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Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably
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A Fundamental Task

Given two distributions p and q, and a kernel function Kk,

Goal is to compute the expected kernel tractably
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Problem Setup

A Fundamental Task

Given two distributions p and q, and a kernel function k,

Goal is to compute the expected kernel tractably
Escop aq[k(x, x7)].
—> In kernel-based frameworks, expected kernels are omnipresent!

(Discrete) Kerne//zed Stein Discrepancy (KDSD)
D(/J\ /\) By g [k (%, X))
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Problem Setup

A Fundamental Task
Given two distributions p and q, and a kernel function Kk,
Goal is to compute the expected kernel

Exepnqlk(x, X))

—> In kernel-based frameworks, expected kernels are omnipresent!

This talk how to compute the expected kernels exactly and tractably,
by leveraging recent advances in probabilistic circuit representations.

6133



Outline

Motivation: SVR with Missingness
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Example: Support vector regression with missing features
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Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :
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Example: Support vector regression with missing features

Given training data, and a Iearned support vector regression (SVR) model

wik(x;,x) + b,
Z :

With Missing Features . ..

B first learn a generative model for features in Probabilistic Circuit
PC p(X) from training data;

B when only features X, = X, are observed and features X,,, are p(X)
missing, the expected prediction is

EXmNp(X'rn'xo) [f Xos Xm Z w;lK Xm~P(Xm|%o) [k(xi> (XO’ XM))]_H) X 95



Example: Support vector regression with missing features

delta-ailerons abalone
0.00050 —eo— Median Imputation
—— MAP

0.00045 —m— Expected Prediction 3.5
w 0.00040
g
o 0.00035 3.0

0.00030

2.5 ; r
0.00025
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
Missing Probability Missing Probability

—> Expected prediction improves over the baselines 1008
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Challenge

Reliability vs. Flexibility

Exp x'~q K(X, X)] :/ p(x)q(x)k(x,x’) dx dx’

Tractable if p, q fully factorized trade-oﬂ’ Hard to compute in general.
- approximate with MC
- or variational inference

PRO. Tractable exact computation PRO. Efficient computation

CON. Model being too restrictive CON. Slow convergence
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Expressive distribution models
+

Exact computation of expected kernels?
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Expressive distribution models
+

Exact computation of expectated kernels

Circuits!
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Outline

Circuit Representation
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Probabilistic Circuits

deep generative models + guarantees

Circuit Representation
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Probabilistic Circuits

deep generative models + guarantees

Kernel Circuits

express kernels as circuits

Circuit Representation
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Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC

=> e.g, a multivariate Gaussian
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Tractable computational graphs

I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC

=—> e.g, a mixture model
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Probabilistic Circuits (PCs)

Tractable computational graphs

I. A simple tractable distribution is a PC
IIl. A convex combination of PCs is a PC
IIl. A product of PCs is a PC

wy w2

X1 X1 Xl Xl X2
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Probabilistic Circuits (PCs)
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Probabilistic queries £l feedforward EA'L10EL ]}
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2] deep learning

PCs are computational graphs
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2] deep learning

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables
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2] deep learning

PCs are computational graphs encoding deep mixture models
= stacking (categorical) latent variables

PCs are expressive deep generative models!
=> we can learn PCs with millions of parameters in minutes on the GPU [Peharz
et al. 2020]
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On par with intractable models!

How expressive are PCs?

Dataset PCs IDF  Hierarchical VAE  PixelVAE
MNIST 1.20 1.90 1.27 1.39
FashionMNIST 334 347 3.28 3.66
EMNIST (Letter split) 1.80 1.95 1.84 2.26
EMNIST (ByClass split) 1.85 1.98 1.87 2.23

Model CIFAR10 ImageNet32 ImageNet64

RealNVP 3.49 4.28 3.98
Glow 335 4.09 3.81
IDF 332 4.15 3.90
IDF++ 3.24 4.10 3.81
PCs+IDF 3.28 3.99 3.7

