

From Probabilistic Circuits to Probabilistic Programs and Back

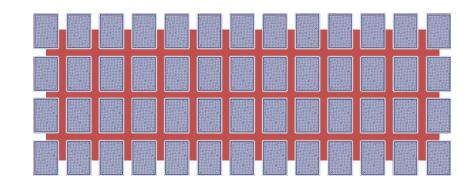
Guy Van den Broeck

ICAART - Feb 6, 2021

Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

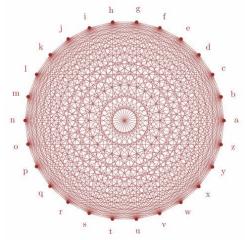


Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

3.14 Smokes(x) \land Friends(x,y) \Rightarrow Smokes(y)



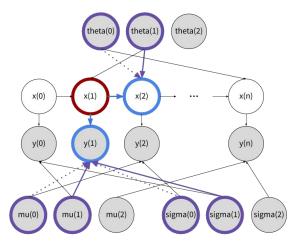
Trying to be provocative

Probabilistic graphical models is how we do probabilistic AI!

Graphical models of variable-level (in)dependence are a broken abstraction.

```
Bean Machine

\mu_k \sim \text{Normal}(\alpha, \beta)
\sigma_k \sim \text{Gamma}(\nu, \rho)
\theta_k \sim \text{Dirichlet}(\kappa)
x_i \sim \begin{cases} \text{Categorical}(init) & \text{if } i = 0 \\ \text{Categorical}(\theta_{x_{i-1}}) & \text{if } i > 0 \end{cases}
y_i \sim \text{Normal}(\mu_{x_i}, \sigma_{x_i})
```



Computational Abstractions

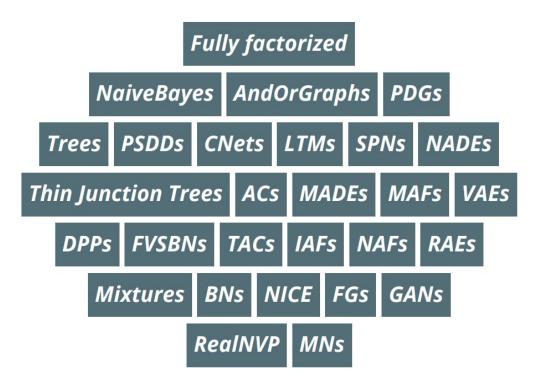
Let us think of probability distributions as objects that are computed.

Abstraction = Structure of Computation

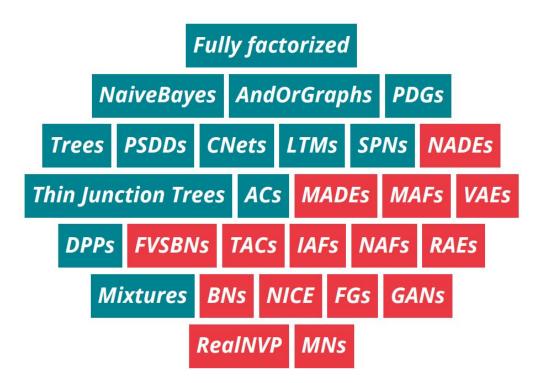
Two examples:

- 1. Probabilistic Circuits
- 2. Probabilistic Programs

Probabilistic Circuits

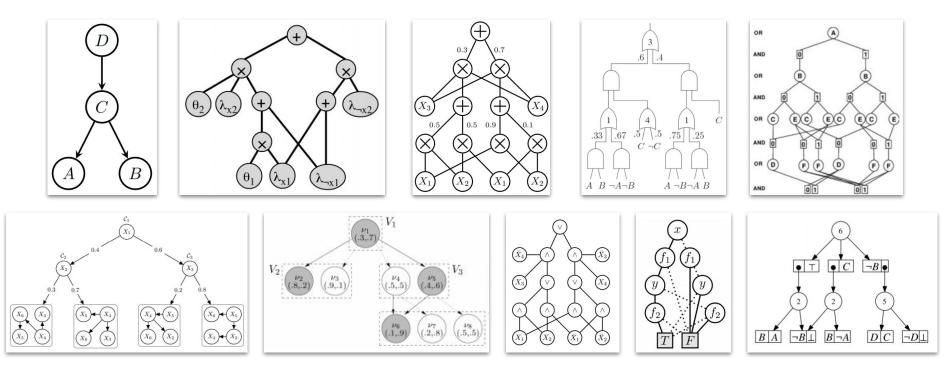


The Alphabet Soup of probabilistic models

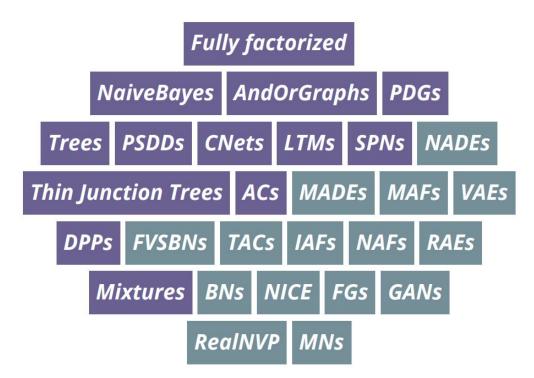


Intractable and tractable models

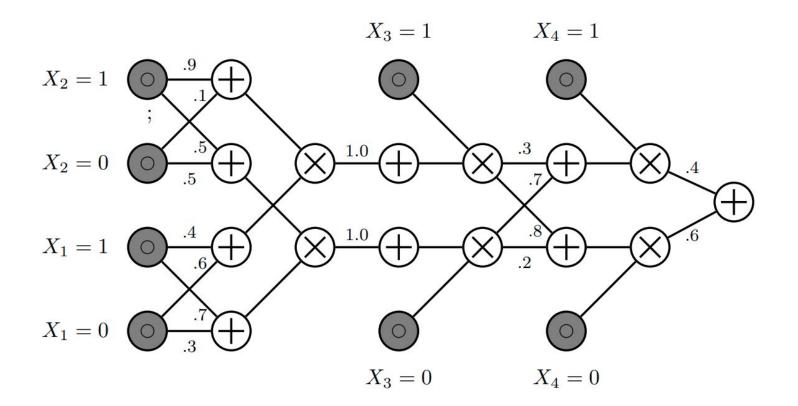
Tractable Probabilistic Models



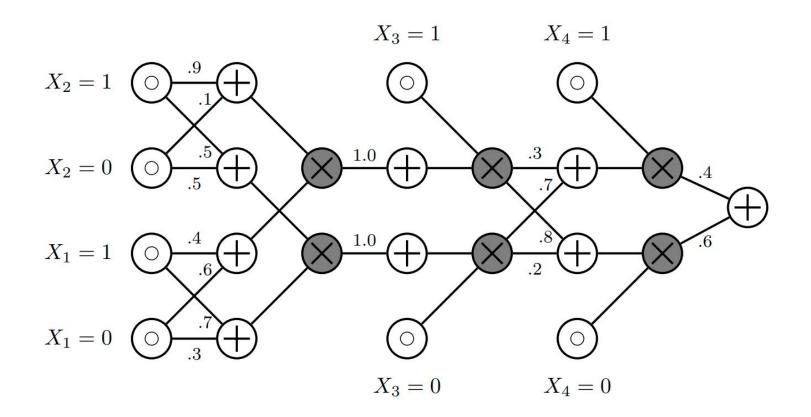
"Every talk needs a joke and a literature overview slide, not necessarily distinct" - after Ron Graham



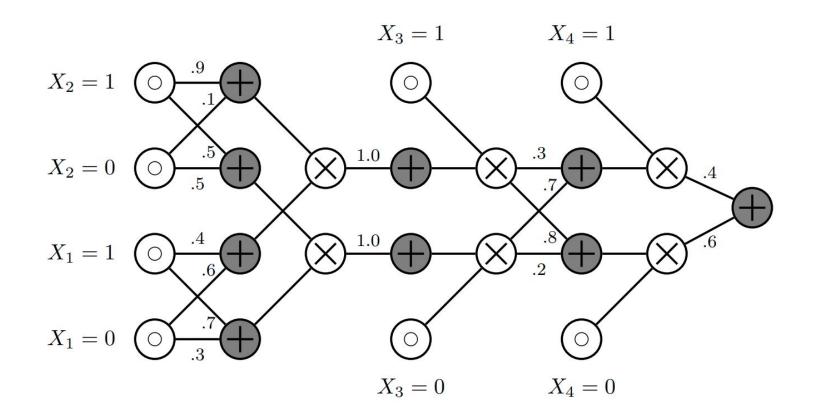
a unifying framework for tractable models



Input nodes c are tractable (simple) distributions, e.g., univariate gaussian or indicator $p_c(X=1) = [X=1]$



Product nodes are factorizations $\prod_{c \in in(n)} p_c(\mathbf{x})$



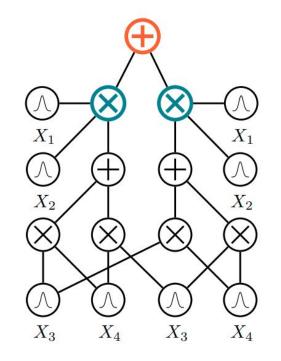
Sum nodes are mixture models $\sum_{c\in \mathsf{in}(n)} \theta_{n,c} \operatorname{p}_c(\mathbf{x})$

