A Semantic Loss Function for Deep Learning with Symbolic Knowledge

Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, Guy Van den Broeck
Goal: Constrain neural network outputs using logic
Multiclass Classification

\[p_1 \quad p_2 \quad p_3 \]

0.8 0.3 0.9
Multiclass Classification

Want exactly one class:

\[
\begin{align*}
\neg x_1 \neg x_2 \neg x_3 \\
\lor \\
\neg x_1 x_2 \neg x_3 \\
\lor \\
\neg x_1 \neg x_2 x_3
\end{align*}
\]
Multiclass Classification

Want exactly one class:

\[
\begin{aligned}
\neg x_1, \neg x_2, \neg x_3 \\
\vee \\
\neg x_1 x_2, \neg x_3 \\
\vee \\
\neg x_1, \neg x_2 x_3
\end{aligned}
\]

No information gained!
Why is mixing so difficult?

Deep Learning

- Continuous
- Smooth
- Differentiable

Logic

\[P \lor L \]
\[A \Rightarrow P \]
\[K \Rightarrow (P \lor L) \]

- Discrete
- Symbolic
- Strong semantics
Multiclass Classification

Want exactly one class:

\[\begin{align*}
\neg x_1 \neg x_2 \neg x_3 \\
\vee \\
\neg x_1 x_2 \neg x_3 \\
\vee \\
\neg x_1 \neg x_2 x_3
\end{align*}\]

Probability constraint is satisfied
Use a **probabilistic** interpretation!
Multiclass Classification

Want exactly one class:

$$\begin{align*}
&x_1 \neg x_2 \neg x_3 \\
&\lor \\
&\neg x_1 x_2 \neg x_3 \\
&\lor \\
&\neg x_1 \neg x_2 x_3
\end{align*}$$

Probability constraint is satisfied

$$
\begin{align*}
x_1(1 - x_2)(1 - x_3) \\
+(1 - x_1)x_2(1 - x_3) \\
+(1 - x_1)(1 - x_2)x_3 \\
= 0.188
\end{align*}
$$
Semantic Loss

• Continuous, smooth, easily differentiable function
• Represents how close outputs are to satisfying the constraint
• Axiomatically respects semantics of logic, maintains precise meaning – independent of syntax
How do we compute semantic loss?
Logical Circuits

- In general: #P-hard
- Linear in size of circuit

$L(\alpha, p) = L(\alpha, p) = -\log(\ldots)$
Supervised Learning

- Predict shortest paths
- Add semantic loss representing paths

<table>
<thead>
<tr>
<th></th>
<th>Coherent</th>
<th>Incoherent</th>
<th>Constraint</th>
</tr>
</thead>
<tbody>
<tr>
<td>5-layer MLP</td>
<td>5.62</td>
<td>85.91</td>
<td>6.99</td>
</tr>
<tr>
<td>Semantic loss</td>
<td>28.51</td>
<td>83.14</td>
<td>69.89</td>
</tr>
</tbody>
</table>

- Is output the true shortest path?
- Does output have true edges?
- Is output a path?
Semi-Supervised Learning

• Unlabeled data must have some label
Semi-Supervised Learning

- Unlabeled data must have some label

- Exactly-one constraint increases confidence
Table 2: FASHION. Test accuracy comparison between MLP with semantic loss and ladder nets.

<table>
<thead>
<tr>
<th>Accuracy % with # of used labels</th>
<th>100</th>
<th>500</th>
<th>1000</th>
<th>ALL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ladder Net (Rasmus et al., 2015)</td>
<td>81.46 (±0.64)</td>
<td>85.18 (±0.27)</td>
<td>86.48 (±0.15)</td>
<td>90.46</td>
</tr>
<tr>
<td>Baseline: MLP, Gaussian Noise</td>
<td>69.45 (±2.03)</td>
<td>78.12 (±1.41)</td>
<td>80.94 (±0.84)</td>
<td>89.87</td>
</tr>
<tr>
<td>MLP with Semantic Loss</td>
<td>86.74 (±0.71)</td>
<td>89.49 (±0.24)</td>
<td>89.67 (±0.09)</td>
<td>89.81</td>
</tr>
</tbody>
</table>
Main Takeaway

• Deep learning and logic can be combined by using a probabilistic approach
• Maintain precise meaning while fitting into the deep learning framework
Thanks!