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Trying to be provocative

Probabilistic graphical models is how we do probabilistic Al!

Graphical models of variable-level (in)dependence
are a broken abstraction.

[VdB KRR15]



Trying to be provocative

Probabilistic graphical models is how we do probabilistic Al!

Graphical models of variable-level (in)dependence
are a broken abstraction.

3.14 Smokes(x) A Friends(x,y)
= Smokes(y)

[VdB KRR15]



Trying to be provocative

Probabilistic graphical models is how we do probabilistic Al!

Graphical models of variable-level (in)dependence
are a broken abstraction.

Bean Machine
pr ~ Normal(a, 3)
o ~ Gamma(v, p)
0. ~ Dirichlet(k)
Categorical(init) ifi =20

xTi ~

‘ Categorical(0z;, ,) ifi >0
y; ~ Normal(yg,;,0z;)

[Tehrani et al. PGM20]



Computational Abstractions

Let us think of probability distributions as
objects that are computed.

Abstraction = Structure of Computation

Two examples:
1. Probabilistic Circuits
2. Probabilistic Programs




Probabilistic Circuits
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The Alphabet Soup of probabilistic models
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Intractable and tractable models




Tractable Probabilistic Models
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"Every talk needs a joke and a literature overview slide, not necessatrily distinct"
- after Ron Graham
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a unifying framework for tractable models




Input nodes are tractable (simple) distributions,
e.g., univariate gaussian or indicator p(X=1) = [X=1]



Product nodes are factorizations | [ ;) Pe(X)



Sum nodes are mixture models ) ;. .y On.c Po(X)



Feedforward »(Xi=-185X,=05X;=-13,X,=0.2)




Feedforward »(Xi=-185X,=05X;=-13,X,=0.2)




Feedforward p(Xi=-1.85X,=05X3=-1.3,X,=0.2)
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m ull decomposability gl tractable MAR

If p(x) = >, wipi(X), (smoothness):

—> integrals are “pushed down” to children

[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]



m ul decomposability g tractable MAR
If p(x,y,2z) = p(x)p(y)p(2), (decomposability):

///p(x’y’z)dXdydz:
:/ / / p(x)p(y)p(z)dxdydz =
— / p(x)dx / p(y)dy / il

—> integrals decompose into easier ones




Forward pass evaluation for MAR /Q\

=—> linear in circuit size! @ @ @ @
— AR

E.g. to compute p(x2, 74): Xl/ | | \X1
B leafs over X; and X3 output Z; = [ p(x;)dx; ?1/@ @\?z

— for normalized leaf distributions: @ @ @ @
B leafs over X5 and X4 output |37/ T >(T)< >< T

B feedforward evaluation (bottom-up) @ @ @ @
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tractability is a spectrum
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Expressive models without compromises




How expressive are probabilistic circuits?

density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12  msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -1232 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -2642 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94

pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81




less expressive

efficient

Fully factorized
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more tractable queries
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less expressive

efficient

Polytrees

Fully factorized
m Trees

more tractable queries

%A

b4

less tractable queries
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efficient



Want to learn more?

Probabilistic

Circuits

Antonio Vergari
University of California, Los Angeles

Robert Peharz
TU Eindhoven

> ) 000/30246

Tutorial (3h)
EL]

Inference
Representations
Learning

YooJung Choi

University of California, Los Angeles

Guy Van den Broeck
University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

https://voutu.be/2RAG5-L9R70

Overview Paper (80p)

Probabilistic Circuits:

A Unifying Framework for Tractable Probabilistic Models*

YooJung Choi
Antonio Vergari

Guy Van den Broeck
Computer Science Department
University of California

Los Angeles, CA, USA

Contents
1 Introduction

2 Probabilistic Inference: Models, Queries, and Tractability
2.1 Probabilistic Models
2.2 Probabilistic Queries . . . . . ... ...
2.3 Tractable Probabilistic Inference . . . . . ... .. ... ...
2.4 Properties of Tractable Probabilistic Models
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http://starai.cs.ucla.edu/papers/ProbCirc20.pdf



https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
Julia> num_examples(data)

17,412

Julia= num_edges(structure)

270,448

Julia> @btime estimate_parameters(structure , data);
63 ms

aaaaaaaa

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

[https://qithub.com/Juice-jl/]



https://github.com/Juice-jl/

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models
probabllistic circuits?




