First-Order Knowledge Compilation for Probabilistic Reasoning

Guy Van den Broeck

based on joint work with Adnan Darwiche, Dan Suciu, and many others

MOTIVATION 1

Probability that Card1 is Hearts?

Probability that Card1 is Hearts? 1/4

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Let us automate this:

- 1. CNF encoding for deck of cards
- 2. Compile to tractable knowledge base (e.g., d-DNNF)
- 3. Condition on observations/questions "Card1 is hearts"
- 4. Model counting

Let us automate this:

- 1. CNF encoding for deck of cards
- 2. Compile to tractable knowledge base (e.g., d-DNNF)
- 3. Condition on observations/questions "Card1 is hearts"
- 4. Model counting

A typical BeyondNP pipeline!

Let us automate this:

1. CNF encoding for deck of cards

```
Card(p1,c1) v Card(p1,c2) v ...
Card(p1,c1) v Card(p2,c1) v ...
¬Card(p1,c1) v ¬Card(p1,c2)
¬Card(p1,c2) v ¬Card(p1,c3)
...
¬Card(p2,c1) v ¬Card(p2,c2)
...
```

Let us automate this:

- 1. CNF encoding for deck of cards
- 2. Compile to tractable knowledge base (e.g., d-DNNF)
- 3. Condition on observations/questions "Card1 is hearts"
- 4. Model counting

Which language to choose? Cards problem is easy: we want to be polynomial.

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting

¬ Card(K♥,p14)

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting: How many *perfect matchings*?

- 2. Compile to tractable knowledge base
- 3. Condition on observations/questions
- 4. Model counting: How many perfect matchings?

Observations

- Deck of cards = complete bigraph
- CD = removing edges in bigraph
 Encode any bigraph in cards problem
- CT = counting perfect matchings
- Problem is #P-complete!

No language with CD and CT can represent the cards problem compactly, unless P=NP.

Probability that Card52 is Spades given that Card1 is QH?

Probability that Card52 is Spades given that Card1 is QH?

13/51

Probability that Card52 is Spades given that Card1 is QH?

13/51

Probability that Card52 is Spades given that Card2 is QH?

Probability that Card52 is Spades given that Card2 is QH?

13/51

Probability that Card52 is Spades given that Card3 is QH?

Probability that Card52 is Spades given that Card3 is QH?

13/51

Tractable Reasoning

What's going on here?
Which property makes reasoning tractable?

Tractable Reasoning

What's going on here?
Which property makes reasoning tractable?

- High-level (first-order) reasoning
- Symmetry
- Exchangeability

⇒ Lifted Inference

Let us automate this:

Relational/FO model

```
\forall p, \exists c, Card(p,c)

\forall c, \exists p, Card(p,c)

\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'
```

First-Order Knowledge Compilation

MOTIVATION 2

Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

$$\triangle$$
 = (Rain \Rightarrow Cloudy)

[Valiant] #P-hard, even for 2CNF

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT

 $\Delta = (Rain \Rightarrow Cloudy)$

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Weighted Model Counting

- Model = solution to a propositional logic formula Δ
- Model counting = #SAT
- Weighted model counting (WMC)
 - Weights for assignments to variables
 - Model weight is product of variable weights w(.)

Assembly language for probabilistic reasoning and learning

First-Order Model Counting

Model = solution to first-order logic formula Δ

```
∆ = ∀d (Rain(d)

⇒ Cloudy(d))
```

Days = {Monday}

First-Order Model Counting

Model = solution to first-order logic formula Δ

Days = {Monday}

Rain(M)	Cloudy(M)	Model?
Т	Т	Yes
Т	F	No
F	Т	Yes
F	F	Yes
		+

FOMC = 3

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Ţ	F	F	T	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

 Δ = ∀d (Rain(d) ⇒ Cloudy(d))

Days = {Monday **Tuesday**}

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?
Т	Т	Т	Т	Yes
Т	F	Т	Т	No
F	Т	Т	Т	Yes
F	F	Т	Т	Yes
Т	Т	Т	F	No
Т	F	Т	F	No
F	Т	Т	F	No
F	F	Т	F	No
Т	Т	F	Т	Yes
Т	F	F	Т	No
F	Т	F	Т	Yes
F	F	F	Т	Yes
Т	Т	F	F	Yes
Т	F	F	F	No
F	Т	F	F	Yes
F	F	F	F	Yes

