Factorized Exact Inference for Discrete Probabilistic Programs

Steven Holtzen, Joe Qian, Todd Millstein, Guy Van den Broeck
UCLA

sholtzen@cs.ucla.edu, qzy@g.ucla.edu, todd@cs.ucla.edu, guyvdb@cs.ucla.edu

Introduction & Motivation

Our problem: exact probabilistic inference for discrete programs

```
Example program

x~flip(0.5);
if(x) {
  y~flip(0.4);
} else {
  y~flip(0.6);
}
```

Example inference

$$\Pr(y) = \frac{1}{2}$$

Why exact inference?

- No error propagation
- 2. Core of effective approximation techniques
- 3. Unaffected by low-probability observations

Introduction & Motivation

Our problem: exact probabilistic inference for discrete programs

```
Example program

x~flip(0.5);
if(x) {
  y~flip(0.4);
} else {
  y~flip(0.6);
}
```

Example inference

$$\Pr(y) = \frac{1}{2}$$

Why discrete?

- 1. Program constructs (e.g. if-statements)
- 2. Discrete models (graphs, topic models, ...)

Existing techniques for exact inference

1. Enumerative inference

2. Graphical model compilation

Enumerative inference

 Systematically explore all possible assignments to flips in the program

Scales exponentially with #flips

Assignment Probability: $0.5 \times 0.4 \times 0.4$

Inadequacy of enumerative inference

• Often, we can do better than enumeration

First compute $Pr(y) = \frac{1}{2}$

Then, compute Pr(z) without looking at x

- Exploits independence of X and Z given Y
- Can we do this systematically?

Graphical model compilation

Graphical model compilation

Graph makes dependencies between variables explicit

Specialized graph-based inference methods exploit this

Coarseness of graphical models as an abstraction

Arbitrary choice of abstraction

$$x = a \mid \mid b \mid \mid c \mid \mid d \mid \mid e \mid \mid f;$$

• Tiny program, huge conditional probability tables

x	а	b	С	d	е	f	Pr(x a,b,c,d,e,f)
1	1	1	1	1	1	1	1
0	1	1	1	1	1	1	0
1	0	1	1	1	1	1	1
•••							

 2^7 rows!

- Obfuscates useful program structure
- Easy for path-based analysis: just run the program!

Coarseness of graphical models as an abstraction

 Graph is coarse-grained: if a dependency can exist between two variables, they must have an edge in the graph

```
1 z \sim \text{flip}_1(0.5);

2 if(z) {

3 x \sim \text{flip}_2(0.6);

4 y \sim \text{flip}_3(0.7)

5 } else {

6 x \sim \text{flip}_4(0.4);

7 y := x

8 }
```


- Graph says there are no independences
 - However, program says x and y are indep. given z = T
 - Challenging for both graph-based and enumeration inference

Techniques for exact inference

Exploits independence to decompose inference?

No

Graphical Model Compilation
(This work)

Enumeration

No

Yes

Keeps program structure?

Our contribution

- Exact inference for a Boolean-valued loop-free PPL with arbitrary observations
 - Exploits independence, is competitive with graphical model compilation
 - Retains nuanced program structure
- Give semantics for our language, prove our inference correct

Symbolic compilation

Background: Symbolic model checking

 Non-probabilistic programs can be interpreted as logical formulae which relate input and output states

$$x := y;$$

$$\varphi = (x' \Leftrightarrow y) \land (y' \Leftrightarrow y)$$

$$SAT(\varphi \wedge x' \wedge y) = T$$
$$SAT(\varphi \wedge x' \wedge \overline{y}) = F$$