Liu et al., “Lossless Compression with Probabilistic Circuits”, 2021 19:38



PCs = [ CLIALLII T4 +

PCs are expressive deep generative models!
&

Certifying tractability for a class of queries
via
Verifying structural properties of the graph

20738



Which structural constraints
ensure tractability?
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decomposable {3

A PCis decomposable if all inputs of product units depend on disjoint sets of variables

(X)
W W W
X, X2 X

decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 2238



decomposable | LTINS

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 38



decomposable | LTINS

m sufficient and necessary conditions for computing any marginal

py) = / p(z,y) dz

=> by a single feedforward evaluation

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 /38



decomposable | LTINS

m sufficient and necessary conditions for computing any marginal | p(z,y) dz
sufficient and necessary conditions for any conditional distribution

_ ply,z)
p(y | Z) - fp(y}z) dZ

—> by two feedforward evaluations

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 /38



decomposable | LTINS

m sufficient and necessary conditions for computing any marginal | p(z,y) dz

sufficient and necessary conditions for any conditional vz

[ p(y.z)dz

Choi et al., “Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Modeling”, 23
2020 /38



Can we represent kernels as circuits
to characterize tractability of its queries?
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Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x’) = exp (— >+, |

X; — X! )

exp(—| X1 — X{[*)
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Kernel Circuits (KCs)

Exa. Radial basis function (RBF) kernel k(x,x') = exp (— .+, | X; — X! |?)

=1 7

exp(—| X5 — X3/*) exp(—| Xy — Xj[?)

LT LX) ER if all inputs of product units depend on disjoint sets of variables

2538



Kernel Circuits (KCs)

Common kernels can be compactly represented as

decomposable § (&5

RBF, (exponentiated) Hamming, polynomial ...

26s33



Outline

B Approach: Tractable Expected Kernels

2738



Expected Kernel

tractable computation via circuit operations

Main result.
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Expected Kernel

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

(15— X exp(— Xy~ XGf7)
{(X1, X)), (X2, X4), (X3, X5)H(Xa, X))}
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Expected Kernel

tractable computation via circuit operations

Main result. If PCs p and q, and KC k decompose in the same way,

then computing expected kernels can be done tractably by one forward pass
=> product of the sizes of each circuit!

2833



decomposable g; e] tractable E[k]

[Sum Nodes] p(X) = 3=, wip:(X), a(X’) = 3, wjq,;(X’), and kernel k(X,X’) = ¥, w, k) (X, X'):

exp(—|X; - X{ ) (9)
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decomposable g; e] tractable E[k]

[Sum Nodes] p(X) = 3=, wip:(X), a(X’) = 3, wjq,;(X’), and kernel k(X,X’) = ¥, w, k) (X, X'):

exp(—|X; - X{ ) (9)
—D——D—3—D «k
exp(—|X2 - X3?) (o) © ©

exp(—| X5 — Xj/%) exp(—| Xy — XiJ*)

E,qlk(x,x)] = Zi,j,l wiw;wz/Ep,~q,/ [k (x, x')]

—> expectation is “pushed down” to children

2938



decomposable g3 compatible gl tractable E[k]
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decomposable g3 compatible gl tractable E[k]
[Product Nodes] p. (X) = [T, p:(X:), ax (X') = [1; a;(X}), and kernel k. (X, X’) = [, k: (X;, X}):

exp(—|X1 — X{[?) e
R—D—R———D &
exp(—| X2 — X3 e e °

exp(—| X3 — Xj[*) exp(—| Xy — X%

D e P (X) A (XK (x,X)
@ =2 i P(x)a(x)k (xi, x7)
= TL (2 kP aa(xi) ke (x4, 7))

30738



decomposable g3 compatible gl tractable E[k]
[Product Nodes] p. (X) = [T, p:(X:), ax (X') = [1; a;(X}), and kernel k. (X, X’) = [, k: (X;, X}):

exp(—|X1 — X{[?) e
R—D—R———D &
exp(—| Xz — X5[%) e e °

exp(—| X3 — Xj[*) exp(—| Xy — X%

Ep. o [ke(x,x)] = Hz E, ofk(xi,x})]

—> expectation decomposes into easier ones

30738



decomposable g; ] tractable E[k]

Algorithm 1E,, . [k;| — Computing the expected kernel

Input: Two compatible PCs p,, and q,, and a KC k; that is
kernel-compatible with the PC pair p,, and q,,. . .
. if m, n, [ are input nodes then comPUtat,on can be done In

one forward pass!

