

From Probabilistic Circuits to Probabilistic Programs and Back

Guy Van den Broeck

Los Alamos National Laboratory - Mar 16, 2021

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

3.14 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

```
Bean Machine

\mu_k \sim \text{Normal}(\alpha, \beta)
\sigma_k \sim \text{Gamma}(\nu, \rho)
\theta_k \sim \text{Dirichlet}(\kappa)
x_i \sim \begin{cases} \text{Categorical}(init) & \text{if } i = 0 \\ \text{Categorical}(\theta_{x_{i-1}}) & \text{if } i > 0 \end{cases}
y_i \sim \text{Normal}(\mu_{x_i}, \sigma_{x_i})
```


Computational Abstractions

Let us think of probability distributions as objects that are computed.

Abstraction = Structure of Computation

Two examples:

- 1. Probabilistic Circuits
- 2. Probabilistic Programs

Probabilistic Circuits

The Alphabet Soup of probabilistic models

Intractable and tractable models

Tractable Probabilistic Models

"Every talk needs a joke and a literature overview slide, not necessarily distinct" - after Ron Graham

a unifying framework for tractable models

Input nodes are tractable (simple) distributions, e.g., univariate gaussian or indicator p(X=1) = [X=1]

Product nodes are factorizations $\prod_{c \in in(n)} p_c(\mathbf{x})$

Sum nodes are mixture models $\sum_{c\in \mathsf{in}(n)} \theta_{n,c} \operatorname{p}_c(\mathbf{x})$

Feedforward $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Feedforward $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Feedforward $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$

Smoothness + decomposability = tractable MAR

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children

Smoothness + decomposability = tractable MAR

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

 \Rightarrow integrals decompose into easier ones

Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR

inear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

tractability is a spectrum

Expressive models without compromises

How expressive are probabilistic circuits?

density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	kosarek	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	bbc	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81

Want to learn more?

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ◄) 0:00 / 3:02:46

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	A U	Probabilistic Circuits: Inifying Framework for Tractable Probabilistic Models	*
Yo	oJu	ng Choi	
Ar	ntoni	o Vergari	
Gu Co Un Los	1y V mpute iversi s Ang	an den Broeck er Science Department ty of California eles, CA, USA	
Co	onte	ats	
1	Intr	oduction	3
2	Pro	babilistic Inference: Models, Queries, and Tractability	4
	2.1	Probabilistic Models	5
	2.2	Probabilistic Queries	6
	2.3 2.4	Properties of Tractable Probabilistic Models	9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits

julia> using ProbabilisticCircuits; julia> data, structure = load(...); julia> num_examples(data) 17,412 julia> num_edges(structure) 270,448 julia> @btime estimate_parameters(structure , data); 63 ms

Juice-jl / Probabi	listicCircuits.jl	Unwatch + 5	Unstar 21 V Fork 4		
> Code ① Issues	12 11 Pull requests () Actions	Projects	Wiki		
⁹ master +	Go to file Add file	• 🛓 Code •	About \$		
khosravipasha som	e docs 🚃 🗙 2	3 days ago 🕚 452	Probabilistic Circuits from the Juice library		
.github/workflows	Install TagBot as a GitHub Action	7 months ago	probabilistic-circuits		
docs	some doos	23 days ago	probabilistic-reasoning probabilistic-inference tractable-models		
src	Add utility function for save_as_dot (#13)	3 months ago			
test 1	Add required test dependencies (#8)	3 months ago			
.gitignore	docs auto build	6 months ago	Apache-2.0 License Releases 2 S v0.1.1 (Latest) on May 25		
travis.yml	fix notifications travis	6 months ago			
Artifacts.toml	fix density estimation hash	8 months ago			
LICENSE	Initial commit	14 months ago			
Project.toml	version bump	2 months ago			
README.md	add stable badge	3 months ago	+ 1 release		
README_DEV.md	add release instructions	3 months ago			
			Packages		

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

https://github.com/Juice-jl/

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0 \\ 0.9 & 0.97 & 0.96 & 0 \\ 0.8 & 0.96 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

Computing marginal probabilities is *tractable*.

Foundational Question: Can PCs represent DPPs efficiently?

