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Motivation: Why Reinforcement Learning
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Video games Autonomous driving Go

Learning through a trial-and-error process with little supervision.

Is capable of solving large-scale and complex problems.



Computer Science Department What to Expect of Classifiers? Reasoning about Logistic Regression with missing features August 15, 2019 3

Background: Markov Decision Process
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Environment

Agent

At time step t:

state st action at

reward rt
next state st+1

Policy

Value function
Measures discounted long-term reward

Determine which action to take given a state.

𝜋: 𝑠 → 𝑎

Q(s, a) = Eat∼π,st+1∼P,rt∼R

[

∞
∑

t=0

γtrt | s0 = s, a0 = a
]

Goal of RL
Find a policy 𝜋 that maximizes the expected long-
term reward.

Es∼ρ0,a∼π

[

Q(s, a)
]

where is the initial state distribution.ρ0
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The Exploration-Exploitation Tradeoff
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Exploration Exploitation

Experiencing new
states/rewards to potentially

find better policies.

Utilize existing knowledge to
behave optimally.

expressiveness, stochastic optimality, deterministic

The necessity of two policies1: target policy 𝜋 and behavior policy 𝜇

1For simplicity, sometimes only one policy is explicitly constructed.
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Goals
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What we want to achieve?

How we achieve it?

Leverage the flexibility to explicitly design two policies to better balance the
exploration-exploitation tradeoff.

Analogous Disentangled Actor Critic

Restricting the disentangled behavior
policy (policy co-training).

Restricting value updates
(critic bounding).
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Combating the Exploration-Exploitation Dilemma
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Exploration Exploitation

Expressive behavior policies

e.g. maximum entropy RL objective

Potential failure on exploitation

Exploitative target policies

Always optimal w.r.t. current knowledge

Usually requires uninformative noise-
based exploration.

Achieving better tradeoff through the flexibility to design separated policies?

π(a | s) = argmax
a

Q(s, a)µ(a | s) ∝ exp(−E(s, a))
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Analogous Disentangled Actor-Critic (ADAC)
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(during training)

Analogous
Disentangled Actor

Joint update with critic
bounding

𝑄()

𝑄(*)

Policy gradient

𝜇

𝜋
Policy co-training with

shared network

Replay Buffer

Environment (during testing)

Batch of samples
SampleCollect

Model update

Sample collection

Interaction

Interaction
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Stabilizing Policy Updates by Policy Co-training
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Obtain expressive while stable and optimal behavior policy.

Motivation

Expressiveness
Improve efficiency of exploration

of the behavior policy
Increased distance between
target policy and behavior policy

Stability problems during learning
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Stabilizing Policy Updates by Policy Co-training
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Key observation

maximum-entropy policy optimizationclassic policy optimization

µ(a | s) ∝ exp(Q(s, a))π(a | s) = argmax
a

Q(s, a)

Deterministic policy gradient Deterministic policy gradient +
entropy regularization

Joint learning of behavior/target policy in a shared neural network.
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Analogous Disentangled Behavior Policy
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ξ ∼ N (0, I)

ξ = [0, 0, . . . , 0]T

behavior policy
target policy

state s

policy
network aaction

Benefits

Increase the effectiveness of the behavior policy
- Reduce the distance between two policies and stabilize the learning process.
- Allowing expressive behavior policy for efficient exploration.
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Incorporating Intrinsic Reward via Critic Bounding
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Motivation

Intrinsic reward

Guided and efficient exploration

Alter the environment-defined
objective

Letting intrinsic reward to only affect the behavior policy.
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value function w.r.t. the target policy and the enhanced reward,
where
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Incorporating Intrinsic Reward via Critic Bounding
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R
′
= R+R

in
Qπ

R′

Qπ

R value function w.r.t. the target policy and the environment-defined reward
à Adopted to improve the target policy.

à Adopted to improve the behavior policy.

Theoretical justification

- Bounded training stability.
- Bounded training effectiveness.



