_H) X 95

Example: Support vector regression with missing features

delta-ailerons abalone
0.00050 —eo— Median Imputation
—— MAP

0.00045 —m— Expected Prediction 3.5
w 0.00040
g
o 0.00035 3.0

0.00030

2.5 ; r
0.00025
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Missing Probability Missing Probability

—> Expected prediction improves over the baselines 1008

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x’

1138

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x’

Tractable if p, q fully factorized

1138

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x’
Tractable if p, q fully factorized

PRO. Tractable exact computation
CON. Model being too restrictive

1138

Challenge

Reliability vs. Flexibility

Bxcpalk(x,X)] = | plx)axkix.x) dxdx

x,x/

Tractable if p, q fully factorized Hard to compute in general.

approximate with MC
or variational inference

PRO. Tractable exact computation PRO. Efficient computation
CON. Model being too restrictive CON. Slow convergence

1138

Challenge

Reliability vs. Flexibility

Exp x'~q K(X, X)] :/ p(x)q(x)k(x,x’) dx dx’

Tractable if p, q fully factorized trade-oﬂ’ Hard to compute in general.
- approximate with MC
- or variational inference

PRO. Tractable exact computation PRO. Efficient computation

CON. Model being too restrictive CON. Slow convergence

1138

Expressive distribution models
+

Exact computation of expected kernels?

12133

Expressive distribution models
+

Exact computation of expectated kernels

Circuits!

13538

Outline

Circuit Representation

1438

Probabilistic Circuits

deep generative models + guarantees

Circuit Representation

1538

Probabilistic Circuits

deep generative models + guarantees

Kernel Circuits

express kernels as circuits

Circuit Representation

1538

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC

=> e.g, a multivariate Gaussian

1638

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC

=—> e.g, a mixture model

wy w2

1638

Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC
IIl. A product of PCs is a PC

wy w2

X1 X1 Xl Xl X2

1638

Probabilistic Circuits (PCs)

Tractable computational graphs

1638

Probabilistic Circuits (PCs)

Tractable computational graphs

1638

Probabilistic queries £l feedforward EA'L10EL]}

p(Xl = —1.85,X2 = 0.5,X3 = —1.3,X4 = 02)

1738

Probabilistic queries £l feedforward EA'L10EL]}

p(Xl = —1.85,X2 = 0.5,X3 = —1.3,X4 = 02)

1738

Probabilistic queries £l feedforward EA'L10EL]}

p(X1=-185X,=05X3=-1.3X;,=02) =075

05 _,gﬁ,@ -13 —>® 0.2 —>@
B3
o

2 \ \ \
‘A
0.3 0.4 0.5
@@ &0 0@
oS o5 °
o o N
© 2
0.5 0.5 0.8 0.8
s e —00—
©
o

R
0.9
-1.85 —(EH)—> ~13 —>@ 0.2 —>®

1738

2] deep learning

PCs are computational graphs

1838

2] deep learning

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables

1838

2] deep learning

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables

PCs are expressive deep generative models!
=> we can learn PCs with millions of parameters in minutes on the GPU [Peharz
et al. 2020]

1838

On par with intractable models!

How expressive are PCs?

Dataset PCs IDF Hierarchical VAE PixelVAE
MNIST 1.20 1.90 1.27 1.39
FashionMNIST 334 347 3.28 3.66
EMNIST (Letter split) 1.80 1.95 1.84 2.26
EMNIST (ByClass split) 1.85 1.98 1.87 2.23

Model CIFAR10 ImageNet32 ImageNet64

RealNVP 3.49 4.28 3.98
Glow 335 4.09 3.81
IDF 332 4.15 3.90
IDF++ 3.24 4.10 3.81
PCs+IDF 3.28 3.99 3.7

Liu et al., “Lossless Compression with Probabilistic Circuits”, 2021 19:38

PCs = [CLIALLII T4 +

PCs are expressive deep generative models!
&

Certifying tractability for a class of queries
via
Verifying structural properties of the graph

20738

Which structural constraints
ensure tractability?

