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Motivation: Monte Carlo Tree Search

MCTS is considered as one of the core methods in model-based reinforcement learning.

MCTS is slow, so it needs parallelization.
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Motivation: MCTS parallelization

Existing parallel MCTS algorithms:
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However, it is unclear what are the pros and cons of existing algorithms and how to design
effective parallel MCTS algorithms.

We seek to lay the first theoretical foundation for effective MCTS parallelization.
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What is effective parallel MCTS?

We study the performance loss of parallel MCTS algorithms under a fixed speedup requirement.

Speedup
runtime of the sequential MCT'S

speedup =
P P runtime of algorithm A using M workers

Performance loss: excess regret

The excess regret is defined as the difference between the cumulative regret of a parallel
MCTS algorithm A and its sequential counterpart A, (i.e., Regrety(n) — Regrety,, (n)):

Regret, (n) = ZE[V;* (so) — Vz-(so)]

S0 - the root state Vi(so) - the value estimate of sg obtained in the /i-th rollout of A
n - the number of rollouts V*(so)- the value estimate of Sg obtained by an oracle algorithm
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When will excess regret vanish?

The tree policy of UCT for selecting child nodes

l:— 21>, N(s,a')]
ar =argmax<| Q(st, a)Hc n;a, (s¢,0') }
acA N(st,a)

action value —) . visit count

Two necessary conditions for achieving vanishing excess regret:
- Q: the action value gap G should be zero:

G(s,a) := |]E[G(s,a)] - lE[Qﬁfeq(s,a)H

T
expected action value computed | | expected action value computed by a
by the parallel algorithm A virtual sequential algorithm A,

- N: the algorithm should modify visit count using the number of incomplete simulations:

N(s,a) > N(s,a) + O(s,a)

# complete simulations 4—J L—» # incomplete simulations
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When will excess regret vanish?

The tree policy of UCT for selecting child nodes

— ,N(s¢,a
ay =argmax{|Q(st, a)lc ;a (5:,0) }
acA N(st’ (1)
action value — . visit count

When the search tree’s maximum depth is 2, WU-UCT [1] satisfies both necessary conditions.

Furthermore, in this case WU-UCT theoretically enjoys vanishing excess regret.

Theorem 2. Consider a tree search task T with maximum depth D =2 (abbreviate as the depth-2 tree
search task): it contains a root node s and K feasible actions {a; }¥ | at s, which lead to terminal
states {s;}X |, respectively. Let p; = E[V (s;)], p* := max; u; and Ay := p* — uy, and further
assume: i,V (s;)— p; is 1-subgaussian (Buldygin & Kozachenko, 1980). The cumulative regret of
running WU-UCT (Liu et al., 2020) with n rollouts on T is upper bounded by:

3 (i+2Ak)1nn+Ak+4M 3 Aj

A )
kipp<p* k kipp<p* Inn
~ ~~ 7\ -~ s

Ryct(n) excess regret

where Rycr(n) is the cumulative regret of running the (sequential) UCT for n steps on T.
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Theory in practice: motivation

The action value gap G

G(s,a) := |]E[@(s,a)] —E[Q%eQ(s, a)]|

The action value gap has strong negative correlation with the algorithm’s performance
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Seek to design better parallel MCTS algorithms by minimizing the action value gap
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Theory in practice: empirical evaluation

Environment | BU-UCT (ours) | WU-UCT VL-UCT LeafP RootP
Alien 5320+231 5938+1839 4200+1086 4280+1016 52061282
Boxing 10040 100+0 9940 95+4 98+1
Breakout 425+30 . 408+21 390+33 331+45 281+27
Centipede 1610419+338295 11§|1163034+403910 439433+207601 162333+69575 184265+104405
Freeway 3240 3240 3240 31+1 3240
Gravitar 51304499 50604568 488041162 3385+155 4160+1811
MsPacman 1727946136 g 1980412232 1400042807 53784685 71561583
NameThisGame | 470661+5911  *{I 29991+1608 233262585 25390+3659  27440+9533
RoadRunner 44920+1478 - 46720+1359 24680+3316 2545242977  38300+1191
Robotank 121+18 X 101419 86+13 80+11 78+13
Qbert 15995+2635 1399245596 1462045738 1165545373 9465+3196
Spacelnvaders 34284525 33931292 26511828 243541159 25434809
Tennis 3+1 4+1 —140 —140 0+1
TimePilot 111100+58919 * 55130+£12474 3260042165 38075+£2307 4510017421
Zaxxon 42500+4725 3908516838 39579+3942 123004821 133804769

BU-UCT outperforms all baselines in 11 out of 15 Atari games.
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Thank You




[1] Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, and Ji Liu. Watch the unobserved: A sim-
ple approach to parallelizing monte carlo tree search. In International Conference on Learning Rep-
resentations, April 2020. URL https://openreview.net/forum?id=BJ1Qt JSKDB.