Computer Science Department What to Expect of Classifiers? Reasoning about Logistic Regression with missing features August 15, 2019 13

Summary of Advantages
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Policy co-training

Critic bounding

Binds the target policy and the behavior policy to stabilize
the training process.

Allowing expressive behavior policy.

Incorporate intrinsic reward for effective exploration.

Has no effect on the optimality of the target policy.
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Analysis of Analogous Disentangled Behavior Policy
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ADAC target policy
DDPG (!" = 0.2)
DDPG (!' = 1.0)

ADAC behavior
policy

DDPG (!" = 1.0)
ADAC (no policy co-train)ADAC

DDPG (!' = 1.0)
For the top figure For the bottom figure

Time stepsEp
is
od
e
re
tu
rn

SAC

Bias between ) and *
ADAC (no policy co-train)ADAC

B
ia
s

Key results

Behavior policy
- Act curiously at the beginning.
- Focus on potentially rewarding actions
after obtaining preliminary understanding
of the environment.

Target policy
- Remains optimal w.r.t. the current
knowledge.

Target policy & behavior policy
- Bias between them significantly reduced.

the beginning stage
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Comparison with the State of the Art
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Table 1: Speci�cations of our action and reward designs for the modi�ed CartPole task. The original task consists of two discrete actions le�
and right, each pushing the cart towards its corresponding direction. We converted them into a single-dimension continuous action.

Action (a 2 [�1, 1]) Reward (r 2 R)

a =

( left a < �0.5
p(left) = p(right) = 0.5 a 2 [0.5, 0.5]

right a > 0.5
r = �0.1|a | � 0.05a2 +

n �1.0 episode ended
0.1 otherwise

Table 2: Continuous-control performance in 14 benchmark environments. Average episode return (± standard deviation) over 20 trials are
reported. Bold indicates the best average episode return. † indicates the better performance between ADAC(TD3) and its base model TD3.
Similarly, ⇤ indicates the better performance between ADAC (DDPG) and its base model DDPG. In all three cases, values that are statistically
insigni�cantly di�erent (>0.05 in t-test) from the respective should-be indicated ones are denoted as well.

Environment ADAC (TD3) ADAC (DDPG) TD3 DDPG SAC PPO

RoboschoolAnt 2219±373 838.1*±97.1 2903†±666 450.0±27.9 2726±652 1280±71
RoboschoolHopper 2299†±333 766.5*±10 2302†±537 543.8±307 2089±657 1229±345

RoboschoolHalfCheetah 1578†±166 1711*±95 607.2±246.2 441.6±120.4 807.0±252.6 1225±184.2
RoboschoolAtlasForwardWalk 234.6†±55.7 186.7*±37.9 190.6±50.1 52.63±26.2 126.0±47.1 107.6±29.4

RoboschoolWalker2d 1769†±452 1564*±651 995.1±146.3 208.7±137.1 1021±263 578.9±231.3
Ant 3353±847 1226*±18 4034†±517 370.5±223 4291±1498 1401±168

Hopper 3598†± 374 374.5*±36.5 2845±609 38.93±0.88 3307±825 1555±458
HalfCheetah 9392±199 2238*±40 10526†±2367 1009±49 11541±2989 881.7±10.1
Walker2d 5122†±1314 1291*±42 4630†±778 186.2±33.3 4067±1211 1146±368

InvertedPendulum 1000†±0 1000*±0 1000†±0 1000*±0 1000±0 98.90±2.08
InvertedDoublePendulum 9359†±0.17 9334*±1.39 7665±566 27.20±2.61 9353±2896 98.90±5.88

BipedalWalker 309.8†±15.6 -52.77*±1.94 288.4†±51.25 -123.90±11.17 307.2±57.92 266.9±28.52
BipedalWalkerHardcore -10.76†±27.70 -98.52±3.21 -57.97±21.08 -50.05*±10.27 -127.4±45.2 -105.3±22.2
LunarLanderContinuous 290.0†±50.9 85.67*±23.42 289.7†±54.1 -65.89±96.48 283.3±69.29 59.32±68.44