2138

decomposable {3

A PCis decomposable if all inputs of product units depend on disjoint sets of variables

(X)
W W W
X, X2 X

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 2238

decomposable | LTINS

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 38

decomposable | LTINS

m sufficient and necessary conditions for computing any marginal

py) = / p(z,y) dz

=> by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 /38

decomposable | LTINS

m sufficient and necessary conditions for computing any marginal | p(z,y) dz
sufficient and necessary conditions for any conditional distribution

_ ply,z)
p(y | Z) - fp(y}z) dZ

—> by two feedforward evaluations

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 /38

decomposable | LTINS

m sufficient and necessary conditions for computing any marginal | p(z,y) dz

sufficient and necessary conditions for any conditional vz

[p(y.z)dz

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 /38

Can we represent kernels as circuits
to characterize tractability of its queries?

2433

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x’) = exp (— >+, |

X; — X!)

exp(—| X1 — X{[*)

2538

Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x') = exp (— .+, | X; — X! |?)

=1 7

exp(—| X5 — X3/*) exp(—| Xy — Xj[?)

LT LX) ER if all inputs of product units depend on disjoint sets of variables

2538

Kernel Circuits (KCs)

Common kernels can be compactly represented as

decomposable § (&5

RBF, (exponentiated) Hamming, polynomial ...

26s33

Outline

B Approach: Tractable Expected Kernels

2738

Expected Kernel

tractable computation via circuit operations

Main result.

2833

Expected Kernel

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

2833

Expected Kernel

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

(15— X exp(— Xy~ XGf7)
{(X1, X)), (X2, X4), (X3, X5)H(Xa, X))}

2833

Expected Kernel

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

then computing expected kernels can be done tractably by one forward pass
=> product of the sizes of each circuit!

2833

decomposable g; e] tractable E[k]

[Sum Nodes] p(X) = 3=, wip:(X), a(X’) = 3, wjq,;(X’), and kernel k(X,X’) = ¥, w, k) (X, X'):

exp(—|X; - X{) (9)
—D——D—3—D «k
exp(—|X2 - X3?) (o) © ©

exp(—| X5 — Xj/%) exp(—|Xy = Xi[)

2938

decomposable g; e] tractable E[k]

[Sum Nodes] p(X) = 3=, wip:(X), a(X’) = 3, wjq,;(X’), and kernel k(X,X’) = ¥, w, k) (X, X'):

exp(—|X; - X{) (9)
—D——D—3—D «k
exp(—|X2 - X3?) (o) © ©

exp(—| X5 — Xj/%) exp(—| Xy — XiJ*)

D e P(X)a(x)k(x, %)

T = 2 g wihwy D (x) o (X)) (3,)

2938

decomposable g; e] tractable E[k]

[Sum Nodes] p(X) = 3=, wip:(X), a(X’) = 3, wjq,;(X’), and kernel k(X,X’) = ¥, w, k) (X, X'):

exp(—|X; - X{) (9)
—D——D—3—D «k
exp(—|X2 - X3?) (o) © ©

exp(—| X5 — Xj/%) exp(—| Xy — XiJ*)

E,qlk(x,x)] = Zi,j,l wiw;wz/Ep,~q,/ [k (x, x')]

—> expectation is “pushed down” to children

2938

decomposable g3 compatible gl tractable E[k]
[Product Nodes] p. (X) = [T, p:(X:), ax (X') = [1; a;(X}), and kernel k. (X, X’) = [, k: (X;, X}):

exp(—|X1 — X{[?) e
—D—D——X—D &
exp(—|X — X3P) (O © ©

exp(—| X3 — Xj[*) exp(—| Xy — X%

30738

decomposable g3 compatible gl tractable E[k]
[Product Nodes] p. (X) = [T, p:(X:), ax (X') = [1; a;(X}), and kernel k. (X, X’) = [, k: (X;, X}):

exp(—|X1 — X{[?) e
R—D—R———D &
exp(—| X2 — X3 e e °

exp(—| X3 — Xj[*) exp(—| Xy — X%

D e P (X) A (XK (x,X)
@ =2 i P(x)a(x)k (xi, x7)
= TL (2 kP aa(xi) ke (x4, 7))