Enter: Determinantal Point Processes (DPPs)

DPPs are models where probabilities are specified by (sub)determinants

(1 09 08 O]
09 097 09 O
08 096 1 O

L 0 0 0 1l

PrL(X1 - 1,X2 = 0,X3 - 1,X4 - O) det(L{llz})

~det(L+ 1)
Computing marginal probabilities is tractable.

[Zhang et al. UAI20]



Foundational Question: Can PCs represent DPPs efficiently?
No No

Deterministic PCs Deterministic PCs
with no negative with negative
parameters parameters

Deterministic and
Decomposable
PCs

More Tractable Fewer Constraints

Decomposable PCs

: : Decomposable PCs
with no negative

An almost universal

with negative

parameters
parameters

tractable language... (SPNs)
No We don’t know

Solution: Probabilistic
Generating Circuits

[Zhang et al. Arxiv 21, Zhang et al. UAI20; Martens & Medabalimi Arxiv15]



The Al Dilemma
S

Pure Logic Pure Learning



The Al Dilemma
S

Pure Logic Pure Learning

 Slow thinking: deliberative, cognitive,
model-based, extrapolation
 Amazing achievements until this day

* “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, ...




The Al Dilemma
S

Pure Logic Pure Learning

 Fast thinking: instinctive, perceptive,
model-free, interpolation
* Amazing achievements recently

* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing labels,
data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world




I

Pure Logic Probabilistic World Models Pure Learning

N

A New Synthesis of
Learning and Reasoning

* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing labels,

data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world




Prediction with Missing Features

X X2 X3 x4 x5y Train > | Classifier
x1
Predict
X X2 X3 X4 X5
X

x2
3 X1
X, X, ?
X5 )(3 ?
X
X6 &
7 X, ?
X8 X

Test with missing features



Expected Predictions

Consider all possible complete inputs and reason about
the expected behavior of the classifier

o0 —

4*1 M__0O x° = observed features
U~ Np(xm ’X0> [f (X X )] x™ = missing features

Experiment: MNIST Fashion
° f(X) = >75] _
. " (U _ _
logistic regres. 550. _j_ ng[‘amp
= | =¥ Minl

. (Y S5 -t i

naive Bayes 0 25 50 75 100 0 25 50 75 100

% Missing % Missing

[Khosravi et al. JCAI19, NeurlPS20, Artemiss20]



What about complex feature distributions?

e feature distribution is a probabilistic circuits @
e classifier is a compatible regression circuit
b

1
3 —4.3
[—1.1

Recursion that
“breaks down”
the computation.

3 B

Solve subproblems:

. Jg .
(,), (,), (,), (,) lxlj |L|A| 5] ] Ba el el ] B X Be] 5] ] [2X5]

[Khosravi et al. JCAI19, NeurlPS20, Artemiss20]
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Probabilistic Circuits for Missing Data

[Khosravi et al. JCAI19, NeurlPS20, Artemiss20]

MNIST
100 ——FMNIST
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ADV inference in Julia with Juice.jl

using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
re = load logistic_ecircuit(zeo le_file("ingurance.circuit™), 1);

Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");

println("Male : \$ $(exps[1])");

printla ("Diff : \$ $(exps[2] - exps[1])");
Female : $§ 14170.125469335406

Male : $§ 13196.548926381849

DifE : $§ 973.5765429535568



Model-Based Algorithmic Fairness: FairPC

Learn classifier given
e features S and X

e training labels/decisions D

Group fairness by
demographic parity:

Fair decision Df should be
independent of
the sensitive afttribute S

Discover the latent fair

decision D, by learning a PC.

1.00
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&

0.50

TwoNB

o S« LatNB
° o

6 * NlatPC

# { ..!.» 1 * e FairPC
*

—0.2

0.1 0.0 0.1 02
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Accuracy

o
N
o

0.50

o ) e FairPC
> f“;',*‘.‘s Reduction
L '.'3.\! . Reweight
Goesy

olo® v A® 4 ,FairlR

-0.10 —0.05 0.00 0.05 0.10

Discrimination Score

[Choi et al. AAAI21]



Probabilistic Sufficient Explanations

Goal: explain an instance of
classification (a specific prediction)

Explanation is a subset of features, s.t.