Smoothness + decomposability = tractable MAR

If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

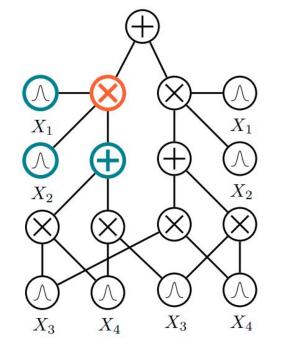
 \Rightarrow integrals are "pushed down" to children



Smoothness + decomposability = tractable MAR

If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$



 \Rightarrow integrals decompose into easier ones

Smoothness + decomposability = tractable MAR

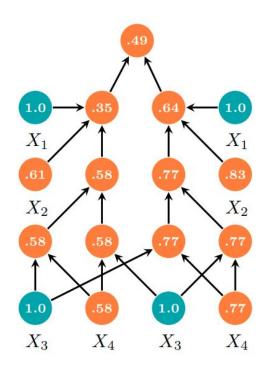
Forward pass evaluation for MAR

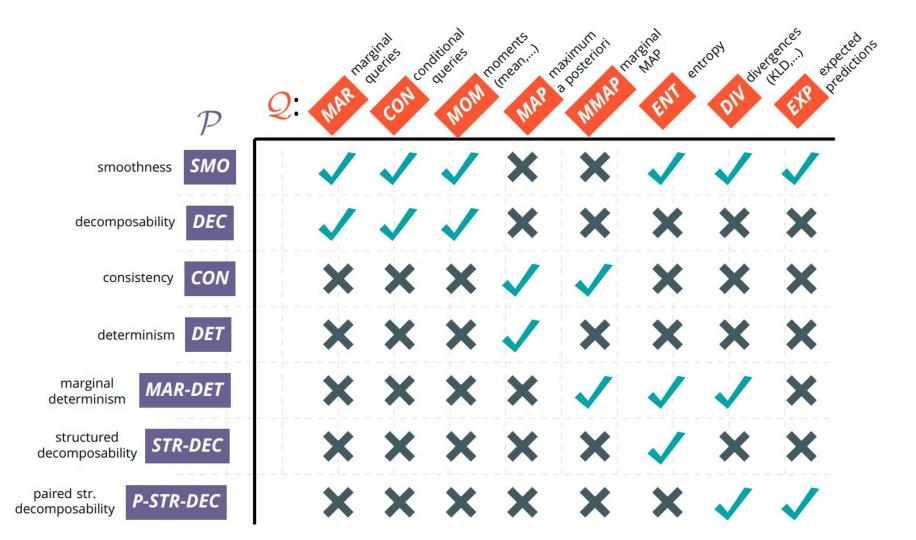
inear in circuit size!

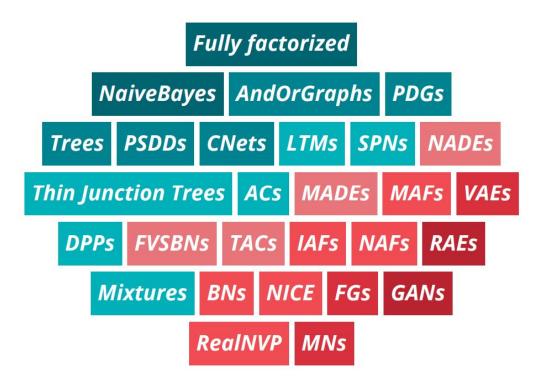
E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)

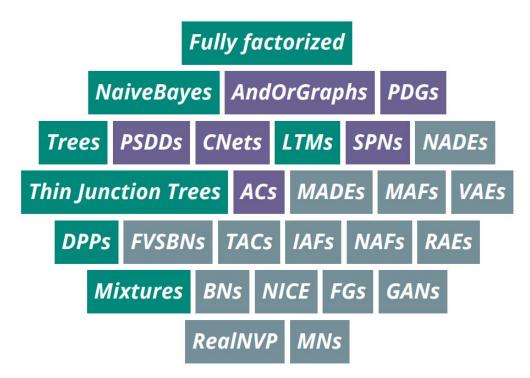






tractability is a spectrum

	smooth	dec.	det.	str.dec.
Arithmetic Circuits (ACs) [Darwiche 2003]	V	V	V	X
Sum-Product Networks (SPNs) [Poon et al. 2011]	V	V	×	×
Cutset Networks (CNets) [Rahman et al. 2014]	V	V	V	×
Probabilistic Decision Graphs [Jaeger 2004]	V	V	V	V
(Affine) ADDs [Hoey et al. 1999; Sanner et al. 2005]	V	V	V	V
AndOrGraphs [Dechter et al. 2007]	V	V	V	V
PSDDs [Kisa et al. 2014a]	V	V	V	V