Inference via Weighted Model Counting

Inference via Weighted Model Counting

Probabilistic Program

Symbolic Compilation Weighted Boolean Formula

WMC

Query Result

x := flip(0.5);

l	w(l)
f_1	0.4
$\overline{f_1}$	0.6

$$(x' \Leftrightarrow f_1)$$

$$WMC(\varphi, w) = \sum_{m \models \varphi} \prod_{l \in m} w(l).$$

$$\mathsf{WMC}\big((x' \Leftrightarrow f_1) \land x \land x', w\big)?$$

- A single model: $m = x' \land x \land f_1$
- $w(x') * w(x) * w(f_1) = 0.4$

Symbolic compilation: Flip

ullet Compositional process $\mathbf{s} \leadsto (arphi, w)$

fresh
$$f$$

$$x \sim \mathtt{flip}(\theta) \leadsto \Big((x' \Leftrightarrow f) \land (\mathtt{rest\ unchanged}), w \Big)$$

All variables in the program except for x are not changed by this statement

Symbolic compilation: Assignment

ullet Compositional process ${f s} \leadsto (arphi, w)$

$$x := \mathbf{e} \leadsto \Big((x' \Leftrightarrow \mathbf{e}) \land (\text{rest unchanged}), w \Big)$$

Captures program structure in the logical expression

Symbolic compilation: Sequencing

ullet Compositional process ${f s} \leadsto (arphi, w)$

$$s_1 \leadsto (\varphi_1, w_1) \qquad s_2 \leadsto (\varphi_2, w_2)$$
$$\varphi'_2 = \varphi_2[x_i \mapsto x'_i, x'_i \mapsto x''_i]$$
$$s_1; s_2 \leadsto ((\exists x'_i.\varphi_1 \land \varphi'_2)[x''_i \mapsto x'_i], w_1 \uplus w_2)$$

 Compile two sub-statements, do some relabeling, then combine them to get the result

Inference via Weighted Model Counting

Compiling to BDDs

Consider an example program:

 $(x \iff f_1) \land (y \iff f_2)$

This sub-function does not depend on x: exploits independence

- WMC is efficient for BDDs: time linear in size
 - Small BDD = Fast Inference

BDDs exploit conditional independence

Size of BDD grows linearly with length of Markov chain

Given y=T, does not depend on the value of X: exploits conditional independence

Compiling to BDDs

• BDDs compactly capture complex program structure

 $x = a \mid \mid b \mid \mid c \mid \mid d \mid \mid e \mid \mid f;$

Experiments: Well-known Baselines

Small programs (10s of lines)

Experiments: Markov Chain

Experiment: Bayesian Network Encodings

 Larger programs (thousands of lines, tens of thousands of flips)

Model	Us (s)	BN Time (s)	Size of BDD
Alarm	1.872	0.21	$52\mathrm{k}$
Halfinder	12.652	1.37	157k
Hepar2	7.834	Not reported	139k
pathfinder	62.034	14.94	392k

Specialized BN inference algorithm

Pathfinder Network

Probabilistic model checking

- Notable systems: STORM [DE'17], PRISM [KW'11]
- Different family of queries
 - Focus on finding upper/lower bounds on probabilities, not Bayesian inference
- Different symbolic representation of distribution
 - ADDs (aka. MTBDDs) instead of weighted model counting (also used by [CL'13])
 - Cannot exploit independence (but can exploit sparsity)

·· UCLA ··

[[]DE'17] Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, Matthias Volk. A Storm is Coming: A Modern Probabilistic Model Checker. Proc. of CAV, Volume 10427 of LNCS, pages 592–600, Springer, 2017.

^{• [}KW'11] Marta Kwiatkowska, Gethin Norman and David Parker. PRISM 4.0: Verification of Probabilistic Real-time Systems. In Proc. 23rd International Conference on Computer Aided Verification (CAV'11), volume 6806 of LNCS, pages 585-591, Springer, 2011.

