Factorized Exact Inference for Discrete
Probabilistic Programs

Steven Holtzen, Joe Qian, Todd Millstein, Guy Van den Broeck
UCLA

sholtzen@cs.ucla.edu, qzy@g.ucla.edu, todd@cs.ucla.edu, guyvdb@cs.ucla.edu

LAFI 2019

Introduction & Motivation

* Our problem: exact probabilistic inference for discrete
programs

Example program

x~Flip(0.5);
if(x) {

Example inference

y~flip(0.4);
} else {

y~f1ip(0.6);
}

1
Pﬂw=§

Why exact inference?
1. No error propagation

2. Core of effective approximation techniques
3. Unaffected by low-probability observations

LAFI 2019 -« UCLA - | 2

Introduction & Motivation

* Our problem: exact probabilistic inference for discrete
programs

Example program

x~Flip(0.5);
if(x) {

Example inference

y~flip(0.4);
} else {

y~flip(0.6);
}

1
Pﬂw=§

Why discrete?
1. Program constructs (e.g. 1T-statements)
2. Discrete models (graphs, topic models, ...)

LAFI 2019 « UCLA - | s

Existing techniques for exact inference

1. Enumerative inference

Psi WebPPL

2. Graphical model compilation

LAFI 2019

Enumerative inference

» Systematically explore all possible assignments to
flips in the program

y~f1lip(0.6) z~flip(0.6)

Assignment Probability:
0.5%0.4%0.4

* Scales exponentially with # L1ps

LAFI 2019

Inadequacy of enumerative inference

e Often, we can do better than enumeration

y~flip(0.4) 2~flip(0.4)

X~flip(0.5)

z~flip(0.6)

y~flip(0.6)

First compute Pr(y) = 1 Ther.1, compute Pr(z) without
2 looking at x

* Exploits independence of X and z given y
e Can we do this systematically?

LAFI 2019 « UCLA - | s

Graphical model compilation

4 N

y~flip(0.4)

F
X |Prix)_ T o,
T 0.5 F 04
F 0.5

LAFI 2019

Graphical model compilation

* Graph makes dependencies between variables explicit

»
L

x|y Priyl)
T T 04

T 0.5
c 0.5 T F 06
F T 04
F F 06

» Specialized graph-based inference methods exploit this

LAFI 2019

- UCLA - | 8

Coarseness of graphical models as an abstraction

* Arbitrary choice of abstraction
x=a || b][|]lc]|ld][]e]lf;

* Tiny program, huge conditional probability tables

x |a |b|c|d]|e|f|Prixlab,cdef)

1 11 11 1 11

1 0 27 rows!

~ O
o
=

e Obfuscates useful program structure
* Easy for path-based analysis: just run the program!

LAFI 2019

- UCLA - | 9

Coarseness of graphical models as an abstraction

* Graph is coarse-grained: if a dependency can exist
between two variables, they must have an edge in the
graph

1z ~flip1(0.5);

> if(2) {

3 x ~£f1lip2(0.6);
4 y ~£lips(0.7)
5} else {

6 x ~flip4(0.4);
7 y = x

s}

* Graph says there are no independences
 However, program says x and y are indep. givenz=T
e Challenging for both graph-based and enumeration inference

LAFI 2019

Technigues for exact inference

Yes | Graphical Model Compilation Symbolic compilation
(This work)
Exploits independence
to decompose inference?

Enumeration
No

No Yes

Keeps program structure?

LAFI 2019 = UCLA ™~

"

Our contribution

* Exact inference for a Boolean-valued loop-free PPL
with arbitrary observations

* Exploits independence, is competitive with graphical model
compilation

* Retains nuanced program structure

* Give semantics for our language, prove our inference
correct

LAFI 2019 -« UCLA - | =

Symbolic compilation

LAFI 2019 « UCLA - | =

Background: Symbolic model checking

* Non-probabilistic programs can be interpreted as
logical formulae which relate input and output states

li Logical
Program Symbq < Oglca Reachable?
Execution Formula

SAT(p AX'Ay) =T
SAT(p Ax'Ay) =F

p=x"eoyAQ ey

LAFI 2019 oo UCLA oo I 14

Inference via Weighted Model Counting

Weighted
Boolean
Formula

Probabilistic Symbolic

Query

Program Compilation Result

Retains Program

Structure Exploits Binary
Independence Decision

Diagram

LAFI 2019

Inference via Weighted Model Counting

Weighted

Probabilistic Symbolic & Query
o Boolean

Program Compilation Result
Formula

R
fi 0.4

fi 0.6
(" = f1)

WMC(p,w) = Z HW(Z).

me@ lem

WMC((x’ & fi)AxAX, W)?