The AI Dilemma

Pure Logic

Pure Learning

The AI Dilemma

Pure Logic

- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

Pure Learning

The AI Dilemma

Pure Logic

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Amazing achievements recently
- "Pure learning is brittle"

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world

Pure Learning

Pure Logic Probabilistic World Models Pure Learning A New Synthesis of Learning and Reasoning

• "Pure learning is brittle"

bias, **algorithmic fairness**, interpretability, **explainability**, adversarial attacks, unknown unknowns, calibration, verification, **missing features**, missing labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

Prediction with Missing Features

Test with missing features

Expected Predictions

Consider **all possible complete inputs** and **reason** about the *expected* behavior of the classifier

$$\mathbb{E}_{\mathbf{X}^m \sim p(\mathbf{x}^m | \mathbf{x}^o)} \begin{bmatrix} f(\mathbf{x}^m \mathbf{x}^o) \end{bmatrix} \qquad \begin{array}{l} \mathbf{x}^o = \text{observed features} \\ \mathbf{x}^m = \text{missing features} \end{array}$$

Experiment:

• f(x) = logistic regres.

p(x) =
 naive Bayes

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

What about complex feature distributions?

- feature distribution is a probabilistic circuits
- classifier is a compatible regression circuit

Recursion that "breaks down" the computation.

Expectation of function m w.r.t. dist. n?

Solve subproblems: (1,3), (1,4), (2,3), (2,4)

Probabilistic Circuits for Missing Data

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

ADV inference in Julia with Juice.jl

using ProbabilisticCircuits

- pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
- rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

Is the predictive model biased by gender?

```
groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");
println("Male : \$ $(exps[1])");
println("Diff : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568
```

Model-Based Algorithmic Fairness: FairPC

Learn classifier given

- features S and X
- training labels/decisions D

Group fairness by demographic parity:

Fair decision D_f should be independent of the sensitive attribute S

Discover the **latent fair decision** D_f by learning a PC.

[Choi et al. AAAI21]

Probabilistic Sufficient Explanations

<u>Goal</u>: explain an instance of classification (a specific prediction)

Explanation is a subset of features, s.t.

 The explanation is "probabilistically sufficient"

> Under the feature distribution, given the explanation, the classifier is likely to make the observed prediction.

2. It is minimal and "simple"

Pure Logic Probabilistic World Models Pure Learning A New Synthesis of Learning and Reasoning

"Pure learning is brittle"

bias, **algorithmic fairness**, interpretability, **explainability**, adversarial attacks, unknown unknowns, calibration, verification, **missing features**, missing labels, data efficiency, shift in distribution, general robustness and safety

We need to incorporate a sensible probabilistic model of the world

Probabilistic Programs

Motivation: Making modern AI systems is **too hard**

System Builders

Model Builders

AI Systems Builder

Need to integrate uncertainty over the whole system

location

20% chance of obstacle! 94% chance of obstacle! 99% certain about current

Inside the Self-Driving Tesla Fatal Accident

By ANJALI SINGHVI and KARL RUSSELL UPDATED July 12, 2016

The accident may have happened in part because the crash-avoidance system is designed to engage only when radar and computer vision systems agree that there is an obstacle, according to an industry executive with direct

Al Model Builder

"When you have the flu you have a cough 70% of the time"

"Routers fail on average every 5 years"

"What is the probability that a patient with a fever has the flu?" "What is the probability that my packet will reach the target server?" [SGTVV SIGCOMM'20]

Motivation

- Making modern AI systems is too hard

 So few experts in probabilistic inference
- 2. How do we make it easier to build probabilistic systems?
 - Build a common language for specifying probabilistic models
 - Design generic *inference algorithms*

Probabilistic Programs

```
let x = flip 0.5 in
let y = flip 0.7 in
let z = x || y in
let w = if z then
    my func(x,y)
else
     . . .
in
observe(z);
```

means "flip a coin, and output true with probability 1/2"

Standard (functional) programming constructs: let, if, ...

means

"reject this execution if z is not true"

Why Probabilistic Programming?

Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability, ProbLog, PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI, Bean Machine, etc. ... and many many more

- Programming languages are humanity's biggest knowledge representation achievement!
- Programs should be AI models

Dice language for discrete probabilistic programs

http://dicelang.cs.ucla.edu/

[Holtzen et al. OOPSLA20]

Dice

The dice probabilistic programming language

About GitHub

dice is a probabilistic programming language focused on fast exact inference for discrete probabilistic programs. For more information on dice, see the about page.

Below is an online dice code demo. To run the example code, press the "Run" button.

Why focus on discrete? Crucial open problem:

Does not support if-statements!

coroutines. Whenever a discrete variable is encountered in a program's execution, the program is suspended and resumed multiple times with all possible values in the support of that distribution. Listing 10, which implements a simple finite

Web**PPL**

Network Verification in Dice

fun n1(init: bool) {
 let l1succeed = flip 0.99 in
 let l2succeed = flip 0.91 in
 init && l1succeed && l2succeed

fun n2(init: bool) {
 let routeChoice = flip 0.5 in
 if routeChoice then
 init && flip 0.88 && flip 0.93
 else

init && flip 0.19 && flip 0.33

ECMP equal-cost path protocol: choose randomly which router to forward to Main routine, combines the networks

n2(n2(n1(true)))

Network Verification i

This doesn't show all the language features of dice:

- Integers
- Tuples

. . .