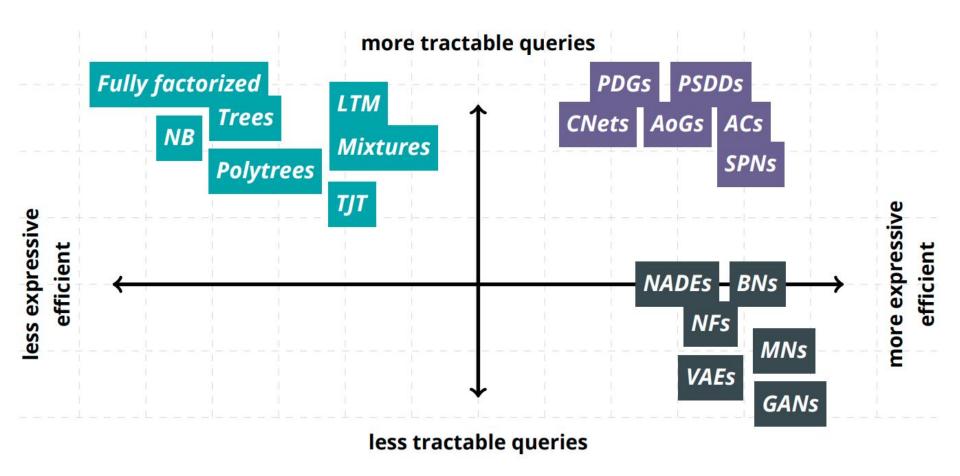


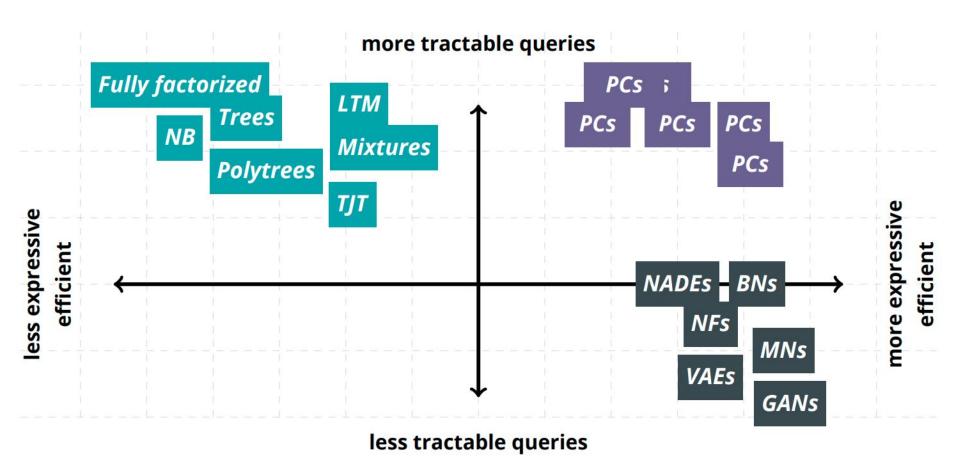
Expressive models without compromises

How expressive are probabilistic circuits?

density estimation benchmarks

dataset	best circuit	BN	MADE	VAE	dataset	best circuit	BN	MADE	VAE
nltcs	-5.99	-6.02	-6.04	-5.99	dna	-79.88	-80.65	-82.77	-94.56
msnbc	-6.04	-6.04	-6.06	-6.09	kosarek	-10.52	-10.83	-	-10.64
kdd	-2.12	-2.19	-2.07	-2.12	msweb	-9.62	-9.70	-9.59	-9.73
plants	-11.84	-12.65	-12.32	-12.34	book	-33.82	-36.41	-33.95	-33.19
audio	-39.39	-40.50	-38.95	-38.67	movie	-50.34	-54.37	-48.7	-47.43
jester	-51.29	-51.07	-52.23	-51.54	webkb	-149.20	-157.43	-149.59	-146.9
netflix	-55.71	-57.02	-55.16	-54.73	cr52	-81.87	-87.56	-82.80	-81.33
accidents	-26.89	-26.32	-26.42	-29.11	c20ng	-151.02	-158.95	-153.18	-146.9
retail	-10.72	-10.87	-10.81	-10.83	bbc	-229.21	-257.86	-242.40	-240.94
pumbs*	-22.15	-21.72	-22.3	-25.16	ad	-14.00	-18.35	-13.65	-18.81





Want to learn more?