"
2 returnE, o [k

3: else if m, n, [ are sum nodes then

4 return y o cingm) cein() wiw}wl Ep, q, k]
5. else if m, n, [ are product nodes then

6 returnE,, . (k] - Ep,qamg [kg]

3138



decomposable g;

Algorithm 2, . [k;| — Computing the expected kernel

Input: Two compatible PCs p,, and q,, and a KC k; that is
kernel-compatible with the PC pair p,, and q,,.

1: if m, n, [ are input nodes then
2 returnE, o [k
3: else if m, n, [ are sum nodes then
) ;o
4 reUn Y i icin(m) cein(t) WitVjWe Ep,q;[Ke]
5. else if m, n, [ are product nodes then
6 returnE, o, [ki]-Ep, g, [Ks]

—> squared maximum mean discrepancy MMD|p, q| [Gretton et al. 2012]

] tractable E[k]

Computation can be done in
one forward pass!

=> +determinism, kernelized discrete Stein discrepancy (KDSD) [Yang et al. 2018]

3138



Outline

B Application: Collapsed Black-box Importance Sampling
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Given atarget distribution p, and samples {x"}7_,,
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Black-box Importance Sampling (i et al. 2016]

a target distribution p, and samples {x(®}"__,

is how to obtain weights w such that {w®, x¥} approximates p?

The black-box importance sampling obtains weights by minimizing empirical KDSD:
B empirical KDSD S({Izii)l, I)il)l 1l p) = w' Kpw, with [K)i; = ky(x®,x0))
weights samples

B solving optimization problem w* = argmin,, {wTpr | Yo wi=1, w; > 0}

Complexity quadratic in the number of samples O(N?)!
Can we use less samples but maintain the same or even better performance?
—> Collapsed samples! 3353



o0 /[.]. 511 Black-box Importance Sampling
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Black-box Importance Sampling
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Represent the conditional distributions p(X. | x5(*)) as PCs p, by knowledge
compilation [Shen et al. 2016]
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Black-box Importance Sampling

partial samples {x »owith (X, X¢) a partition of X,
Represent the conditional distributions p(X. | x5(*)) as PCs p, by knowledge
compilation [Shen et al. 2016]
Compile the kernel function k(X, X.') as KC k

Empirical KDSD between collapsed samples and the target distribution p
Six wid | p) = w' K, sw

with (K}, s]i; = Exenp: x~p, [kep (x, 7))
Finally, obtain the importance weights w by solving

i=1

w” = argmin {wTKnsw
w

3433



ol)/[.] X141} Black-box Importance Sampling
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=> methods with collapsed samples all outperform their non-collapsed counterparts
—> (BBIS performs equally well or better than other baselines

Friedman and Van den Broeck, “Approximate Knowledge Compilation by Online Collapsed
Importance Sampling”, 2018

Liu and Lee, “Black-box importance sampling”, 2016 35138



Takeaways

#1: You can be both tractable and expressive
#2: Circuits are a foundation for tractable inference over kernels

What other applications would benefit from the tractable computation
of the expected kernels?

3633



More on circuits ...

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models
starai.cs.ucla.edu/papers/ProbCirc20.pdf

Probabilistic Circuits: Representations, Inference, Learning and Theory
youtube.com/watch?v=2RAG5-LI9R70

Probabilistic Circuits
arranger1044.github.io/probabilistic-circuits/

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

3758


starai.cs.ucla.edu/papers/ProbCirc20.pdf
youtube.com/watch?v=2RAG5-L9R70
arranger1044.github.io/probabilistic-circuits/
tinyurl.com/w65po5d

Questions?

3838
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