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AoGs PDGs NBs Fully factorized sd-DNNF PSDDs

Trees LTMs DNNFs OBDDs CNets SPNs NADEs

Thin Junction Trees NNF FBDDs BDDs ACs VAEs

Polytrees d-NNFs ADDs SDDs TACs GANs NFs

Mixtures XADDs XSDDs MNs BNs FGs

Expressivemodels without compromises

5/89



Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models
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Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable models

Building circuits
learning them from data and compiling other models

Applications
what are circuits useful for

6/89



Tractable Probabilistic Circuits @ ICLP?

Logical roots of probabilistic circuits

Probabilistic circuits bridge between logic and deep learning

Bring back world models!

Powerful general reasoning tool
⇒ for example in probabilistic logic programming

Elegant knowledge representation formalism

7/89



Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

pinterest.com/pin/190417890473268205/
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

q2: Which day is most likely to have a traffic jam on my
route to work?

⇒ fitting a predictive model!
⇒ answering probabilistic queries on a probabilistic

model of the worldm

q1(m) = ? q2(m) = ? pinterest.com/pin/190417890473268205/

9/89

pinterest.com/pin/190417890473268205/


Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamHerzl = 1)
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Herzl Str.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamHerzl = 1)

⇒ marginals
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStr i)
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to work?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

pinterest.com/pin/190417890473268205/
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈ M
exactly computing q(m) runs in timeO(poly(|q| · |m|)).

⇒ often poly will in fact be linear!

Note: ifM andQ are compact in the number of random variablesX,
that is, |m|, |q| ∈ O(poly(|X|)), then query time isO(poly(|X|)).
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What about approximate inference?

Why approximate when we can do exact?
⇒ and do we lose something in terms of expressiveness?

Approximations can be intractable as well [Dagum et al. 1993; Roth 1996]

⇒ But sometimes approximate inference comes with guarantees

Approximate inference by exact inference in approximate model
[Dechter et al. 2002; Choi et al. 2010; Lowd et al. 2010; Sontag et al. 2011; Friedman et al. 2018]

Approximate inference (even with guarantees) can mislead learners
[Kulesza et al. 2007] ⇒ Chaining approximations is flying with a blindfold on
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Stay Tuned For …

Next:

1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified framework for
tractable probabilistic modeling

12/89



Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?
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Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day,Time, JamHerzl, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})
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Complete evidence queries (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

X = {Day,Time, JamHerzl, JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

pinterest.com/pin/190417890473268205/
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Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 14/89



Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 15/89



Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 16/89



Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “broken”

[Alemi et al. 2017; Dai et al. 2019]
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Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5
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PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

X1

X2

X3

X4

X5
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PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

Z =
∫ ∏

c ϕc(Xc)dX

⇒ EVI queries are intractable!
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PGMs: MNs and BNs

Markov Networks (MNs)

p(X) = 1
Z

∏
c ϕc(Xc)

Z =
∫ ∏

c ϕc(Xc)dX

⇒ EVI queries are intractable!

Bayesian Networks (BNs)

p(X) =
∏

i p(Xi | pa(Xi))

⇒ EVI queries are tractable!

X1

X2

X3

X4

X5

X1

X2

X3

X4

X5
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?
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Marginal queries (MAR)
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Herzl Str.?

q1(m) = pm(Day = Mon, JamHerzl = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X

H = X \ E
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20/89

pinterest.com/pin/190417890473268205/


Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

pinterest.com/pin/190417890473268205/
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Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(JamHerzl = 1 | Day = Mon)
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Conditional queries (CON)

q4: What is the probability that there is a traffic jam on
Herzl Str. given that today is a Monday?

q4(m) = pm(JamHerzl = 1 | Day = Mon)

If you can answer MAR queries,
then you can also do conditional queries (CON):

pm(Q | E) = pm(Q,E)

pm(E)

pinterest.com/pin/190417890473268205/
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Complexity of MAR on PGMs

Exact complexity: Computing MAR and COND is #P-complete [Cooper 1990; Roth 1996].

Approximation complexity: Computing MAR and COND approximately within a relative
error of 2n

1−ϵ
for any fixed ϵ is NP-hard [Dagum et al. 1993; Roth 1996].

Treewidth: Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with treewidthw
take timeO(|X| · 2w), which is linear for fixed widthw [Dechter 1998; Koller et al. 2009].

⇒ what about bounding the treewidth by design?
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Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

23/89



Low-treewidth PGMs: trees

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 24/89



What do we lose?