Model = solution to first-order logic formula Δ

$$\Delta$$
 = ∀d (Rain(d)
⇒ Cloudy(d))

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 1 * 3 * 3 = 9
Т	F	Т	Т	No	0
F	Т	Т	T	Yes	2 * 1* 3 * 3 = 18
F	F	Т	Т	Yes	2 * 1 * 5 * 3 = 30
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 2 * 3 * 3 = 18
Т	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 2 * 3 * 3 = 36
F	F	F	Т	Yes	2 * 2 * 5 * 3 = 60
Т	Т	F	F	Yes	1 * 2 * 3 * 5 = 30
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 2 * 3 * 5 = 60
F	F	F	F	Yes	2 * 2 * 5 * 5 = 100

Model = solution to first-order logic formula \triangle

```
\Delta = ∀d (Rain(d)

⇒ Cloudy(d))
```

Rain(M)	Cloudy(M)	Rain(T)	Cloudy(T)	Model?	Weight
Т	Т	Т	Т	Yes	1 * 1 * 3 * 3 = 9
Ţ	F	Т	T	No	0
F	Т	Т	Т	Yes	2 * 1* 3 * 3 = 18
F	F	Т	Т	Yes	2 * 1 * 5 * 3 = 30
Т	Т	Т	F	No	0
Т	F	Т	F	No	0
F	Т	Т	F	No	0
F	F	Т	F	No	0
Т	Т	F	Т	Yes	1 * 2 * 3 * 3 = 18
T	F	F	Т	No	0
F	Т	F	Т	Yes	2 * 2 * 3 * 3 = 36
F	F	F	Т	Yes	2 * 2 * 5 * 3 = 60
Т	Т	F	F	Yes	1 * 2 * 3 * 5 = 30
Т	F	F	F	No	0
F	Т	F	F	Yes	2 * 2 * 3 * 5 = 60
F	F	F	F	Yes	2 * 2 * 5 * 5 = 100

Assembly language for high-level probabilistic reasoning and learning

Statistical Relational Learning

```
Hard constraint

\infty
 Smoker(x) \Rightarrow Person(x)

Soft constraint

3.75
 Smoker(x) \land Friend(x,y) \Rightarrow Smoker(y)
```

- An MLN = set of constraints $(\mathbf{w}, \Gamma(\mathbf{x}))$
- Weight of a world = product of w, for all rules (w, Γ(x)) and groundings Γ(a) that hold in the world

 $P_{MLN}(Q) = [sum of weights of worlds of Q] / Z$

Applications: large probabilistic KBs

FO NNF SYNTAX

First-Order Knowledge Compilation

- Input: Sentence in FOL
- Output: Representation tractable for some class of queries.
- In this work:
 - Function-free FOL
 - Model counting in NNF tradition
- Some pre-KC-map work:
 - FO Horn clauses
 - FO BDDs

Alphabet

- FOL
 - Predicates/relations: Friends
 - Object names: x, y, z
 - Object variables: X, Y, Z
 - Symbols classical FOL (∀, ∃, ∧, ∨, ¬,...)
- Group logic
 - Group variables: X, Y, Z
 - Symbols from basic set theory(e.g., ∪, ∩, ∈, ⊆, {, }, complement).

Syntax

- Object terms: X, alice, bob
- Group terms : X, {alice,bob}, X ∪ Y
- Atom: Friends(alice,X)
- Formulas:
 - $-(\alpha)$, $\neg \alpha$, $\alpha \vee \beta$, and $\alpha \wedge \beta$
 - $\forall X \in \mathbf{G}$, α and $\exists X \in \mathbf{G}$, α
 - $\forall X \subseteq G$, α and $\exists X \subseteq G$, α
- Group logic syntactic sugar:
 - P(G) is $\forall X \in G, P(X)$
 - $-\overline{P}(G)$ is $\forall X \in G, \neg P(X)$

Examples:

∀X ∈ G, Y ∈ {alice, bob},
 Enemies(X, Y)
 ⇒¬Friends(X, Y) ∧ ¬Friends(Y, X)

• $\forall X \in G, Y \in G,$ Smokes(X) \land Friends(X, Y) \Rightarrow Smokes(Y)

• $\exists \mathbf{G} \subseteq \{\text{alice, bob}\}$, $Smokes(\mathbf{G}) \land Healthy(\mathbf{G})$