 Asingle model:m =x"Ax A
1

« w(x')*w(x)*w(f;) = 0.4

LAFI 2019

Symbolic compilation: Flip

* Compositional process s ~~ (gp, w)

fresh f
x ~ flip(f) ~ ((:C’ < f) A (rest unchanged), w)

'

All variables in the program except
for x are not changed by this statement

LAFI 2019 - UCLA - | 7

Symbolic compilation: Assignment

* Compositional process s ~~ (g&, w)

Ti=e ~ ((:C’ & e) A (rest unchanged), w)

e Captures program structure in the logical expression
xt=a || b|lc|ld][]e]]f

LAFI 2019 « UCLA - | =

Symbolic compilation: Sequencing

* Compositional process s ~~ (g&, w)

s1 ~ (o1, w1) s2 ~ (2, wa)
Py = pal|x; — X, x> x|

S1382 ~ ((3hp1 A)] — @), wy & ws)

* Compile two sub-statements, do some relabeling,
then combine them to get the result

LAFI 2019 « UCLA - |

Inference via Weighted Model Counting

Probabilistic Symbolic Query
Program Compilation Result

Weighted

Boolean

Formula
\ Binary
Decision
Diagram
g J

LAFI 2019 « UCLA - |20

Compiling to BDDs

* Consider an example program:

x~Flip(0.4);
y~Flip(0.6)

This sub-function
does not depend
on x: exploits
independence

(x <= f)AN{HY = f)

e WMC is efficient for BDDs: time linear in size
* Small BDD = Fast Inference

LAFI 2019 « UCLA - | =

BDDs exploit conditional independence

* Size of BDD grows linearly with length of Markov chain

x ~flip,(0.5);

if(z) { y ~flip1(0.6) }
else { y ~flip2(0.4) };
if(y) { z ~flip3(0.6) }
5 else { z~flips(0.9) }

[N w N =

Given y=T, does not depend on

the value of X: exploits
conditional independence

LAFI 2019

Compiling to BDDs

 BDDs compactly capture complex program structure
x=a || b [l cl|]d][]e]lf;

.4
(©

0

0
(@
©
0
10}

LAFI 2019 « UCLA - |2

Experiments: Well-known Baselines

* Small programs (10s of lines)

l

L 000 J0Symbolic
— 7 Uo Psi
&) 1o R2
=500 .
= =
0l — l NN
l l l l
. S
P»\‘aﬂ“ 0 o $O'x6‘3 O Sl

LAFI 2019 oo UCLA oo |24

Experiments: Markov Chain

100 |- $ | —e—Symbolic (This Work) |
. —m— Psi
0 —a WebPPL
© 50| 4 :
;
0 Mo—o—o—o—‘ o—0 —0—0
| | | |
0 50 100 150

Length of Markov Chain

~ UCLA - |

LAFI 2019

Experiment: Bayesian Network Encodings

 Larger programs (thousands of lines, tens of
thousands of flips)

Model Us (s) BN Time (s) Size of BDD

Alarm 1.872 0.21 52k
Halfinder 12.652 1.37 157k
Hepar2 7.834 Not reported 139k
pathfinder 62.034 14.94 392k

_ Specialized BN inference algorithm

Alarm Network Pathfinder Network

LAFI 2019 = UCLA ™~

26

Probabilistic model checking

* Notable systems: STORM [DE’17], PRISM [KW’11]

* Different family of queries

* Focus on finding upper/lower bounds on probabilities, not
Bayesian inference

* Different symbolic representation of distribution

* ADDs (aka. MTBDDs) instead of weighted model counting
(also used by [CL'13])

e Cannot exploit independence (but can exploit sparsity)

e [DE’17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, Matthias Volk. A Storm is Coming: A Modern Probabilistic Model Checker. Proc. of CAV, Volume 10427 of

LNCS, pages 592-600, Springer, 2017.
e [KW’11] Marta Kwiatkowska, Gethin Norman and David Parker. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proc. 23rd International Conference on

Computer Aided Verification (CAV’11), volume 6806 of LNCS, pages 585-591, Springer, 2011.
e [CL'13] Claret, G., Rajamani, S. K., Nori, A. V, Gordon, A. D., & Borgstrém, J. (2013). Bayesian Inference Using Data Flow Analysis. Proceedings of the 2013 9th Joint

Meeting on Foundations of Software Engineering, 92—102. https://doi.org/10.1145/2491411.2491423