Tutorial (3h)

Inference

Learning

Theory

Representations

Probabilistic Circuits

Antonio Vergari University of California, Los Angeles

Robert Peharz TU Eindhoven YooJung Choi University of California, Los Angeles

Guy Van den Broeck University of California, Los Angeles

September 14th, 2020 - Ghent, Belgium - ECML-PKDD 2020

▶ ▶| ◄) 0:00 / 3:02:46

https://youtu.be/2RAG5-L9R70

Overview Paper (80p)

	A U	Probabilistic Circuits: Inifying Framework for Tractable Probabilistic Models	*
Yo	oJu	ng Choi	
Ar	ntoni	o Vergari	
Co: Un Los	mpute iversi s Ang	an den Broeck er Science Department ty of California eles, CA, USA	
Co	onter	ats	
1	Intr	oduction	3
2	Pro	babilistic Inference: Models, Queries, and Tractability	4
	2.1	Probabilistic Models	5
	2.2 2.3	Probabilistic Queries	6 8
	$\frac{2.3}{2.4}$	Properties of Tractable Probabilistic Models	9

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf

Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits

julia> using ProbabilisticCircuits; julia> data, structure = load(...); julia> num_examples(data) 17,412 julia> num_edges(structure) 270,448 julia> @btime estimate_parameters(structure , data); 63 ms

Search or jump to.	. 📝 Pulls Issues Mar	ketplace Explore	l\$ +- ∯-			
Juice-jl / Probab	ilisticCircuits.jl	Unwatch + 5	lt Unstar 21 ¥ Fork 4			
<> Code ① Issues	12 I'l Pull requests 🕞 Actions	Projects	I Wiki			
₽° master +	Go to file Add file	▼ 🛓 Code -	About 🕸			
🌒 khosravipasha sor	ne docs 📖 🗙 2	3 days ago 🕥 452	Probabilistic Circuits from the Juice library			
github/workflows	Install TagBot as a GitHub Action	7 months ago	probabilistic-circuits			
docs	some doos	23 days ago	probabilistic-reasoning probabilistic-inference			
src src	Add utility function for save_as_dot (#13)	3 months ago	tractable-models			
test	Add required test dependencies (#8)	3 months ago	10 Readme			
.gitignore	docs auto build	6 months ago	4 Apache-2.0 License			
🗅 .travis.yml	fix notifications travis	6 months ago				
Artifacts.toml	fix density estimation hash	8 months ago	Releases 2			
LICENSE	Initial commit	14 months ago	5 v0.1.1 (Latest)			
Project.toml	version bump	2 months ago	on May 25			
README.md	add stable badge	3 months ago	+ 1 release			
B README_DEV.md	add release instructions	3 months ago	Packages			
			Packages			

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

https://github.com/Juice-jl/

Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?

Determinantal Point Processes (DPPs)

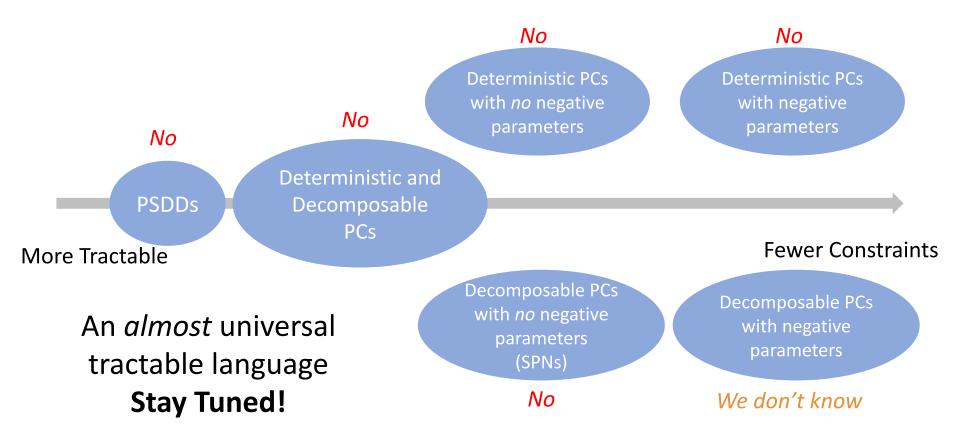
DPPs are models where probabilities are specified by (sub)determinants

$$L = \begin{bmatrix} 1 & 0.9 & 0.8 & 0 \\ 0.9 & 0.97 & 0.96 & 0 \\ 0.8 & 0.96 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L+I)} \det(L_{\{1,2\}})$$

Computing marginal probabilities is tractable.