Semantics

- Template language for propositional logic
- Grounding a sentence: gr(α)
 - Replace ∀ by ∧
 - Replace ∃ by ∨
 - End result: ground sentence = propositional logic
- Grounding is polynomial in group sizes
 when no ∀X ⊆ G or ∃X ⊆ G
 Important for polytime reduction to NNF circuits

Decomposability

• Conjunction: $\alpha(X,G) \wedge \beta(X,G)$

For any substitution X=c and G=g, we have that $gr(\alpha(c,g)) \land gr(\beta(c,g))$ is decomposable

Meaning: α and β can never talk about the same ground atoms

• Quantifier: $\forall Y \in G$, $\alpha(Y)$

For any two a,b \in **G**, we have that $gr(\alpha(a)) \land gr(\alpha(b))$ is decomposable

Determinism

• Disjunction: $\alpha(X,G) \vee \beta(X,G)$

For any substitution X=c and G=g, we have that $gr(\alpha(c,g)) \vee gr(\beta(c,g))$ is deterministic

Meaning: $\alpha \wedge \beta$ is UNSAT

• Quantifier: $\exists Y \in G$, $\alpha(Y)$

For any two a,b \in **G**, we have that $gr(\alpha(a)) \vee gr(\alpha(b))$ is decomposable

Group Quantifiers

- Decomposability: ∀X ⊆ G, α(X)
 For any two A,B ⊆ G, we have that gr(α(A)) ∨ gr(α(B)) is decomposable
- Determinism: ∃X ⊆ G, α(X)
 For any two A,B ⊆ G, we have that gr(α(A)) ∨ gr(α(B)) is deterministic

Automorphism

- Object permutation σ : D→ D is a one-to-one mapping from objects to objects.
- Permuting α using σ replaces σ in σ by $\sigma(\sigma)$.
- Sentences α and β are p-equivalent iff α is equivalent to an object permutation of β.
 Smokes(alice) and Smokes(bob) are p-equivalent
- Group quantifiers: ∀X ⊆ G, α(X) or ∃X ⊆ G, α(X)
 Are automorphic iff for any two A,B ⊆ G s.t.
 |A|=|B|, gr(α(A)) and gr(α(B)) are p-equivalent

First-Order NNF

First-Order NNF

First-Order DNNF

First-Order DNNF

First-Order d-DNNF

First-Order d-DNNF

First-Order d-DNNF

First-Order ad-DNNF

FO NNF Languages

- FO NNF: group logic circuits, negation only on atoms
- FO d-DNNF: determinism and decomposability
 Grounding generates a d-DNNF
- FO DNNF
 Grounding generates a DNNF
- FO ad-DNNF: automorphic Powerful properties!

FO NNF TRACTABILITY

Symmetric WFOMC

Def. A weighted vocabulary is (R, w), where

```
-R = (R_1, R_2, ..., R_k) = relational vocabulary
```

- $w = (w_1, w_2, ..., w_k) = weights$
- Fix an FO formula Q, domain of size n
- The weight of a ground tuple t in R_i is w_i

```
Complexity of FOMC / WFOMC(Q, n)?

Data/domain complexity:

fixed Q, input n / and w
```

Symmetric WFOMC on FO ad-DNNF

```
U(\alpha) = \begin{cases} 0 & \text{when } \alpha = \mathsf{false} \\ 1 & \text{when } \alpha = \mathsf{true} \\ 0.5 & \text{when } \alpha \text{ is a literal} \\ U(\ell_1) \times \dots \times U(\ell_n) & \text{when } \alpha = \ell_1 \wedge \dots \wedge \ell_n \\ U(\ell_1) + \dots + U(\ell_n) & \text{when } \alpha = \ell_1 \vee \dots \vee \ell_n \\ \prod_{i=1}^n U(\beta\{X/x_i\}) & \text{when } \alpha = \forall X \in \tau, \beta \text{ and } x_1, \dots, x_n \text{ are the objects in } \tau. \\ \sum_{i=1}^n U(\beta\{X/x_i\}) & \text{when } \alpha = \exists X \in \tau, \beta \text{ and } x_1, \dots, x_n \text{ are the objects in } \tau. \\ \prod_{i=0}^{|\tau|} U(\beta\{X/x_i\})^{\binom{|\tau|}{i}} & \text{when } \alpha = \exists X \in \tau, \beta, \text{ and } x_i \text{ is any subset of } \tau \text{ such that } |x_i| = i. \\ \sum_{i=0}^{|\tau|} \binom{|\tau|}{i} \cdot U(\beta\{X/x_i\}) & \text{when } \alpha = \exists X \subseteq \tau, \beta, \text{ and } x_i \text{ is any subset of } \tau \text{ such that } |x_i| = i. \end{cases}
```

Complexity polynomial in domain size! Polynomial in NNF size for bounded depth.

