

Discriminative Bias for Learning Probabilistic Sentential Decision Diagrams

Laura I. Galindez Olascoaga*, Wannes Meert *, Nimish Shah *, Guy Van den Broeck⁺, Marian Verhelst *

Outline

- Motivation and objective
- Background
- Discriminative bias for learning PSDDs
- Experimental results
- Conclusions

2

Motivation

	10

Probabilistic inference has proven to be well suited for resource-constrained embedded applications.

(Galindez et al. 2019)

Probabilistic circuits successfully balance efficiency vs. expressiveness trade-offs while remaining robust. Some of these models' robustness (from generative learning) is at odds with discriminative performance.

3

Keep robustness provided by generative learning strategies.

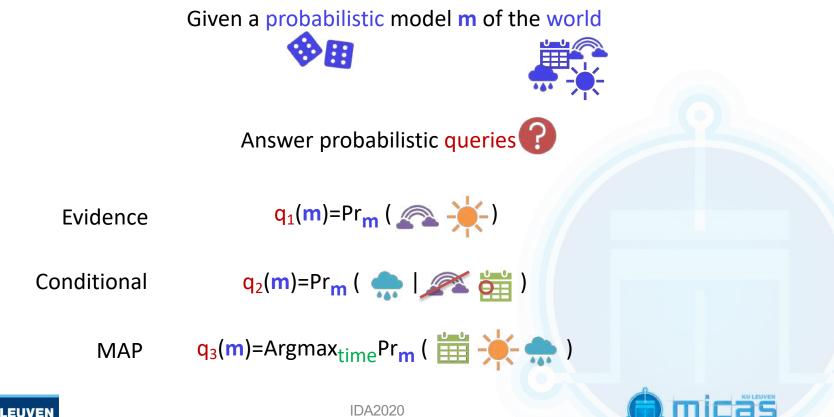
Improve discriminative performance by exploiting knowledge encoding capabilities.

Outline

- Motivation and objective
- Background
- Discriminative bias for learning PSDDs
- Experimental results
- Conclusions

5

Background: probabilistic inference

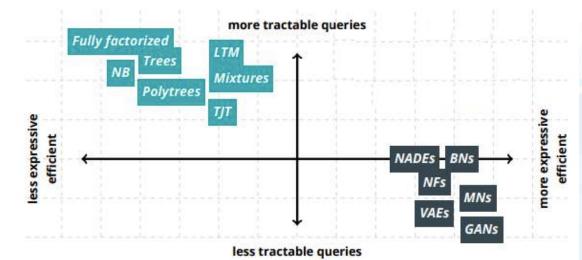


KU LEUVEN

IDA2020

Background: tractable probabilistic inference

A query q(m) is tractable iff exactly computing it runs in time O(poly(|m|).



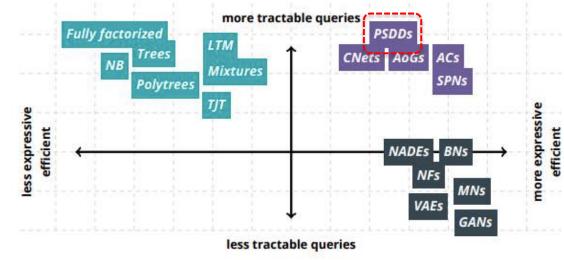
There is an inherent trade-off between tractability and expressiveness

(From UAI 2019 tutorial on Tractable Probabilistic Models by Vergari, Di Mauro and Van den Broeck and AAAI 2020 tutorial on Probabilistic Circuits by Vergari, Choi, Peharz and Van den Broeck)

IDA2020

Background: probabilistic circuits

A **probabilistic circuit** is a computational graph that encodes a probability distribution p(X).