We cannot tractably represent DPPs with classes of PCs ... yet



The AI Dilemma

Pure Logic

Pure Learning

The AI Dilemma

Pure Logic

- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

Pure Learning

The AI Dilemma

Pure Logic

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Amazing achievements recently
- "Pure learning is brittle"

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world

Pure Learning

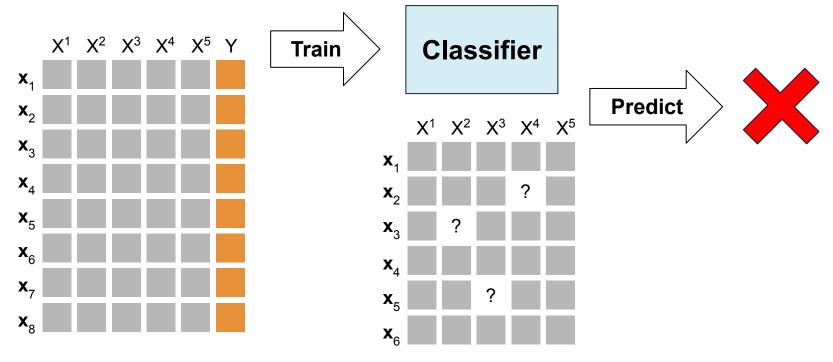
Pure Logic Probabilistic World Models Pure Learning A New Synthesis of Learning and Reasoning

• "Pure learning is brittle"

bias, **algorithmic fairness**, interpretability, **explainability**, adversarial attacks, unknown unknowns, calibration, verification, **missing features**, missing labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

Prediction with Missing Features



Test with missing features

Expected Predictions

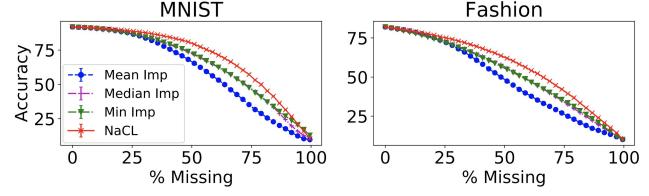
Consider **all possible complete inputs** and **reason** about the *expected* behavior of the classifier

$$\mathbb{E}_{\mathbf{X}^m \sim p(\mathbf{X}^m | \mathbf{X}^o)} \begin{bmatrix} f(\mathbf{X}^m \mathbf{X}^o) \end{bmatrix} \qquad \begin{array}{l} \mathbf{x}^o = \text{observed features} \\ \mathbf{x}^m = \text{missing features} \end{array}$$

Experiment:

• f(x) = logistic regres.

p(x) = naive Bayes



[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

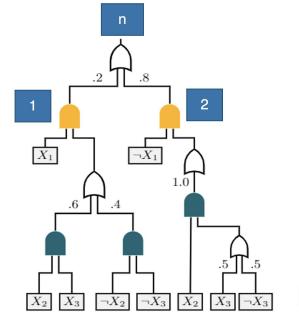
What about complex feature distributions?

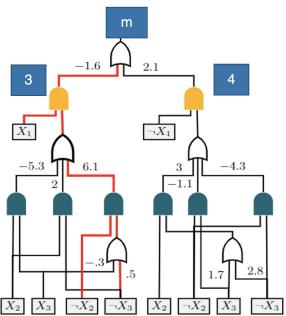
- feature distribution is a probabilistic circuits
- classifier is a compatible regression circuit

Recursion that "breaks down" the computation.

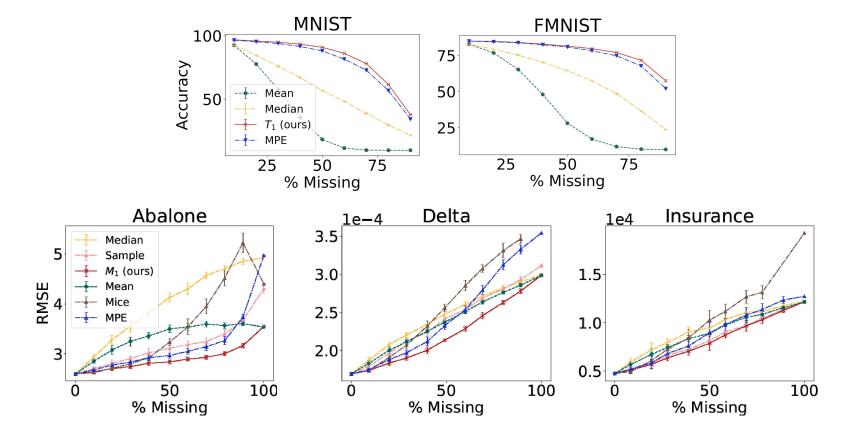
Expectation of function m w.r.t. dist. n?