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4.
$$\Delta = (Stress(Alice) \Rightarrow Smokes(Alice))$$

Domain = {Alice}

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4.
$$\triangle = (Stress(Alice) \Rightarrow Smokes(Alice))$$

 \rightarrow 3 models

Domain = {Alice}

FO-Model Counting:
$$w(R) = w(\neg R) = 1$$

FO ad-DNNF sentences

4.
$$\triangle = (Stress(Alice) \Rightarrow Smokes(Alice))$$

Domain = {Alice}

 \rightarrow 3 models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

FO-Model Counting: $w(R) = w(\neg R) = 1$ FO ad-DNNF sentences

4. $\Delta = (Stress(Alice) \Rightarrow Smokes(Alice))$

Domain = {Alice}

 \rightarrow 3 models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

3. $\triangle = \forall x$, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2. $\triangle = \forall y$, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle$$
 = $\forall y$, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

$$\rightarrow$$
 3ⁿ models

$$\Delta$$
 = true

$$\rightarrow$$
 4ⁿ models

3.
$$\Delta = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

 \rightarrow 3ⁿ models

$$\Delta$$
 = true

 \rightarrow 4ⁿ models

$$\rightarrow$$
 3ⁿ + 4ⁿ models

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

 \rightarrow 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y$$
, (ParentOf(y) \Rightarrow MotherOf(y))

 \rightarrow 3ⁿ models

 \rightarrow 4ⁿ models

$$\Delta$$
 = true

 \rightarrow 3ⁿ + 4ⁿ models

1.
$$\Delta = \forall x, \forall y, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))$$

D = {n people}

3.
$$\triangle = \forall x$$
, (Stress(x) \Rightarrow Smokes(x))

Domain = {n people}

$$\rightarrow$$
 3ⁿ models

2.
$$\triangle = \forall y$$
, (ParentOf(y) \land Female \Rightarrow MotherOf(y))

D = {n people}

$$\triangle = \forall y, (ParentOf(y) \Rightarrow MotherOf(y))$$

 \rightarrow 3ⁿ models

 \rightarrow 4ⁿ models

$$\Delta$$
 = true

 \rightarrow 3ⁿ + 4ⁿ models

1.
$$\Delta = \forall x, \forall y, (ParentOf(x,y) \land Female(x) \Rightarrow MotherOf(x,y))$$

D = {n people}

$$\rightarrow$$
 (3ⁿ + 4ⁿ)ⁿ models

```
\Delta = \forall x, y \in \mathbf{D}, (Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y))
```

Domain = {n people}

- Not decomposable!
- Rewrite as FO ad-DNNF:

```
\exists \mathbf{G} \subseteq \mathbf{D}, Smokes(\mathbf{G}) \land \overline{\mathsf{S}}mokes(\overline{\mathbf{G}}) \land \overline{\mathsf{F}}riends(\mathbf{G}, \overline{\mathbf{G}})
```

- Not possible to ground to d-DNNF!
- How to do tractable CT?

```
\sum_{i=0}^{|\tau|} {|\tau| \choose i} \cdot U(\beta\{\mathbf{X}/\mathbf{x}_i\}) \quad \text{when } \alpha = \exists \mathbf{X} \subseteq \tau, \beta, \text{ and } \mathbf{x}_i \text{ is any subset of } \tau \text{ such that } |\mathbf{x}_i| = i
```

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

k n-k

Smokes

Friends Smokes

k

n-k

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1

Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

If we know G precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

• If we know **G** precisely: who smokes, and there are *k* smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

$$\exists \mathbf{G} \subseteq \mathbf{D}$$
, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

If we know G precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0 Smokes(Charlie) = 0 Smokes(Dave) = 1 Smokes(Eve) = 0 ... $\Rightarrow 2^{n^2-k(n-k)} \text{ models}$

• If we know that there are k smokers?

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

If we know G precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1 Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

If we know G precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

In total...