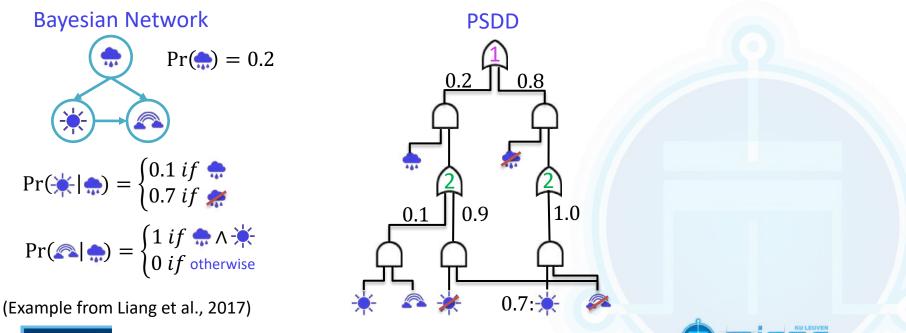


(From UAI 2019 tutorial on Tractable Probabilistic Models by Vergari, Di Mauro and Van den Broeck and AAAI 2020 tutorial on Probabilistic Circuits by Vergari, Choi, Peharz and Van den Broeck)

8

Background: what is a PSDD?

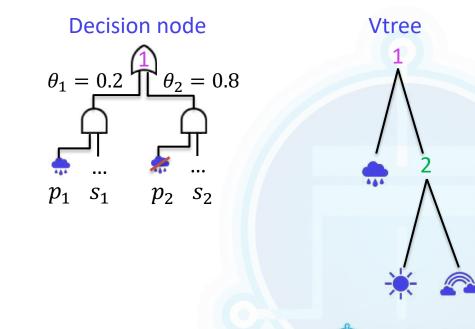
PSDDs are probabilistic extensions to SDDs, which represent Boolean functions as logical circuits (Kisa et al., 2014).



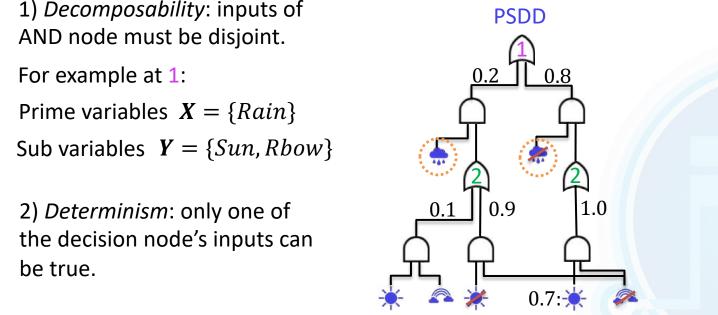
IDA2020

The left variable of the AND gate is the prime (*p*) and the right is the sub (*s*).

Edges of decision nodes are annotated with a normalized probability distribution.



Syntactic restrictions: See (Kisa et al., 2014).



Vtree

Decision node

 $\theta_2 = 0.8$

 $p_2 s_2$

 $\theta_1 = 0.2$

*S*₁

 p_1

Decision nodes *q* encode the distribution:

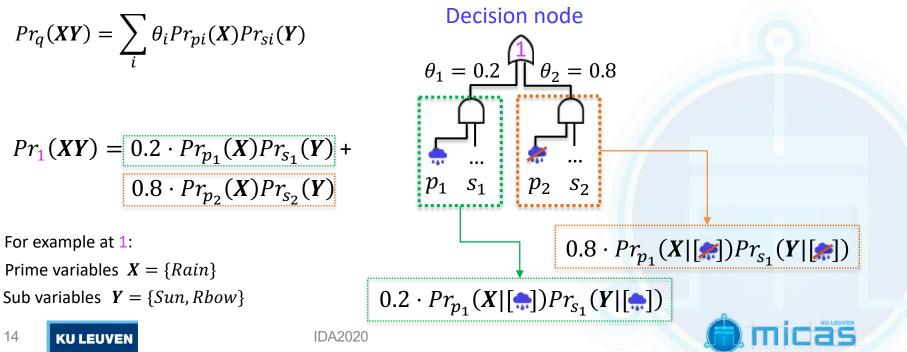
$$Pr_{q}(\mathbf{X}\mathbf{Y}) = \sum_{i} \theta_{i} Pr_{pi}(\mathbf{X}) Pr_{si}(\mathbf{Y})$$