30738

decomposable g3 compatible gl tractable E[k]
[Product Nodes] p. (X) = [T, p:(X:), ax (X') = [1; a;(X}), and kernel k. (X, X’) = [, k: (X;, X}):

exp(—|X1 — X{[?) e
R—D—R———D &
exp(—| Xz — X5[%) e e °

exp(—| X3 — Xj[*) exp(—| Xy — X%

Ep. o [ke(x,x)] = Hz E, ofk(xi,x})]

—> expectation decomposes into easier ones

30738

decomposable g;] tractable E[k]

Algorithm 1E,, . [k;| — Computing the expected kernel

Input: Two compatible PCs p,, and q,, and a KC k; that is
kernel-compatible with the PC pair p,, and q,,. . .
. if m, n, [are input nodes then comPUtat,on can be done In

one forward pass!

"
2 returnE, o [k

3: else if m, n, [are sum nodes then

4 return y o cingm) cein() wiw}wl Ep, q, k]
5. else if m, n, [are product nodes then

6 returnE,, . (k] - Ep,qamg [kg]

3138

decomposable g;

Algorithm 2, . [k;| — Computing the expected kernel

Input: Two compatible PCs p,, and q,, and a KC k; that is
kernel-compatible with the PC pair p,, and q,,.

1: if m, n, [are input nodes then
2 returnE, o [k
3: else if m, n, [are sum nodes then
) ;o
4 reUn Y i icin(m) cein(t) WitVjWe Ep,q;[Ke]
5. else if m, n, [are product nodes then
6 returnE, o, [ki]-Ep, g, [Ks]

—> squared maximum mean discrepancy MMD|p, q| [Gretton et al. 2012]

] tractable E[k]

Computation can be done in
one forward pass!

=> +determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

3138

Outline

B Application: Collapsed Black-box Importance Sampling

3238

{14,/ Black-box Importance Sampling [Liu et al. 2016]

Given atarget distribution p, and samples {x"}7_,,

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w®, x¥} approximates p?

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w(i), X(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w(i), X(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

B empirical KDSD S({Iﬁ, |LZ)| 1l p) = w' Kpw, with [K)i; = ky(x®,x0))
weights samples

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w(i), X(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

B empirical KDSD S({Izii)l, I)iz)l 1l p) = w' Kpw, with [K)i; = ky(x®,x0))

weights samples

B solving optimization problem w* = argmin,, {wTpr | Yo wi=1, w; > 0}

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w(i), X(i)} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

B empirical KDSD S({Izii)l, I)iz)l 1l p) = w' Kpw, with [K)i; = ky(x®,x0))

weights samples

B solving optimization problem w* = argmin,, {'wTpr | Yo wi=1, w; > 0}

Complexity quadratic in the number of samples O(N)1

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w®, x¥} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:

B empirical KDSD S({Izii)l, I)il)l 1l p) = w' Kpw, with [K)i; = ky(x®,x0))

weights samples

B solving optimization problem w* = argmin,, {wTpr | Yo wi=1, w; > 0}

Complexity quadratic in the number of samples O(N?)!
Can we use less samples but maintain the same or even better performance?