- **Bounded recursion**
- **Bayesian conditioning**

fun n2(init: bool) { let routeChoice = flip 0.5 in if routeChoice then init && flip 0.88 && flip 0.93 else

init && flip 0.19 && flip 0.33

ECMP equal-cost path protocol: choose randomly which router to forward to

let 1

let 12

init &

Main routine, combines the networks

n2(n2(n1(true)))

Key to Fast Inference: Factorization (product nodes)

how about on the program?

Symbolic Compilation in Dice

- Construct Boolean formula
- Satisfying assignments ≈ paths
- Variables are flips
- Associate weights with flips
- Compile factorized circuit

1 let x = flip₁ 0.1 in 2 let y = if x then flip₂ 0.2 else 3 flip₃ 0.3 in 4 let z = if y then flip₄ 0.4 else 5 flip₅ 0.5 in z

$$\underbrace{\begin{array}{c}0.1\\x=T\end{array}}{} \cdot \underbrace{0.2}_{y=T} \cdot \underbrace{0.4}_{z=T} + \underbrace{0.1}_{x=T} \cdot \underbrace{0.8}_{y=F} \cdot \underbrace{0.5}_{z=T} + \underbrace{0.9}_{x=F} \cdot \underbrace{0.3}_{y=T} \cdot \underbrace{0.4}_{z=T} + \underbrace{0.9}_{x=F} \cdot \underbrace{0.7}_{y=F} \cdot \underbrace{0.5}_{z=T} \\ \downarrow f_1 f_2 f_4 \vee f_1 \overline{f_2} f_5 \vee \overline{f_1} f_3 f_4 \vee \overline{f_1} \overline{f_3} f_5 \\ \downarrow f_1 \overline{f_3} f_5 \\ \downarrow f_1 \overline{f_4} \cdot \underbrace{f_5}_{f_2} \cdot \underbrace{f_5}_{f_1} \cdot \underbrace{f_5}_{f_2} \cdot \underbrace{f_5}_{f_2} \cdot \underbrace{f_5}_{f_1} \cdot \underbrace{f_5}_{f_2} \cdot \underbrace{f_5}_{f_1} \cdot \underbrace{f_5}_{f_2} \cdot$$

Symbolic Compilation in Dice to Probabilistic Circuits

State of the art for discrete probabilistic program inference!

Experimental Evaluation

 $10^1 \ 10^2 \ 10^3 \ 10^4$

Characters

• Example from text analysis: breaking a Caesar cipher

•	Competitive with
	specialized
	Bayesian network
	solvers

Time (ms)

 10^{5} 10^{4} 10^{3}

 10^{2}

 10^{0}

$\operatorname{Benchmark}$	Psi (ms)	DP (ms)	Dice (ms)	# Parameters	# Paths	BDD Size
Cancer	772	46	13	10	1.1×10^{3}	28 56
Survey	2477	152	13	21	1.3×10^{4}	73/ 50
Alarm	X	X	25	509	1.0×10^{36}	1.3×10^{3}
Insurance	X	X	212	984	1.2×10^{40}	1.0×10^{5}
Hepar2	X	×	54	48	$2.9 imes 10^{69}$	1.3×10^{3}
Hailfinder	X	×	618	2656	2.0×10^{76}	6.5×10^4
\mathbf{Pigs}	X	×	72	5618	7.3×10^{491}	2/35
Water	X	X	2590	$1.0 imes10^4$	$3.2{ imes}10^{54}$	5.1×10^{4}
Munin	X	X	1866	$8.1 imes 10^5$	2.1×10^{162}	1.1×10^4

If you build it they will come

 As soon as *dice* was put online people started using it in surprising ways we had not foreseen

Probabilistic Model Checking (verify randomized algorithms)

Quantum Simulation

 In both cases, *dice* outperforms existing specialized methods on important examples!

Conclusions

- Are we already in the age of computational abstractions?
- Probabilistic circuits for
 learning deep <u>tractable</u> probabilistic models
- **Probabilistic programs** as the new probabilistic knowledge representation language
- Two computational abstractions go hand in hand

Thanks

This was the work of many wonderful students/postdoc/collaborators!

References: http://starai.cs.ucla.edu/publications/