Solve subproblems: (1,3), (1,4), (2,3), (2,4)





Probabilistic Circuits for Missing Data



[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

ADV inference in Julia with Juice.jl

using ProbabilisticCircuits

- pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
- rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

Is the predictive model biased by gender?

```
groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female : \$ $(exps[2])");
println("Male : \$ $(exps[1])");
println("Diff : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568
```

Model-Based Algorithmic Fairness: FairPC

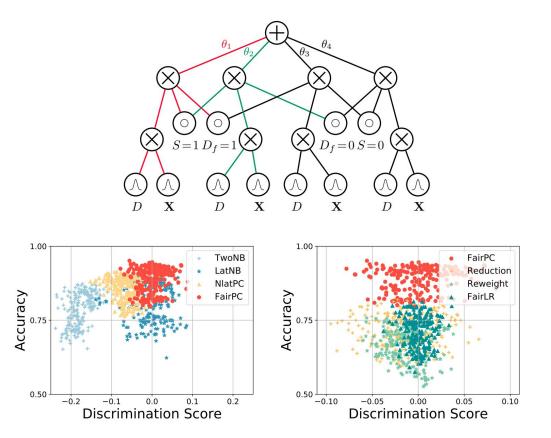
Learn classifier given

- features S and X
- training labels/decisions D

Group fairness by demographic parity:

Fair decision D_f should be independent of the sensitive attribute S

Discover the latent fair decision D_f by learning a PC.



[Choi et al. AAAI21]

Probabilistic Sufficient Explanations

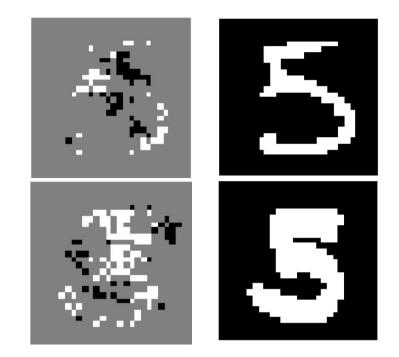
<u>Goal</u>: explain an instance of classification (a specific prediction)

Explanation is a subset of features, s.t.

 The explanation is "probabilistically sufficient"

> Under the feature distribution, given the explanation, the classifier is likely to make the observed prediction.

2. It is minimal and "simple"



Pure Logic Probabilistic World Models Pure Learning A New Synthesis of Learning and Reasoning

"Pure learning is brittle"

bias, **algorithmic fairness**, interpretability, **explainability**, adversarial attacks, unknown unknowns, calibration, verification, **missing features**, missing labels, data efficiency, shift in distribution, general robustness and safety

We need to incorporate a sensible probabilistic model of the world

Probabilistic Programs

What are probabilistic programs?

let x = flip 0.5 inlet y = flip 0.7 in let z = x || y in let w = if z then my func(x,y) else . . . in observe(z);

means "flip a coin, and output true with probability 1/2"

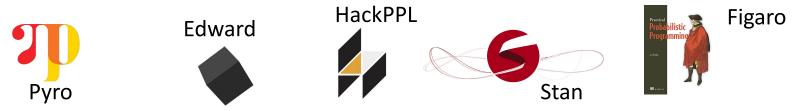
Standard (functional) programming constructs: let, if, ...

means

"reject this execution if z is not true"

Why Probabilistic Programming?

PPLs are proliferating



Venture, Church, IBAL, WebPPL, Infer.NET, Tensorflow Probability, ProbLog, PRISM, LPADs, CPLogic, CLP(BN), ICL, PHA, Primula, Storm, Gen, PRISM, PSI, Bean Machine, etc. ... and many many more

Programming languages are humanity's biggest knowledge representation achievement! Programs should be AI models