Expressiveness: Ability to compactly represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 25/89



Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1 ) · p1(X|Z = 1 )

+ p(Z = 2 ) · p2(X|Z = 2 )

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

26/89



Expressiveness and efficiency

Expressiveness: Ability to compactly represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) compares model sizes in terms of their ability to
compactly represent functions

⇒ but how many components do they need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 27/89



Mixture models
Expressive efficiency

⇒ deeper mixtures would be efficient compared to shallow ones 28/89



Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X
pinterest.com/pin/190417890473268205/
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e) pinterest.com/pin/190417890473268205/

29/89

pinterest.com/pin/190417890473268205/


Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

pinterest.com/pin/190417890473268205/
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]

pinterest.com/pin/190417890473268205/

30/89

pinterest.com/pin/190417890473268205/


Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 31/89
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

⇒ counts + group comparison

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 31/89
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to work?

q7: What is the probability of seeing more traffic jams
in Jaffa than Marina?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019a]

pinterest.com/pin/190417890473268205/

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 31/89
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

32/89
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less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Expressive models are not very tractable…
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GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures
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less tractable queries

BNs

NFs

NADEs

MNs
VAEs

GANs

Fully factorized

NB
Trees

Polytrees
TJT

LTM

Mixtures

X

probabilistic circuits are at the “sweet spot”
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Probabilistic Circuits



Stay Tuned For …

Next:

1. What are the building blocks of tractable models?
⇒ a computational graph forming a probabilistic circuit

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How are probabilistic circuits related to the alphabet soup of models?

38/89



Base Case: Univariate Distributions

x

X

pX(x)

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

39/89
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X

pX(x)

Generally, univariate distributions are tractable for:

EVI: output p(Xi) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

⇒ often 100% probability for one value of a categorical random variable
⇒ for example,X or ¬X for Boolean random variable
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Base Case: Univariate Distributions

.74

X

.33

Generally, univariate distributions are tractable for:
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Factorizations are products
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix
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Divide and conquer complexity
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X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix
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Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)
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Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)
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Mixtures are sums

Also mixture models can be treated as a simple computational unit over distributions

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

With mixtures, we increase expressiveness
⇒ by stacking them we increase expressive efficiency
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability
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How do we ensure tractability?
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Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 46/89



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 47/89



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

48/89



Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x,y) = p(x)p(y), (decomposability):

∫ ∫
p(x,y)dxdy =

∫ ∫
p(x)p(y)dxdy =

=

∫
p(x)dx

∫
p(y)dy

⇒ larger integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAR/CON

Smoothness and decomposability enable tractable MAR/CON queries

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 output Zi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

.61

1.0

.83

1.0 .58 1.0 .77
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Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit 49/89



Tractable MAP

The addition of determinism enables tractable MAP queries!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAP

The addition of determinism enables tractable MAP queries!

If p(q, e) = p(qx, ex,qy, ey)
= p(qx, ex)p(qy, ey) (decomposable product node):

argmax
q

p(q | e) = argmax
q

p(q, e)

= argmax
qx,qy

p(qx, ex,qy, ey)

= argmax
qx

p(qx, ex), argmax
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAP

The addition of determinism enables tractable MAP queries!

If p(q, e) =
∑

i wipi(q, e) = wcpc(q, e),
(deterministic sum node):

argmax
q

p(q, e) = argmax
q

∑
i

wipi(q, e)

= argmax
q

max
i

wipi(q, e)

= max
i

argmax
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAP

The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Evaluating the circuit twice:
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In practice:

1. turn sum into max nodes

2. evaluate p(e) bottom-up

3. retrieve max activations top-down

4. compute MAP queries at leaves

× ×
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max max
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The addition of determinism enables tractable MAP queries!

Evaluating the circuit twice:
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3. retrieve max activations top-down

4. compute MAP queries at leaves

× ×

× ×× ×

X1

X2

0

1
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Approximate MAP

If the probabilistic circuit is non-deterministic, MAP is intractable:
⇒ e.g. with latent variables Z

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸= argmax
q

max
z

p(q, z, e)

However, same two steps algorithm, still used as an approximation to MAP [Liu et al. 2013;

Peharz et al. 2016]
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
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Structured decomposability enables tractable …
Entropy of probabilistic circuit [Liang et al. 2017]

Symmetric and group queries (exactly-k, odd-number, more, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [ibid.]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019b]
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Stay Tuned For …

Next:

1. How probabilistic circuits are related to logical ones?
⇒ a historical perspective

2. How probabilistic circuits in the literature relate and differ?
⇒ SPNs, ACs, CNets, PSDDs

3. How classical tractable models can be turned in a circuit?
⇒ Compiling low-treewidth PGMs

After: How do I build my own probabilistic circuit?
54/89



Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)

analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)

⇒ Algebraic model counting [Kimmig et al. 2017], Semi-ring
programming [Belle et al. 2016]

Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
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Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/DNFs
[Darwiche et al. 2002]

O/BDDs
[Bryant 1986]

SDDs
[Darwiche 2011]

Logical circuits are compact representations for boolean functions…
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Logical circuits
structural properties

…and as probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche et al., “A knowledge compilation map”, 2002 57/89



Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable query classes

Darwiche et al., “A knowledge compilation map”, 2002 58/89



Logical circuits
connection to probabilistic circuits through WMC

A task called weighted model counting (WMC)

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

Two decades worth of connections:
1. Encode probabilistic model as WMC (add variable placeholders for parameters)
2. Compile∆ into a d-DNNF (or OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Depending on the WMC encoding even tractable MAP

End result equivalent to probabilistic circuit: efficiently replace parameter variables
in logical circuit by edge parameters in probabilistic circuit
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From trees to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1
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From trees to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…
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From trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)
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From trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)
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From trees to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)

60/89



From trees to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)
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From trees to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)
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From trees to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)

60/89



Low-treewidh PGMs

Tree, polytrees and
thin junction trees
can be turned into

decomposable

smooth

deterministic

probabilistic circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B
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Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges

⇒ Also see related AND/OR search spaces [Dechter et al. 2007]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 62/89



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]
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Cutset Networks (CNets)

A CNet [Rahman et al. 2014] is a weighted model-trees [Dechter et al. 2007] whose leaves are
tree Bayesian networks

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

⇒ they can be represented as probabilistic circuits
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CNets as probabilistic circuits

Every decision node in the CNet can be represented as a deterministic, smooth sum node

X1

M
′
X\1

M
′′
X\1

C1

C2 C3

M
′
X\1

M
′′
X\1

w1
0 w1

1 = × ×

w1
0 w1

1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

and we can recurse on each child node until a BN tree is reached
⇒ compilable into a deterministic, smooth and decomposable circuit!
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CNets as probabilistic circuits

CNets are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

w1
0 w1

1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

M
′
X\1,2

λX1=0

M
′
X\1,3

λX1=1

⇒ EVI can be computed inO(|X|)
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Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014a] are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 67/89
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tractability vs expressive efficiency
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Probabilistic deep learning using random sum-product networks”, 2018 70/89



How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81
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Building circuits



Read more in online slides about …

Building Circuits:

1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

3. How to compile other models to circuits?
⇒ PGM compilation, probabilistic databases, probabilistic programming

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf
73/89
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Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
(2) outputs a probabilistic model that is tractable for queriesQ.
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Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
⇒ Guarantees learned model has sizeO(poly(|D|))

⇒ Guarantees learned model has sizeO(poly(|X|))

(2) outputs a probabilistic model that is tractable for queriesQ.
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Tractable Learning

A learner L is a tractable learner for a class of queriesQ iff

(1) for any datasetD, learner L(D) runs in timeO(poly(|D|)), and
⇒ Guarantees learned model has sizeO(poly(|D|))

⇒ Guarantees learned model has sizeO(poly(|X|))

(2) outputs a probabilistic model that is tractable for queriesQ.

⇒ Guarantees efficient querying forQ in timeO(poly(|X|))

74/89



Applications



Read more in online slides about …

Applications:

1. what have been probabilistic circuits used for?
⇒ computer vision, sop, speech, planning, …

2. what are the current trends in tractable learning?
⇒ hybrid models, probabilistic programming, …

3. what are the current challenges?
⇒ benchmarks, scaling, reasoning

See: http://starai.cs.ucla.edu/slides/TPMTutorialUAI19.pdf

76/89
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Probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 77/89
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NB
Trees

Polytrees
TJT
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takeaway #2: you can be both tractable and expressive
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×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning
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Tractable Probabilistic Circuits @ ICLP?

Logical roots of probabilistic circuits

Probabilistic circuits bridge between logic and deep learning

Bring back world models!

Powerful general reasoning tool
⇒ for example in probabilistic logic programming

Elegant knowledge representation formalism
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