$$Pr_{n}(\mathbf{X}\mathbf{Y}|[p_{i}]) = Pr_{p_{i}}(\mathbf{X}|[p_{i}]) Pr_{s_{i}}(\mathbf{Y}|[p_{i}])$$

$$= Pr_{p_{i}}(\mathbf{X}) Pr_{s_{i}}(\mathbf{Y})$$

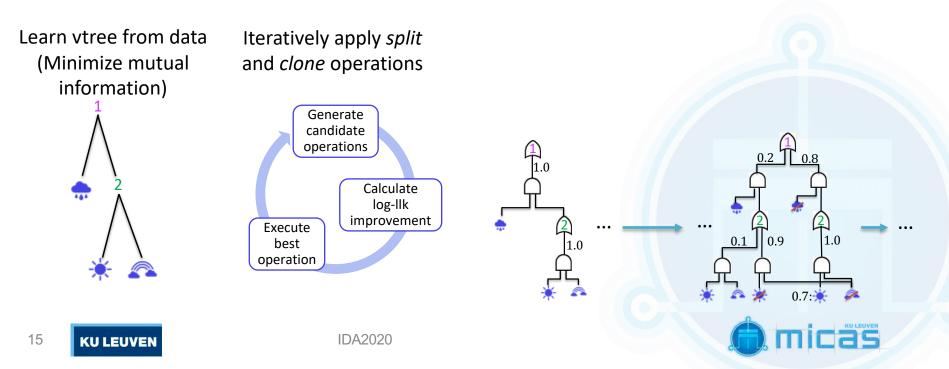
A logical sentence that defines the support of node distribution

Decision nodes *q* encode the distribution:



Background: learning PSDDs

The LearnPSDD algorithm (Liang et al., 2017) learns the PSDD structure incrementally from data.



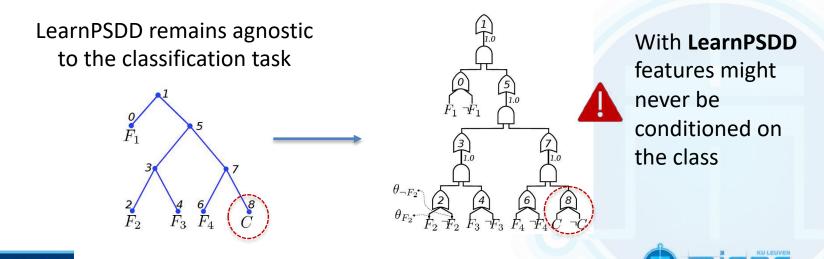
Outline

- Motivation and objective
- Background
- Discriminative bias for learning PSDDs
- Experimental results
- Conclusions

Classification with PSDDs

- Given a feature variable set F and a class variable C.
- The classification task can be stated as a probabilistic query:

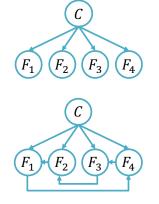
 $\Pr(C|F) \sim \Pr(F|C) \cdot \Pr(C)$



Bayesian Network classifiers

Effects of explicitly conditioning F on C.

 $\Pr(C|F) \sim \Pr(F|C) \cdot \Pr(C)$

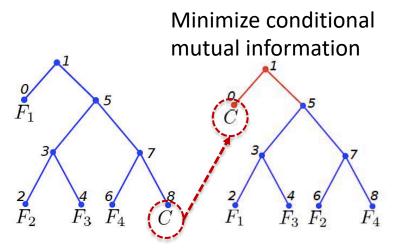


With Bayesian
Network classifiers
features are always conditioned on the class.



With LearnPSDD features might never be conditioned on the class.

