The next circuits for a better life = é

«

Discriminative Bias for Learning
Probabilistic Sentential Decision Diagrams

e

\“‘"f_“—-‘"_ “""

N IR ]
A %) [l

By "y - \
Laura I. Galindez Olascoaga™, Wannes Meert *, Nimish Shah *,

Guy Van den Broeck™, Marian Verhelst *

N

.
a » o Wmami

RRRRRRRRRR



Outline

@ Motivation and objective

@ Background

@ Discriminative bias for learning PSDDs
@ Experimental results

@ Conclusions

m IDA2020 @ mic&Es



Motivation

Probabilistic inference has
proven to be well suited for
resource-constrained
embedded applications.

(Galindez et al. 2019)

Probabilistic circuits
successfully balance
efficiency vs. expressiveness
trade-offs while remaining
robust.
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Some of these models’
robustness (from
generative learning) is at
odds with discriminative
performance.




Obijective

Keep robustness provided by generative
learning strategies.

Improve discriminative performance by
exploiting knowledge encoding capabilities.
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Background: probabilistic inference

Given a probabilistic model m of the world

®m 0

\6/
(Y] P, 7 N

Answer probabilistic queriese

Evidence qu(m)=Prp, ( A4S -@-)
Conditional d2(m)=Pr, ( ““ Iﬂ ﬁ )
MAP  qs(m)=Argmaxy;oPro, ( £ -0 @ )
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Background: tractable probabilistic inference

A query q(m) is tractable iff exactly computing it runs in time O(poly(Jm|).

more tractable queries
Fully factorized
o= B |
Polytri

less expressive
efficient
N
more expressive
efficient

NADEs 5 BNs
NFs
'AES
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less tractable queries

There is an inherent trade-off between tractability and expressiveness

(From UAI 2019 tutorial on Tractable Probabilistic Models by Vergari, Di Mauro and Van den Broeck
and AAAI 2020 tutorial on Probabilistic Circuits by Vergari, Choi, Peharz and Van den Broeck)
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Background: probabilistic circuits

A probabilistic circuit is a computational graph that encodes a probability
distribution p(X).

more tractable queries {______ N
Fully factorized ' PSDDs |
Trees % T CNets | AoGs | ACs
Polytrees SPNs
T
g 2
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less tractable queries

(From UAI 2019 tutorial on Tractable Probabilistic Models by Vergari, Di Mauro and Van den Broeck
and AAAI 2020 tutorial on Probabilistic Circuits by Vergari, Choi, Peharz and Van den Broeck)
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Background: what is a PSDD?

@ PSDDs are probabilistic extensions to SDDs, which represent Boolean
functions as logical circuits (Kisa et al., 2014).

Bayesian Network PSDD

(®) @ =02
@

0.1if &
0.7 if ¢

1if & A~
0 if otherwise

Prie-|a) = {

Pr(ss| ) = {

(Example from Liang et al., 2017)
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Background: PSDDs’ properties

The left variable of the AND
gate is the prime (p)
and the right is the sub (s).

Edges of decision nodes are
annotated with a normalized
probability distribution.
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Background: PSDDs’ properties

Syntactic restrictions: See (Kisa et al., 2014).

1) Decomposability: inputs of PSDD
AND node must be disjoint.

For example at 1:
Prime variables X = {Rain}
Sub variables ¥ = {Sun, Rbow}

2) Determinism: only one of
the decision node’s inputs can

be true.
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Background: PSDDs’ properties

Decision nodes g encode the

distribution:
Decision node
Pry(XY) = ) 0P1yi COPT(Y) |
i 91=0.2%92=0.8
Pr(XY([pi]) = Pro (XIIpDPrs (YIlP) & ' * '
1 = Py, (X)Pr,(Y) P1 $1 b2 Sz

A logical sentence that defines
the support of node distribution
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Background: PSDDs’ properties

Decision nodes g encode the

distribution:
Decision node

Pry(XY) = Z 8 Prip; (X)Pr(Y)
: 91=0.2%92=0.8

For example at 1:
Prime variables X = {Rain}
Sub variables Y = {Sun, Rbow}
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Background: learning PSDDs

@ The LearnPSDD algorithm (Liang et al., 2017) learns the
PSDD structure incrementally from data.

Learn vtree from data Iteratively apply split

(Minimize mutual and clone operations
information)
1 Generate
candidate
operations
1.0
a Calculate
e
log-llk
Execute improvement -
best 1.0
_é,_ ﬁ operation
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Classification with PSDDs

@ Given a feature variable set F and a class variable C.
@ The classification task can be stated as a probabilistic query:

Pr(C|F) ~ Pr(F|C) - Pr(C)

LearnPSDD remains agnostic
to the classification task

With LearnPSDD
features might
never be
conditioned on
the class

\~_’¢'I —n—\
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Bayesian Network classifiers

@ Effects of explicitly conditioning F on C.

Pr(C|F) ~ Pr(F|C) - Pr(C)

(©)
With Bayesian
@ @ @ @ Network classifiers

With LearnPSDD
features might

© I‘ features are always never be
conditioned on the conditioned on
@@1@@ class. the class.
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Enforcing the discriminative bias: D-LearnPSDD

® Make sure that feature variables F can be conditioned
on the class variable C.

Minimize conditional
mutual information
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Enforcing the discriminative bias: D-LearnPSDD

® Make sure that feature variables F can be conditioned
on the class variable C.