1. The explanation is
“probabilistically sufficient”

Under the feature distribution,
given the explanation,

the classifier is likely to make
the observed prediction.

2. Itis minimal and “simple”

[Khosravi et al. IJCAI19, Wang et al. XXAI20]
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Pure Logic Probabilistic World Models Pure Learning

A New Synthesis of
Learning and Reasoning

“Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing labels,
data efficiency, shift in distribution, general robustness and safety

We need to incorporate a sensible probabilistic model of the world




Probabilistic Programs



Motivation:
Making modern Al systems is too hard

System Builders Model Builders



PERCEPTION ARy VEHICLE INTERFACE

LOCALIZATION TOP LEVEL STEERING
CONTROL CONTROL
OBSTACLE THROTTLE/
AVOIDANCE BRAKE CONTROL
PATH PLANNING
POSE
ESTIMATION
GPS & IMU
WHEEL VEHICLE HEALTH STATUS STOP
VELOCITY
DATA LOGGER
VISUALIZER GUI
INTER PROCESS CONTROL

SENSOR INTERFACE
GLOBAL SERVICES USER INTERFACE

LIDAR Interface
RADAR Interface

Al Systems Builder

WIRELESS E-

Need to integrate uncertainty

over the whole system

20% chance

94% chance
of obstacle!

of obstacle!

99% certain
about current
location

~

Inside the Self-Driving Tesla Fatal Accident

By ANJALI SINGHVI and KARL RUSSELL  UPDATED July 12, 2016 The accident may have happened in part because the

- crash-avoidance system is designed to engage only when
radar and computer vision systems agree that there is an
obstacle, according to an industry executive with direct




Al Model Builder

“When you have the flu you have a
cough 70% of the time”

“Routers fail on average every 5 years”

“What is the probability that my packet
will reach the target server?”
[SGTVV SIGCOMM’20]

“What is the probability that a patient
with a fever has the flu?”



Motivation

1. Making modern Al systems is too hard
— So few experts in probabilistic inference

2. How do we make it easier to build
probabilistic systems?

— Build a common language for specifying
probabilistic models

— Design generic inference algorithms



Probabilistic Programs

let x =flip 0.5 in
lety =flip 0.7 in
letz=x ]| yin
let w = if z then

my_func(x,y)
else

in
observe(z);

means “flip a coin, and
output true with probability 75”

Standard (functional) programming
constructs: let, if, ...

means
“reject this execution if z is not true”




« PPLs are proliferating

Why Probabilistic Programming?

q Edward ’ | E "g Fgaro
Pyro ‘ 4 ’ » Stan

Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability,ProbLog,
PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI,
Bean Machine, etc. ... and many many more

o Programming languages are humanity’s biggest
knowledge representation achievement!

« Programs should be Al models




Dice |language for discrete probabilistic programs

http://dicelang.cs.ucla.edu/

Dice

alce

[Holtzen et al. OOPSLA20]

The dice probabilistic programming language

About

GitHub

is a probabilistic programming language focused on fast exact inference for discrete
probabilistic programs. For more information on dice, see the about page.

Below is an online dice code demo. To run the example code, press the "Run" button.

-
DO m~ O B W

11
12
13
14
15
16
17

fun sendChar(key: int(2), observation: int(2)) {
let gen = discrete(0.5, ©.25, 0.125, 0.125) in

let enc = key + gen in
observe observation == enc

// sample a uniform random key: A=0, B=1, C=2, D=3

let key = discrete(9.25, 8.25, 0.25, 0.25) in

| observe the ciphertext CCCC
let tmp = sendChar(key, int(2,
let tmp = sendChar(key, int(2,
let tmp = sendChar(key, int(2,
let tmp = sendChar(key, int(2,

key

2)) in
2)) in
2)) in
2)) in

// sample a Foolang character
// encrypt the character

| Run |

Why focus on discrete?
Crucial open problem:

6_ Does not support

if-statements!
Stan

coroutines. Whenever a discrete variable is encountered in a
program’s execution, the program is suspended and resumed
multiple times with all possible values in the support of that
distribution. Listing 10, which implements a simple finite