^{• [}CL'13] Claret, G., Rajamani, S. K., Nori, A. V, Gordon, A. D., & Borgström, J. (2013). Bayesian Inference Using Data Flow Analysis. Proceedings of the 2013 9th Joint Meeting on Foundations of Software Engineering, 92–102. https://doi.org/10.1145/2491411.2491423

Inference via WMC

 Has been applied to models other than discrete probabilistic programs

Future Work and Conclusion

- We described a symbolic exact approach to inference in discrete probabilistic programs
 - Avoids combinatorial explosion of variable enumeration
 - Systematically exploits nuanced program structure like independence
 - Competitive with exact inference Bayesian network inference techniques
 - Gave a semantics, proved it corresponds with compilation

Future Work and Conclusion

- Extending to more expressive program constructs
 - Loops: symbolic fixpoint construction
 - Procedures: exploiting structure of repeated calls
 - Datatypes: categorical, algebraic types
- Theoretical analysis of inference
 - What program properties make queries harder or easier?
- Alternative symbolic representations beyond BDDs
- Integrating exact discrete inference into systems which do not currently handle it?

Thank you!

Questions?

Contact me: sholtzen@cs.ucla.edu

Extra Slides

Doing better than path-based inference

• *Observation*: *z* is independent of *x* given *y*

Doing better than path-based inference

• Observation: z is independent of x given y

Program now has only 2 paths

Semantics

- Goal: Prove inference correct
 - Semantics of statements naturally encoded as conditional probabilities

 $x \sim flip(0.4); \quad (x' \Leftrightarrow f_1)$

x'	x	f_1	Pr?
1	1	1	0.4
1	1	0	0
1	0	1	0.4
1	0	0	0
0	1	1	0
0	1	0	0.6
0	0	1	0
0	0	0	0.6

Symbolic execution

• SAT queries tell us reachability

x'	x	y'	у	SAT?
1	1	1	1	Υ
1	1	0	1	N
1	1	0	0	N
1	0	1	1	Υ

"Can I start in state $(x \wedge \overline{y})$ and end in state $(x \wedge y)$ "?

$$SAT(\varphi \wedge (x \wedge \overline{y}) \wedge (x' \wedge y')) = F$$

Transition probability

Assign a probability to transitioning between states

Problem: This table is huge!

Q: How can we compactly represent it?

x'	X	f_1	Pr?
1	1	1	0.4
1	1	0	0
1	0	1	0.4
1	0	0	0
0	1	1	0
0	1	0	0.6
0	0	1	0
0	0	0	0.6

Table shows *conditional*probability of starting in x
and ending in x'

Weighted Model Counting

- Given Boolean formula φ , weight function w, $\text{WMC}(\varphi, w) = \sum_{m \models \varphi} \prod_{l \in m} w(l)$.
- WMC queries tell us transition probability

"What is the probability of starting in state x and ending in state x'?"

 $\mathsf{WMC}\big((x' \Leftrightarrow f_1) \land x' \land x,$

l	w(l)	
X	1	
\bar{x}	1) = 0.4
f_1	0.4	
$\overline{f_1}$	0.6	

x'	X	f_1	Pr?
1	1	1	0.4
1	1	0	0
1	0	1	0.4
1	0	0	0
0	1	1	0
0	1	0	0.6
0	0	1	0
0	0	0	0.6

Inference via Weighted Model Counting

Symbolic Compilation Weighted Boolean Formula

WMC

Query Result

 $x \sim flip(0.4);$

, ,		_	
(x')	\leftarrow	f.	
(A	$\overline{}$	<i>I</i> 1	

l	w(l)
X	1
\bar{x}	1
f_1	0.4
$\overline{f_1}$	0.6

Q: How can we do this efficiently?

(i.e., without building the whole transition probability table)

Compiling to BDDs

 BDD = compact representation of transition probability table

x~flip(0.4); y~flip(0.6)

Size linear in # variables, exploits independence

$$Pr(x = T, y = T) = 0.4 * 0.6 * 1 * 1$$

Querying with BDDs

• Suppose we want to compute Pr(x)

```
x~flip(0.4);
y~flip(0.6)
```