Minimize conditional
mutual information

Initializing on a
fully factorized
distribution
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Enforcing the discriminative bias: D-LearnPSDD

® Make sure that feature variables F can be conditioned
on the class variable C.
o However, only setting the vtree is not enough.

Pr,(CF) = Pr,, (C|lc V ¢]) - Prsy (F|[c V —c])
= (Prm (Cl [C]) T Per (CI [ﬁc])) ) Prso (Fl [C v —'C])
1 (PI‘P1 (C=1)+ Prpz(c =0)) - Pr, (F)

1

A F still independent from C
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Enforcing the discriminative bias: D-LearnPSDD

® Make sure that feature variables F can be conditioned
on the class variable C.
o Set [root] = ([-c] A [so]) V ([c] A [s1])

IDA2020



Enforcing the discriminative bias: D-LearnPSDD

® Make sure that feature variables F can be conditioned
on the class variable C.
o Set [root] = ([-c] A [so]) V ([c] A [s1])

o LearnPSDD ensures that the base of the root node remains
unchanged.

Pr;(CF) =Pr_.(C)Pr,, (F) + Pr.(C)Pr; (F)
= Pr—c(Cl[d]) - Prgy (F|[c]) + Pre(C[d]) - Prs, (F|[c])

= Pr_o(C = 0) - Pr,, (F|C = 0) + Pre(C = 1) - Pr,, (F|C = 1)
?

24 m i Encodes a naive Bayes structure
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Experimental results

Dataset

D-LearnPSDD

LearnPSDD NB TANB LogReg

Accuracy |Size

Accuracy |Size| Accuracy [Size| Accuracy [Size| Accuracy

Australian
Breast
Chess
Cleve
Corral 6
Credit
Diabetes
German
Glass
Heart
Iris
Mofn
Pima
Vehicle
Waveform

15 UCI datasets

5-fold cross validation

Average accuracy over a range of model size
Model size is number of parameters
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Experimental results

A

Dataset D-LearnPSDD LearnPSDD NB TANB LogReg
Accuracy |Size| Accuracy [Size| Accuracy [Size| Accuracy [Size| Accuracy
Australian| 86.2 3.6 | 367 | 84.9 4+ 2.7 386 [ 85.1 +3.1 161 | 85.8+3.4|312|84.1+34
Breast 97.14+0.9 | 291 |1949+0.5]1491 |97.7+1.2(114(97.74+1.2219|96.5+ 1.6
Chess 973 £ 1.4 |2178| 94.9 1.6 |2186| 87.7+1.4 | 158 | 91.7 &+ 2.2 | 309 | 96.9 £ 0.7
Cleve 82.2+25 (292 81.94+3.2 (184 (84.9+3.3|102|79.9+2.2196|81.5+2.9
Corral 6 (99.4+1.4| 39 |98.1+2.8| 58 | 89.44+5.2| 26 |98.84+1.7| 45 | 86.3 6.7
 Credit | 85.6+3.1 |693|86.1+3.6|611|86.8+4.4|170|86.1+3.9(326[84.7+4.9
Diabetes ({8292 77.2 +3.3 | 144 |7743+2.56| 46 | /5.8 3.5 | 86 | 718.4 1+ 2.6
German. | 72.34+ 3.2 |1185]| 69.94+2.3 | 645 | 7T3.5+2.7 | 218 |74.54+1.9|429 | 74.4 £ 2.3
Glass GOSN | 7T2.44+6.2 | 321 | 70.0X=4.9 | 203 | 69.5 5.2 | 318 | 73.0 £ 5.7
Heart RN | 8.5 4+5.3 | 75 | 840438 | 38 |83.0%x5.1)| 70 | 84.0FL4.7
Iris 90.0+0.1 | 76 |94.0+3.7| 158 (94.7+1.8| 75 |94.7+ 1.8 131 |94.7 £+ 2.9
Mofn 98.9+0.9 (260 (97.1 24260 85.0+5.7| 42 [92.8+ 2.6 78 | 100.0+0
Pima DU | 1.7 +3.2 1110 | 7T7T.6X3.0| 46 | 76.3X+2.9| 86 | 77.7 £ 2.9
Vehicle | 95.0 1+ 1.7 [1186(93.9 +1.69|1560|86.3 +=2.00| 228 [ 93.0 0.8 [ 442 [ 94.5 +- 2.4
Waveform | 85.0 & 1.0 [3441| 78.7 &= 5.6 |2585| 80.7 1.9 | 657 | 83.1 &= 1.1 [1296(85.5 0.7

A .
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Accuracy [%]

Experimental results

@ D-LearnPSDD remains robust against missing features.

100~ '
¥ g Tt H *y
ML ~ 1 [
g IS | = I =19 A |
80 oF | * + *
— % D-LeamPSDD T ‘ JXof
70 |-|—+— LeamPSDD ***fﬁ
—¥—NB
60 -|—%— TANB
—&— LogReg
) | | | | | | | | | | |
Australian Breast Chess Cleve Corral Credit Diabetes German  Heart Mofn Pima Vehicle

Dataset
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Conclusions

@ We introduced a PSDD learning technique that improves
classification performance by introducing a discriminative bias.

@ Robustness is ensured by exploiting the generative learning
strategy.

@ The proposed technique outperforms purely generative
PSDDs in terms of classification accuracy and the other
baseline classifiers in terms of robustness.
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