 $\exists \mathbf{G} \subseteq \mathbf{D}$, Smokes(\mathbf{G}) $\land \overline{\mathsf{S}}$ mokes($\overline{\mathbf{G}}$) $\land \overline{\mathsf{F}}$ riends(\mathbf{G} , $\overline{\mathbf{G}}$)

If we know G precisely: who smokes, and there are k smokers?

Database:

Smokes(Alice) = 1

Smokes(Bob) = 0

Smokes(Charlie) = 0

Smokes(Dave) = 1

Smokes(Eve) = 0

...

$$\rightarrow 2^{n^2-k(n-k)}$$
 models

• If we know that there are *k* smokers?

$$\rightarrow \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

• In total...

$$\rightarrow \sum_{k=0}^{n} \binom{n}{k} 2^{n^2 - k(n-k)}$$
 models

Playing Cards Revisited

Let us automate this:


```
\forall p, \exists c, Card(p,c)

\forall c, \exists p, Card(p,c)

\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'
```

Playing Cards Revisited

Let us automate this:

$$\forall p, \exists c, Card(p,c)$$

 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^k (-1)^{2n-k-l} = n!$$

Playing Cards Revisited

Let us automate this:

$$\forall p, \exists c, Card(p,c)$$

 $\forall c, \exists p, Card(p,c)$
 $\forall p, \forall c, \forall c', Card(p,c) \land Card(p,c') \Rightarrow c = c'$

#SAT =
$$\sum_{k=0}^{n} {n \choose k} \sum_{l=0}^{n} {n \choose l} (l+1)^k (-1)^{2n-k-l} = n!$$

Computed in time polynomial in n

FO COMPILATION

Compilation Rules

- Lots of preprocessing
- Shannon decomposition/Boole's expansion
- Detect propositional decomposability
- FO Shannon decomposition:

$$\exists \mathbf{X} \subseteq \tau, P(\mathbf{X}) \land \overline{P}(\overline{\mathbf{X}}) \land \beta$$

Simplify β (remove atoms subsumed by P(**X**)) Always deterministic! Ensure automorphic \exists

Detect FO decomposability

FO NNF EXPRESSIVENESS

Main Positive Result: FO²

- $FO^2 = FO$ restricted to two variables
- "The graph has a path of length 10":

```
\exists x \exists y (R(x,y) \land \exists x (R(y,x) \land \exists y (R(x,y) \land ...)))
```

- Theorem: Compilation algorithm to FO ad-DNNF is complete for FO²
- Model counting for FO² in PTIME domain complexity

Main Negative Results

Domain complexity:

- There exists an FO formula Q s.t. symmetric FOMC(Q, n) is #P₁ hard
- There exists Q in FO³ s.t. FOMC(Q, n) is #P₁ hard
- There exists a conjunctive query Q s.t. symmetric WFOMC(Q, n) is #P₁ hard
- There exists a positive clause Q w.o. '=' s.t. symmetric WFOMC(Q, n) is #P₁ hard
- Therefore, no FO ad-DNNF can exist 🕾

Proof

Theorem. There exists an FO³ sentence \mathbb{Q} s.t. FOMC(\mathbb{Q} ,n) is #P₁-hard

Proof

- Step 1. Construct a Turing Machine U s.t.
 - U is in #P₁ and runs in linear time in n
 - U computes a #P₁ –hard function
- Step 2. Construct an FO³ sentence Q s.t. FOMC(Q,n) / n! = U(n)

[VdB; NIPS'11], [VdB et al.; KR'14], [Gribkoff, VdB, Suciu; UAI'15], [Beame, VdB, Gribkoff, Suciu; PODS'15], etc.

Other Queries and Transformations

- What if all ground atoms have different weights? Asymmetric WFOMC
- FO d-DNNF complete for all monotone FO CNFs that support efficient CT
- No clausal entailment
- No conditioning

Conclusions

- Very powerful already!
- We need to solve this!

THANKS

References

- Cards Example: Guy Van den Broeck. Towards High-Level Probabilistic Reasoning with Lifted Inference, In Proceedings of KRR, 2015.
- First-Order Knowledge Compilation:
 Guy Van den Broeck. Lifted Inference and
 Learning in Statistical Relational Models, PhD
 thesis, KU Leuven, 2013.
- Expressiveness:

 Paul Beame, Guy Van den Broeck, Eric Gribkoff,
 Dan Suciu. Symmetric Weighted First-Order
 Model Counting, In Proceedings of PODS, 2015.