

On Effective Parallelization of Monte Carlo Tree Search

Anji Liu¹, Yitao Liang¹, Ji Liu², Guy Van den Broeck¹, Jianshu Chen³
¹Computer Science Department, UCLA
²Seattle Al Lab, Kwai Inc.
³Tencent Al Lab

Motivation: Monte Carlo Tree Search

MCTS is considered as one of the core methods in model-based reinforcement learning. MCTS is slow, so it needs parallelization.

Go

figure credit: https://deepmind.com/research/casestudies/alphago-the-story-so-far

Video games

figure credit: https://gym.openai.com/

On Effective Parallelization of Monte Carlo Tree Search

destroy-jobs-prediction-2020-2

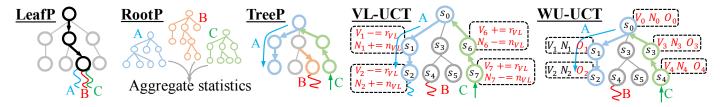
Chess

figure credit: https://www.businessinsider.com/chess-

grandmaster-gary-kasparov-ai-artificial-intelligence-

Motivation: MCTS parallelization

Existing parallel MCTS algorithms:



However, it is unclear what are the pros and cons of existing algorithms and how to design effective parallel MCTS algorithms.

We seek to lay the first theoretical foundation for effective MCTS parallelization.

What is effective parallel MCTS?

We study the **performance loss** of parallel MCTS algorithms under a fixed **speedup** requirement.

Speedup

$speedup = \frac{runtime of the sequential MCTS}{runtime of algorithm A using M workers}$

Performance loss: excess regret

The *excess regret* is defined as the difference between the **cumulative regret** of a parallel MCTS algorithm A and its sequential counterpart A_{seq} (i.e., $Regret_A(n) - Regret_{A_{seq}}(n)$):

$$\operatorname{Regret}_{\mathbb{A}}(n) := \sum_{i=1}^{n} \mathbb{E} \big[V_i^*(s_0) - V_i(s_0) \big]$$

- s_0 the root state
- $n\,$ the number of rollouts

 $V_i(s_0)$ - the value estimate of s_0 obtained in the *i*-th rollout of A $V_i^st(s_0)$ - the value estimate of s_0 obtained by an oracle algorithm

When will excess regret vanish?

The tree policy of UCT for selecting child nodes

$$a_{t} = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left\{ \overline{Q}(s_{t}, a) + c \sqrt{\frac{2 \ln \sum_{a'} \overline{N}(s_{t}, a')}{\overline{N}(s_{t}, a)}} \right\}$$

action value \longleftarrow visit count

Two necessary conditions for achieving vanishing excess regret:

- Q: the action value gap \bar{G} should be zero:

$$\overline{G}(s,a) := \left| \mathbb{E} \left[\overline{Q}(s,a) \right] - \mathbb{E} \left[Q_m^{\mathbb{A}_{seq}}(s,a) \right] \right|$$
expected action value computed by a by the parallel algorithm \mathbb{A} expected action value computed by a virtual sequential algorithm \mathbb{A}_{seq}

- N: the algorithm should modify visit count using the number of incomplete simulations:

$$\overline{N}(s,a) \ge \underline{N(s,a)} + \underbrace{O(s,a)}_{\# \text{ complete simulations}} \# \text{ incomplete simulations}$$

When will excess regret vanish?

The tree policy of UCT for selecting child nodes

$$a_{t} = \underset{a \in \mathcal{A}}{\operatorname{argmax}} \left\{ \overline{Q}(s_{t}, a) + c \sqrt{\frac{2 \ln \sum_{a'} \overline{N}(s_{t}, a')}{\overline{N}(s_{t}, a)}} \right\}$$

action value \longleftarrow visit count

When the search tree's maximum depth is 2, WU-UCT [1] satisfies both necessary conditions. Furthermore, in this case WU-UCT theoretically enjoys vanishing excess regret.