LAFI 2019 oo UCLA o | 27

Inference via WMC

* Has been applied to models other than discrete
probabilistic programs

Weighted
Boolean
Formula

Query
Result

Probabilistic
Program

Probabilistic
Logic Program
[FI'15]

Bayesian
Network
[CH’'08]

e [FI'15] D. Fierens, G. Van den Broeck, J. Renkens, D. Shterionov, B. Gutmann, . Thon, G. Janssens and
L. De Raedt. Inference and learning in probabilistic logic programs using weighted Boolean formulas.
Theory and Practice of Logic Programming, 15:3, pp. 358 - 401, Cambridge University Press, 2015.

¢ [CH’08] Chavira, M., & Darwiche, A. (2008). On probabilistic inference by weighted model counting.
Artificial Intelligence, 172(6-7), 772-799. https://doi.org/10.1016/j.artint.2007.11.002

LAFI 2019

Future Work and Conclusion

* We described a symbolic exact approach to inference
in discrete probabilistic programs
* Avoids combinatorial explosion of variable enumeration

e Systematically exploits nuanced program structure like
independence

* Competitive with exact inference Bayesian network
inference techniques

* Gave a semantics, proved it corresponds with compilation

LAFI 2019

Future Work and Conclusion

» Extending to more expressive program constructs

* Loops: symbolic fixpoint construction
* Procedures: exploiting structure of repeated calls
» Datatypes: categorical, algebraic types

* Theoretical analysis of inference
* What program properties make queries harder or easier?

* Alternative symbolic representations beyond BDDs

* Integrating exact discrete inference into systems which do
not currently handle it?

« UCLA = |

LAFI 2019

Thank you!

Questions?

Contact me: sholtzen@cs.ucla.edu

LAFI 2019 - UCLA - | =

Extra Slides

LAFI 2019 - UCLA - | =

Doing better than path-based inference

* Observation: z is independent of x given y

4 N

z~flip(0.4)

X~flip(0.5)

z~flip(0.4)

Can be summarized by computing
Pr(y) = 0.5x0.4 + 0.5x0.6 = 0.5

LAFI 2019

Doing better than path-based inference

* Observation: z is independent of x given y

z~flip(0.4)

y~flip(0.5)

z~flip(0.4)

* Program now has only 2 paths

LAFI 2019 oo UCLA oo | 34

Semantics

* Goal: Prove inference correct

e Semantics of statements naturally encoded as conditional
probabilities

x ~ flip(0.4); HCEHH

X x| fi P2
1 04

1 1

1 1 0 O
1 0 1 04
1 0 0 O
O 1 1 O
O 1 0 0.6
O 0 1 O
O 0 O 0.6

LAFI 2019 - UCLA - |

Symbolic execution

» SAT queries tell us reachability

«is y; X x vy |sar?
111y
1101 N
1100N
1011y

&

p=x"eoyAQ ey

“Can | startin state (x A y) and end in state (x A y)”?

$

SAT((p ANXAY)AX A y’)) =F

LAFI 2019 « UCLA - |3s

Transition probability

* Assign a probability to transitioning between states

Problem: This table is huge!

Q: How can we compactly
represent it?

©c O r B O O kB =

1
1
1
1
0
0
0
0

Table shows conditional
probability of starting in x
and ending in x’

LAFI 2019

Weighted Model Counting

* Given Boolean formula ¢, weight function
w, WMC(p,w) = Zm|=g0 HlEm w(l).
« WMC queries tell us transition probability

“What is the probability of starting in state
X and ending in state x’?”

¥

L wl)
X 1
WMC((x’ S fI)ANX ANx, X 1) = 0.4
fi 0.4
f 0.6

LAFI 2019

Inference via Weighted Model Counting

Weighted
Boolean QLI

Result
Formula

Probabilistic Symbolic

Program Compilation

(' & f,)
n Q: How can we do
X 1
X 1 (i.e., without
fi 0.4 building the whole
_ transition
fi 0.6

probability table)

LAFI 2019

Compiling to BDDs

* BDD = compact representation of transition
probability table

: . Size linear in

X~f11p(@- 4),; #erialglaes,

y~flip (0.6) exploits
independence

Pr(x=T,y=T)=04%06%1x1

LAFI 2019 oo UCLA o |4o

Querying with BDDs

* Suppose we want to compute Pr(x)

x~Flip(0.4);
y~Flip(0.6)

Pr(x) =1.0%x04+0.6+x0=0.4

LAFI 2019 oo oo | M