WebPPL ﬁ [AADB+19 ]


http://dicelang.cs.ucla.edu/

Network Verification in Dice

fun n1(init: bool) {
“% = let |1succeed = flip 0.99 in
S T —-l-k< > P> et [2succeed = flip 0.91 in

%"} - init && |1succeed && 12succeed

}
fun n2(init: bool) {
let routeChoice = flip 0.5 in

if routeChoice then

init && flip 0.88 && flip 0.93 randomly which router
else to forward to

init && flip 0.19 && flip 0.33
} n2(n2(n1(true)))

ECMP equal-cost path

Main routine,
combines the

protocol: choose

networks




Network Verification ifF i

Integers

fun n1 Tuples
“ = let |1 Bounded recursion
ke e s P
Sy " 8% - Bayesian conditioning

fun n2(init: bool) {
let routeChoice = flip 0.5 in

if routeChoice then

init && flip 0.88 && flip 0.93 randomly which router
else to forward to

init && flip 0.19 && flip 0.33
} n2(n2(n1(true)))

ECMP equal-cost path
protocol: choose

Main routine,
combines the

networks




Key to Fast Inference: Factorization (product nodes)

+

0.99x0.91
0.99x0.91

+ ...

x0.5x0.88x0.93x0.5x0.883x0.93
X 0.5x0.19x0.33x0.5x0.88x0.93

Easy to see on the graph structure ...

how about on the program?



Symbolic Compilation in Dice

 Construct Boolean formula v Tk o

R _ = flip; 0.1 1in
* Sat|5fymg assignments = paths > let y = if x then flipy 0.2 else
e Variables are flips 3 flips 0.3 in

let z = if y then flips 0.4 else

e Associate weights with flips
flips @.5 in Z

 Compile factorized circuit

)| =

01 - 02 - 04 + 01 - 08 - 05 + 09 - 03 -04 + 09 - 07 - 0.5
S N N N S N’ S S N’ S S N’

x=T y=T z=T x=T y=F z=T x=F y=T z=T x=F y=F z=T

B LAV ARE Y ARAY fifif 0 :




Symbolic Compilation in Dice to
Probabilistic Circuits

Weighted
Boolean
Formula

Circuit\

compilation

Probabilistic

Weighted
Circuit

Model Count

Logic Circuit /
(BDD)

State of the art for discrete probabilistic program inference!

Probabilistic Symbolic
Program Compilation




Experimental Evaluation

« Example from text analysis: breaking a Caesar cipher

Psi veeveees Psi DP — WebPPL Exact - Rejection ‘

‘—Dice
) 5
E 10 =
= 104 |
g 103:
510% px

100 10 10° 10° 10°
# Characters

« Competitive with
specialized
Bayesian network
solvers

More program paths than
atoms in the universe

L/

Benchmark  Psi (ms) DP (ms) Dice (ms) | # Parameters  # Path:\ BDD/Size

Cancer
Survey
Alarm
Insurance
Hepar2
Hailfinder
igs
Water
Munin

2477

X X X X X X X

46
152

X X X X X X X

13
13
25
212
54
618
72
2590
1866

10 1.1x109

21 1.3x10%

509 1.0x103 [3%x103

984 1.2x10% 0x10°

48 2.9% 105 1.3x103

2656 2.0%x1078 6.5%x10%
5618 7.3x10%9%/ 35

1.0 x 10% 3.2x10%¢ 5.1x10%*

8.1 x 10° 2.1x101622 1.1x10%




If you build it they will come

« As soon as dice was put online people started using it
In surprising ways we had not foreseen

/fﬂ\
73) ~ ®) ~ - qome qeml 5> qem2
Ts) — Tg) —» (%s H 5
(DC @ C\C’ @ q;) y=.36 Y >\
@ @ - ® e ® @ qime
T A

Probabilistic Model Checking . .
(verify randomized algorithms) Quantum Simulation

*In both cases, dice outperforms existing specialized
methods on important examples!



Conclusions

« Are we already in the age of
computational abstractions?

« Probabilistic circuits for
learning deep tractable probabilistic models

« Probabilistic programs as the new
probabilistic knowledge representation language

« Two computational abstractions go hand in hand

Probabilistic — Probabilistic
Compilation .
Program Circuit



Thanks

This was the work of many wonderful
students/postdoc/collaborators!

References: http://starai.cs.ucla.edu/publications/
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