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Motivation
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Probabilistic inference has 
proven to be well suited for 

resource-constrained 
embedded applications. 

(Galindez et al. 2019)

Probabilistic circuits 
successfully balance 

efficiency vs. expressiveness
trade-offs while remaining 

robust.

Some of these models’ 
robustness (from 

generative learning) is at 
odds with discriminative 

performance.



Objective
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Keep robustness provided by generative 
learning strategies.

Improve discriminative performance by 
exploiting knowledge encoding capabilities.
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Background: probabilistic inference
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Given a probabilistic model m of the world

Answer probabilistic queries

q3(m)=ArgmaxtimePrm (                         )  

q2(m)=Prm (         |                  )  

q1(m)=Prm (                  )  Evidence

Conditional

MAP



Background: tractable probabilistic inference
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A query q(m) is tractable iff exactly computing it runs in time O(poly(|m|).

There is an inherent trade-off between tractability and expressiveness
(From UAI 2019 tutorial on Tractable Probabilistic Models by Vergari, Di Mauro and Van den Broeck

and AAAI 2020 tutorial on Probabilistic Circuits by Vergari, Choi, Peharz and Van den Broeck)



Background: probabilistic circuits
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A probabilistic circuit is a computational graph that encodes a probability 
distribution p(X).

(From UAI 2019 tutorial on Tractable Probabilistic Models by Vergari, Di Mauro and Van den Broeck
and AAAI 2020 tutorial on Probabilistic Circuits by Vergari, Choi, Peharz and Van den Broeck)



PSDDs are probabilistic extensions to SDDs, which represent Boolean 
functions as logical circuits (Kisa et al., 2014).

Background: what is a PSDD?

IDA20209

otherwise

(Example from Liang et al., 2017) 
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Background: PSDDs’ properties
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𝜃! = 0.2 𝜃" = 0.8

Decision node

… …

The left variable of the AND 
gate is the prime (p) 
and the right is the sub (s).

Edges of decision nodes are 
annotated with a normalized 
probability distribution.

𝑝! 𝑠! 𝑝" 𝑠"

1

2

Vtree
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Background: PSDDs’ properties
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0.7:

1) Decomposability: inputs of 
AND node must be disjoint.

Syntactic restrictions:

2) Determinism: only one of 
the decision node’s inputs can 
be true.

Prime variables  𝑿 = {𝑅𝑎𝑖𝑛}
Sub variables

For example at 1:

𝒀 = {𝑆𝑢𝑛, 𝑅𝑏𝑜𝑤}

See (Kisa et al., 2014).



Background: PSDDs’ properties
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𝑃𝑟# 𝑿𝒀|[𝑝$] = 𝑃𝑟%!(𝑿|[𝑝$])𝑃𝑟&!(𝒀|[𝑝$])

= 𝑃𝑟%! (𝑿)𝑃𝑟&!(𝒀)

𝑃𝑟' 𝑿𝒀 =;
$

𝜃$𝑃𝑟%$(𝑿)𝑃𝑟&$(𝒀)

Decision nodes q encode the 
distribution: 

𝜃! = 0.2 𝜃" = 0.8

Decision node

… …
𝑝! 𝑠! 𝑝" 𝑠"

1

A logical sentence that defines 
the support of node distribution



Background: PSDDs’ properties
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Decision nodes q encode the 
distribution: 

Prime variables  ! = {$%&'}
Sub variables

For example at 1:

) = {*+', $-./}

𝑃𝑟! 𝑿𝒀 = 0.2 ⋅ 𝑃𝑟#! 𝑿 𝑃𝑟$! 𝒀 +

0.8 ⋅ 𝑃𝑟#" 𝑿 𝑃𝑟$" 𝒀

𝜃! = 0.2 𝜃" = 0.8

Decision node

… …
𝑝! 𝑠! 𝑝" 𝑠"
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𝑃𝑟' 𝑿𝒀 =;
$

𝜃$𝑃𝑟%$(𝑿)𝑃𝑟&$(𝒀)



Background: learning PSDDs
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The LearnPSDD algorithm (Liang et al., 2017) learns the 
PSDD structure incrementally from data.

1

2

Learn vtree from data
(Minimize mutual 

information) 
Generate 
candidate 
operations

Calculate     
log-llk

improvementExecute 
best 

operation

Iteratively apply split 
and clone operations
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Classification with PSDDs
Given a feature variable set 𝑭 and a class variable 𝐶.
The classification task can be stated as a probabilistic query:

IDA202017

Pr 𝐶 𝑭 ~Pr 𝑭 𝐶 ⋅ Pr(𝐶)

LearnPSDD remains agnostic 
to the classification task

With LearnPSDD
features might 
never be 
conditioned on 
the class

Pr 𝐶 𝑭 ~Pr 𝑭 𝐶 ⋅ Pr(𝐶)



Bayesian Network classifiers
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Pr 𝐶 𝑭 ~Pr 𝑭 𝐶 ⋅ Pr(𝐶)
!

"! "" "# "$

!

"! "" "# "$

With Bayesian 
Network classifiers
features are always 
conditioned on the 
class.

With LearnPSDD
features might 
never be 
conditioned on 
the class.

Effects of explicitly conditioning 𝑭 on 𝐶.



Enforcing the discriminative bias: D-LearnPSDD
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Make sure that feature variables 𝑭 can be conditioned 
on the class variable 𝐶.  

Minimize conditional 
mutual information



Enforcing the discriminative bias: D-LearnPSDD
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Make sure that feature variables 𝑭 can be conditioned 
on the class variable 𝐶.  

Minimize conditional 
mutual information

Initializing on a 
fully factorized 

distribution
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Make sure that feature variables 𝑭 can be conditioned 
on the class variable 𝐶.
o However, only setting the vtree is not enough. 

𝑭 still independent from 𝐶

Enforcing the discriminative bias: D-LearnPSDD
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Make sure that feature variables 𝑭 can be conditioned 
on the class variable 𝐶.
o Set 

Enforcing the discriminative bias: D-LearnPSDD
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Encodes a naive Bayes structure

Make sure that feature variables 𝑭 can be conditioned 
on the class variable 𝐶.
o Set 
o LearnPSDD ensures that the base of the root node remains 

unchanged.

Enforcing the discriminative bias: D-LearnPSDD
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Experimental results
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- 15 UCI datasets
- 5-fold cross validation
- Average accuracy over a range of model size
- Model size is number of parameters



Experimental results
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Experimental results
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D-LearnPSDD remains robust against missing features.
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Conclusions

We introduced a PSDD learning technique that improves 
classification performance by introducing a discriminative bias.
Robustness is ensured by exploiting the generative learning 
strategy.
The proposed technique outperforms purely generative 
PSDDs in terms of classification accuracy and the other 
baseline classifiers in terms of robustness.
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