Make sure that feature variables F can be conditioned on the class variable C.



Make sure that feature variables F can be conditioned on the class variable C. Initializing on a Minimize conditional fully factorized mutual information distribution P F $\dot{F}_1 \neg \dot{F}_1$ F_2 F_4 F_1 $\begin{array}{c} 4 & 6 \\ F_3 & F_2 \end{array}$ 8 F4 F_3 $\theta_{\neg F_2}$ $\theta_{\neg F_1}$

21

Make sure that feature variables F can be conditioned on the class variable C.

• However, only setting the vtree is not enough.

Make sure that feature variables F can be conditioned on the class variable C. • Set $[root] = ([\neg c] \land [s_0]) \lor ([c] \land [s_1])$ $\theta_{\neg \underline{C}}$ θ_C P F F_2 $\frac{6}{F_A}$ F_1 F_3 $F_{3} F_{2}$ $\theta_{\neg F_1|C}$ 8 6 4 6 $F_4 \neg F_4$ $F_3 \neg F_3$ $F_2 \neg F_2$ 23 IDA2020

- Make sure that feature variables F can be conditioned on the class variable C.
 - Set $[root] = ([\neg c] \land [s_0]) \lor ([c] \land [s_1])$
 - LearnPSDD ensures that the base of the root node remains unchanged.
- $\begin{aligned} \Pr_{q}(C\mathbf{F}) &= \Pr_{\neg c}(C)\Pr_{s_{0}}(\mathbf{F}) + \Pr_{c}(C)\Pr_{s_{1}}(\mathbf{F}) \\ &= \Pr_{\neg c}(C|[\neg c]) \cdot \Pr_{s_{0}}(\mathbf{F}|[\neg c]) + \Pr_{c}(C|[c]) \cdot \Pr_{s_{1}}(\mathbf{F}|[c]) \\ &= \Pr_{\neg c}(C=0) \cdot \Pr_{s_{0}}(\mathbf{F}|C=0) + \Pr_{c}(C=1) \cdot \Pr_{s_{1}}(\mathbf{F}|C=1) \end{aligned}$

Encodes a naive Bayes structure

Outline

- Motivation and objective
- Background
- Discriminative bias for learning PSDDs
- Experimental results
- Conclusions

Experimental results

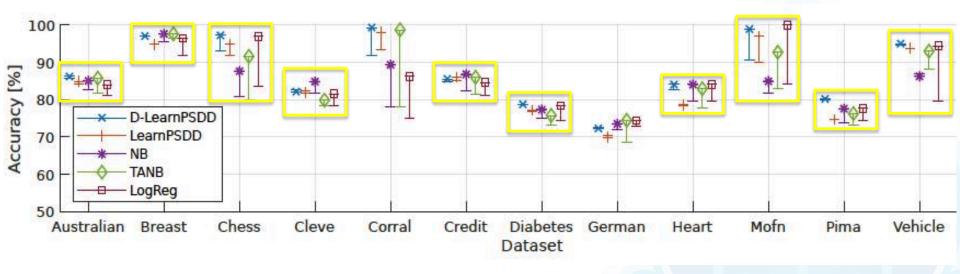
Dataset -	D-LearnPSDD		LearnPSDD		NB		TANB		LogReg	
	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy	
Australian										
Breast										
Chess										
Cleve		-	15 UCI da	ataset	s					
Corral 6	 5-fold cross validation 									
Credit										
Diabetes	 Average accuracy over a range of model size Model size is number of parameters 									
German										
Glass					F					
Heart										
Iris										
Mofn										
Pima										
Vehicle										
Waveform										
							-		KULEUVEN	