3338

Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w®, x¥} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:
B empirical KDSD S({Izii)l, I)il)l 1l p) = w' Kpw, with [K)i; = ky(x®,x0))
weights samples

B solving optimization problem w* = argmin,, {wTpr | Yo wi=1, w; > 0}

Complexity quadratic in the number of samples O(N?)!
Can we use less samples but maintain the same or even better performance?
—> Collapsed samples! 3353

o0 /[.]. 511 Black-box Importance Sampling

3438

ol)/[.] X141} Black-box Importance Sampling

Given partial samples {xs(i) »owith (X, X¢) a partition of X,

3438

Black-box Importance Sampling

partial samples {x »owith (X, X¢) a partition of X,
Represent the conditional distributions p(X. | x5(*)) as PCs p, by knowledge
compilation [Shen et al. 2016]

3433

Black-box Importance Sampling

partial samples {x »owith (X, X¢) a partition of X,
Represent the conditional distributions p(X. | x5(*)) as PCs p, by knowledge
compilation [Shen et al. 2016]

Compile the kernel function k(X, X.') as KC k

3433

Black-box Importance Sampling

partial samples {x »owith (X, X¢) a partition of X,
Represent the conditional distributions p(X. | x5(*)) as PCs p, by knowledge
compilation [Shen et al. 2016]

Compile the kernel function k(X, X.') as KC k
Empirical KDSD between collapsed samples and the target distribution p

Si{x" wi} [p) = w' Kpsw

with (K}, s]i; = Exenp: x~p, [kep (x, 7))

3433

Black-box Importance Sampling

partial samples {x »owith (X, X¢) a partition of X,
Represent the conditional distributions p(X. | x5(*)) as PCs p, by knowledge
compilation [Shen et al. 2016]
Compile the kernel function k(X, X.') as KC k

Empirical KDSD between collapsed samples and the target distribution p
Six wid | p) = w' K, sw

with (K}, s]i; = Exenp: x~p, [kep (x, 7))
Finally, obtain the importance weights w by solving

i=1

w” = argmin {wTKnsw
w

3433

ol)/[.] X141} Black-box Importance Sampling

T
—e—CSs | -2,

-l
N

——cvs |
A —+— CBBIS

|
~
o

I
N
0

|
w
o

|
w
n

|
fd

\
o |/ D

Log avg. marginal Hellinger dist.

!
F
n

50 100 150 200 25 50 75 100 125 150 175 200
N (# samples) N (# samples)

=> methods with collapsed samples all outperform their non-collapsed counterparts
—> (BBIS performs equally well or better than other baselines

Friedman and Van den Broeck, “Approximate Knowledge Compilation by Online Collapsed
Importance Sampling”, 2018

Liu and Lee, “Black-box importance sampling”, 2016 35138

Takeaways

#1: You can be both tractable and expressive
#2: Circuits are a foundation for tractable inference over kernels

What other applications would benefit from the tractable computation
of the expected kernels?

3633

More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-LI9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

3758

starai.cs.ucla.edu/papers/ProbCirc20.pdf
youtube.com/watch?v=2RAG5-L9R70
arranger1044.github.io/probabilistic-circuits/
tinyurl.com/w65po5d

Questions?

3838

References |

Darwiche, Adnan and Pierre Marquis (2002). “A knowledge compilation map”. In: Journal of Artificial Intelligence Research 17, pp. 229-264.
Liu, Qiang and Jason D Lee (2016). “Black-box importance sampling”. In: arXiv preprint arXiv:1610.05247.

Friedman, Tal and Guy Van den Broeck (Dec. 2018). “Approximate Knowledge Compilation by Online Collapsed Importance Sampling”. In: Advances in Neural Information Processing
Systems 31 (NeurlPS). URL: http: //starai.cs.ucla.edu/papers/FriedmanNeurIPS18. pdf.

Choi, YooJung, Antonio Vergari, and Guy Van den Broeck (2020). “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”. In:

Peharz, Robert, Steven Lang, Antonio Vergari, Karl Stelzner, Alejandro Molina, Martin Trapp, Guy Van den Broeck, Kristian Kersting, and Zoubin Ghahramani (2020). “Einsum
Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”. In: International Conference of Machine Learning.

Liu, Anji, Stephan Mandt, and Guy Van den Broeck (2021). “Lossless Compression with Probabilistic Circuits”. In: arXiv preprint arXiv:2111.11632.

http://starai.cs.ucla.edu/papers/FriedmanNeurIPS18.pdf

	Problem Setup
	Motivation: SVR with missingness
	References