Theorem 2. Consider a tree search task \mathbb{T} with maximum depth D=2 (abbreviate as the depth-2 tree search task): it contains a root node s and K feasible actions $\{a_i\}_{i=1}^K$ at s, which lead to terminal states $\{s_i\}_{i=1}^K$, respectively. Let $\mu_i := \mathbb{E}[V(s_i)]$, $\mu^* := \max_i \mu_i$ and $\Delta_k := \mu^* - \mu_k$, and further assume: $\forall i, V(s_i) - \mu_i$ is 1-subgaussian (Buldygin & Kozachenko, 1980). The cumulative regret of running WU-UCT (Liu et al., 2020) with n rollouts on \mathbb{T} is upper bounded by:

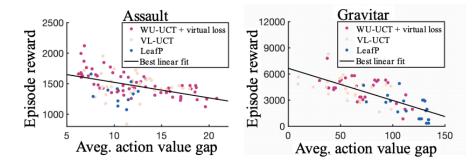
$$\underbrace{\sum_{\substack{k:\mu_k<\mu^*}} \left(\frac{8}{\Delta_k}+2\Delta_k\right) \ln n + \Delta_k}_{R_{\mathrm{UCT}}(n)} + \underbrace{4M \sum_{\substack{k:\mu_k<\mu^*}} \frac{\Delta_k^2}{\sqrt{\ln n}}}_{\mathrm{excess \ regret}},$$
where $R_{\mathrm{UCT}}(n)$ is the cumulative regret of running the (sequential) UCT for n steps on \mathbb{T} .

Theory in practice: motivation

The action value gap \bar{G}

$$\overline{G}(s,a) := \left| \mathbb{E} ig[\, \overline{Q}(s,a) ig] - \mathbb{E} ig[Q_m^{\mathbb{A}_{ ext{seq}}}(s,a) ig]
ight|$$

The action value gap has **strong negative correlation** with the algorithm's performance



Seek to design better parallel MCTS algorithms by minimizing the action value gap

Theory in practice: empirical evaluation

Environment	BU-UCT (ours	5)	WU-UCT	VL-UCT	LeafP	RootP
Alien	5320 ± 231	++++++++++++++++++++++++++++++++++++++	5938 ±1839	$4200{\pm}1086$	$4280{\pm}1016$	5206 ± 282
Boxing	100 ±0	†‡§	100 ±0	99 ± 0	$95{\pm}4$	98 ± 1
Breakout	425 ±30	±§	408 ± 21	$390{\pm}33$	$331 {\pm} 45$	$281{\pm}27$
Centipede	1610419±338295	†‡§	1163034 ± 403910	439433 ± 207601	$162333 {\pm} 69575$	$184265 {\pm} 104405$
Freeway	32 ± 0	110	32 ± 0	32 ± 0	31 ± 1	32 ± 0
Gravitar	5130 ±499	t	5060 ± 568	$4880{\pm}1162$	$3385 {\pm} 155$	4160 ± 1811
MsPacman	17279 ± 6136	‡§	19804 ±2232	$14000 {\pm} 2807$	$5378 {\pm} 685$	$7156{\pm}583$
NameThisGame	47066 ±5911	*†‡§	$29991{\pm}1608$	$23326 {\pm} 2585$	$25390{\pm}3659$	$27440 {\pm} 9533$
RoadRunner	$44920{\pm}1478$	*++++++++++++++++++++++++++++++++++++++	46720 ±1359	$24680 {\pm} 3316$	$25452 {\pm} 2977$	$38300{\pm}1191$
Robotank	121 ±18	†‡§	101 ± 19	$86{\pm}13$	$80{\pm}11$	78 ± 13
Obert	15995 ±2635	Š	13992 ± 5596	$14620 {\pm} 5738$	$11655 {\pm} 5373$	$9465 {\pm} 3196$
SpaceInvaders	3428 ±525	Š	3393 ± 292	$2651 {\pm} 828$	$2435 {\pm} 1159$	$2543 {\pm} 809$
Tennis	3 ± 1	†‡§	4 ±1	-1 ± 0	-1 ± 0	0 ± 1
TimePilot	111100 ±58919	*†‡§	$55130{\pm}12474$	$32600{\pm}2165$	$38075 {\pm} 2307$	$45100{\pm}7421$
Zaxxon	42500 ±4725	*++50	39085 ± 6838	39579 ± 3942	12300 ± 821	$13380{\pm}769$

BU-UCT outperforms all baselines in 11 out of 15 Atari games.

Thank You

[1] Anji Liu, Jianshu Chen, Mingze Yu, Yu Zhai, Xuewen Zhou, and Ji Liu. Watch the unobserved: A simple approach to parallelizing monte carlo tree search. In *International Conference on Learning Representations*, April 2020. URL https://openreview.net/forum?id=BJlQtJSKDB.