Experimental results

Dataset	D-LearnPSDD		LearnPSDD		NB		TANB		LogReg
Dataset	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy	Size	Accuracy
Australian	86.2 ± 3.6	367	84.9 ± 2.7	386	85.1 ± 3.1	161	85.8 ± 3.4	312	84.1 ± 3.4
Breast	97.1 ± 0.9	291	94.9 ± 0.5	491	97.7 ± 1.2	114	97.7 ± 1.2	219	96.5 ± 1.6
Chess	$\textbf{97.3} \pm \textbf{1.4}$	2178	94.9 ± 1.6	2186	87.7 ± 1.4	158	91.7 ± 2.2	309	96.9 ± 0.7
Cleve	82.2 ± 2.5	292	81.9 ± 3.2	184	84.9 ± 3.3	102	79.9 ± 2.2	196	81.5 ± 2.9
Corral 6	99.4 ± 1.4	39	98.1 ± 2.8	58	89.4 ± 5.2	26	98.8 ± 1.7	45	86.3 ± 6.7
Credit	85.6 ± 3.1	693	86.1 ± 3.6	611	$\textbf{86.8} \pm \textbf{4.4}$	170	86.1 ± 3.9	326	84.7 ± 4.9
Diabetes	78.7 ± 2.9	124	77.2 ± 3.3	144	77.4 ± 2.56	46	75.8 ± 3.5	86	78.4 ± 2.6
German	72.3 ± 3.2	1185	69.9 ± 2.3	645	73.5 ± 2.7	218	74.5 ± 1.9	429	74.4 ± 2.3
Glass	79.1 ± 1.9	214	72.4 ± 6.2	321	70.0 ± 4.9	203	69.5 ± 5.2	318	73.0 ± 5.7
Heart	84.1 ± 4.3	51	78.5 ± 5.3	75	84.0 ± 3.8	38	83.0 ± 5.1	70	84.0 ± 4.7
Iris	90.0 ± 0.1	76	94.0 ± 3.7	158	94.7 ± 1.8	75	94.7 ± 1.8	131	94.7 ± 2.9
Mofn	98.9 ± 0.9	260	97.1 ± 2.4	260	85.0 ± 5.7	42	92.8 ± 2.6	78	100.0 ± 0
Pima	80.2 ± 0.3	108	74.7 ± 3.2	110	77.6 ± 3.0	46	76.3 ± 2.9	86	77.7 ± 2.9
Vehicle	95.0 ± 1.7	1186	93.9 ± 1.69	1560	86.3 ± 2.00	228	93.0 ± 0.8	442	94.5 ± 2.4
Waveform	85.0 ± 1.0	3441	78.7 ± 5.6	2585	80.7 ± 1.9	657	83.1 ± 1.1	1296	85.5 ± 0.7

Experimental results

D-LearnPSDD remains robust against missing features.



Outline

- Motivation and objective
- Background
- Discriminative bias for learning PSDDs
- Experimental results
- Conclusions

- We introduced a PSDD learning technique that improves classification performance by introducing a discriminative bias.
- Robustness is ensured by exploiting the generative learning strategy.
- The proposed technique outperforms purely generative PSDDs in terms of classification accuracy and the other baseline classifiers in terms of robustness.

References

- Laura I. Galindez Olascoaga, Wannes Meert, Nimish Shah, Marian Verhelst and Guy Van den Broeck. <u>Towards Hardware-Aware Tractable Learning of Probabilistic</u> Models, In Advances in Neural Information Processing Systems 32 (NeurIPS), 2019.
- YooJung Choi, Antonio Vergari, Robert Peharz and Guy Van den Broeck. <u>Probabilistic</u> <u>Circuits: Representation and Inference</u>, AAAI tutorial, 2020.
- Yitao Liang, Jessa Bekker and Guy Van den Broeck. <u>Learning the Structure of Probabilistic</u> <u>Sentential Decision Diagrams</u>, In Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI), 2017.
- Doga Kisa, Guy Van den Broeck, Arthur Choi and Adnan Darwiche. Probabilistic sentential decision diagrams, In Proceedings of the 14th International Conference on Principles of Knowledge Representation and Reasoning (KR), 2014.

Thank you!

Contact:

laura.galindez@esat.kuleuven.be