�rst to consistently accumulate positive rewards) and �nal per-
formance. Unlike our behavior policy, exploration through ran-
dom noise is unguided, resulting in either wasted exploration on
unpromising regions or insu�cient exploration on rewarding ar-
eas. This largely explains the noticeable performance gap between
DDPG with random noise and ADAC. On the other side, SAC bears
an expressive policy similar to our behavior policy. However, suf-
fering from no separate behavior policy, to aid exploration, SAC
has to consistently take sub-optimal actions into account, adversely
a�ecting its policy improvement process. In other words, di�erent
from ADAC, SAC cannot fully exploits its learned knowledge of the
environment (i.e. its value functions) to construct its target policy,
leading to a performance inferior to ADAC’s.

5.2 Comparison with the State of the Art
Though well-suited for illustration, CartPole alone is not challeng-
ing and generalized enough to fully manifest ADAC’s competi-
tiveness. In this subsection, we present that ADAC can achieve
state-of-the-art performance in standard benchmarks.

Setup To demonstrate the generality of our method, we con-
struct a 14-task testbed suite composed of qualitatively diverse
continuous-control environments from the OpenAI Gym toolkit
[5]. On top of the two baselines adopted earlier (i.e. DDPG and
SAC), we further include TD3 [11], which improves upon DDPG
by addressing some of its function approximation errors, PPO [33],
which is regarded as one of the most stable and e�cient on-policy
policy gradient algorithm, and GEP-PG [6], which combines Goal
Exploration Process [29] with policy gradient to perform curious

exploration as well as stable learning. Though not exhaustive, this
baseline suite still embodies many of the latest advancements and
can be indeed deemed as the existing state-of-the-art. However,
we compare with GEP-PG only in tasks adopted in their original
experiments. Speci�cally, since the GEP part of the algorithm needs
hand-crafted exploration goals, we are not able to run their model
on new experiments since it is nontrivial to generalize their experi-
ments in other tasks. To best reproduce the rest’s performance, we
use their original open-source implementations if released; other-
wise, we build our own versions after the most-starred third-party
implementations in GitHub. Furthermore, to prevent over-claiming
the state-of-the-art, we �ne-tune their hyper-parameters around
the values reported in the respective literature, but only coarsely
tune the hyper-parameters introduced by ADAC.7 All experiments
are run for 1 million time-steps, or until reaching performance
convergence, whichever happens earlier.

Empirical Insights Table 2 corroborates that ADAC’s compet-
itiveness over existing methods stem from its disentangled nature.
More importantly, these results reveal two desirable properties of
ADAC’s full compatibility with existing o�-policy methods. First,
ADAC consistently outperforms the method it is based on. As indi-
cated by the ⇤ symbols, compared to its base model, DDPG-based
ADAC achieves statistically better or comparable performance on
more than 93%(13/14) of the benchmarks and obtains identical per-
formance on one of the remaining two. Though not as remarkable
as DDPG-based ADAC, TD-based ADAC also manages to achieve
statically better or comparable performance over its base model
on more than 78%(11/14) of the tasks; see the † symbols. Second,
ADAC retains the bene�ts of improvements developed by the base

Out-performs state-of-the-art methods in 10 out of 14 benchmark environments.
- ADAC consistently out-performs its base model, and retains the benefits of improvements

developed by the base models.
- Comparison with SAC reveals the benefit brought by the disentangled structure.
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Why intrinsic reward sometimes harms RL
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Environment-defined reward stays the same while intrinsic reward keep growing.
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ADAC with Intrinsic Reward
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ADAC out-performs baseline
methods on challenging
sparse-reward tasks when
using intrinsic reward.

ADAC+VIME (TD3 base)
ADAC (TD3 base)

TD3+VIME
TD3
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Thank YouThank YouThank You
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Open source code: github.com/UCLA-StarAI/Analogous-Disentangled-Actor-Critic