Dice probabilistic programming language

http://dicelang.cs.ucla.edu/

0	The dice probabilistic programming language	About	GitHub
dice	is a probabilistic programming language focused on fast exact	inference for	r discrete
oroh	abilistic programs. For more information on dice, see the abou	t nage	
100	abilistic programs. For more information on arce, see the about	r page.	
Belo	w is an online dice code demo. To run the example code, pres	s the "Run" b	utton.
	· · · · · · · · · · · · · · · · · · ·		
			(
			(
1	<pre>fun sendChar(key: int(2), observation: int(2)) {</pre>		(
1 2	let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character		(
3	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character</pre>		(
3	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc</pre>		Run
3	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character</pre>		(
3	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc }</pre>		(
3 4 5 6 7	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc</pre>		(
3 4 5 6 7	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3</pre>		(
3 4 5 6 7 8 9	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc }</pre>		(
3 4 5 6 7 8 9 10	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3 let key = discrete(0.25, 0.25, 0.25, 0.25) in</pre>		(
3 4 5 6 7 8 9 10 11	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3 let key = discrete(0.25, 0.25, 0.25, 0.25) in // observe the ciphertext CCCC</pre>		(
3 4 5 6 7 8 9 10 11 12	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3 let key = discrete(0.25, 0.25, 0.25, 0.25) in // observe the ciphertext CCCC let tmp = sendChar(key, int(2, 2)) in</pre>		(
3 4 5 6 7 8 9 10 11 12 13	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3 let key = discrete(0.25, 0.25, 0.25, 0.25) in // observe the ciphertext CCC let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in</pre>		(
3 4 5 6 7 8 9 10 11 12 13 14	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3 let key = discrete(0.25, 0.25, 0.25, 0.25) in // observe the ciphertext CCCC let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in</pre>		(
3 4 5 6 7 8 9 10 11 12 13	<pre>let gen = discrete(0.5, 0.25, 0.125, 0.125) in // sample a FooLang character let enc = key + gen in // encrypt the character observe observation == enc } // sample a uniform random key: A=0, B=1, C=2, D=3 let key = discrete(0.25, 0.25, 0.25, 0.25) in // observe the ciphertext CCC let tmp = sendChar(key, int(2, 2)) in let tmp = sendChar(key, int(2, 2)) in</pre>		(

https://github.com/SHoltzen/dice

<> (Holtzen / dice			Wiki [] Security	
٢	master 👻	Go to file Add fi	le ▾ 🚺 ⊻ Code ▾	About	
Ħ	SHoltzen printing	revamp 🗸	7 days ago 🕥 217	Exact inference for discrete probabilistic programs. (Research	
	bench	Revert "speed up function calls"	12 days ago	code, more documentation	
	benchmarks	eager eval is insane	2 months ago	and ergonomics to come)	
	bin	printing revamp	7 days ago	C Readme	
	lib	Revert "speed up function calls"	12 days ago	Apache-2.0 License	
	resources	test iff	2 months ago		
-	test	fix right shift bug	18 days ago	Releases	
D	.gitignore	Resolve merge conflicts	2 months ago	😒 2 tags	
C	.merlin	error upgrade	3 months ago		
ß	Dockerfile	clean dockerfile	2 months ago	Packages	
D	LICENSE	Resolve merge conflicts	2 months ago	No packages published	
0	README.md	Fixed documentation: double typing in an	g last month	Contributors 4	
0	dice.opam	clean dockerfile	2 months ago		
ß	dune	fixed benchmarks	3 months ago		
ß	dune-project	switch to dune	3 months ago	ellieyhcheng ellieyhc	

[Holtzen et al. OOPSLA20]

Why should I care?

Better abstraction than probabilistic graphical models:

- Beyond variable-level dependencies (contextual)
- modularity through functions reuse (cf. relational graphical models)
- intuitive language for local structure; arithmetic
- data structures
- first-class observations

First-Class Observations

```
fun EncryptChar(key:int, obs:char):Bool {
  let randomChar = ChooseChar() in
  let ciphertext = (randomChar + key) % 26 in
  let _ = observe ciphertext = obs in
  true}
  let k = UniformInt(0, 25) in
  let _ = EncryptChar(k, 'H') in ...
  let _ = EncryptChar(k, 'D') in k
```

Frequency Analyzer for a Caesar cipher in Dice

Probabilistic Program Inference

Key ingredient: **factorization** aka the product nodes

1 let x = flip₁ 0.1 in 2 let y = if x then flip₂ 0.2 else 3 flip₃ 0.3 in 4 let z = if y then flip₄ 0.4 else 5 flip₅ 0.5 in z

 $\underbrace{0.1}_{x=T} \cdot \underbrace{0.2}_{y=T} \cdot \underbrace{0.4}_{z=T} + \underbrace{0.1}_{x=T} \cdot \underbrace{0.8}_{y=F} \cdot \underbrace{0.5}_{z=T} + \underbrace{0.9}_{x=F} \cdot \underbrace{0.3}_{y=T} \cdot \underbrace{0.4}_{z=T} + \underbrace{0.9}_{x=F} \cdot \underbrace{0.7}_{y=F} \cdot \underbrace{0.5}_{z=T}$

$$\underbrace{0.1}_{x=T} \cdot \left(\underbrace{0.2}_{y=T} \cdot \underbrace{0.4}_{z=T} + \underbrace{0.8}_{y=F} \cdot \underbrace{0.5}_{z=T} \right) + \underbrace{0.9}_{x=F} \cdot \left(\underbrace{0.3}_{y=T} \cdot \underbrace{0.4}_{z=T} + \underbrace{0.7}_{y=F} \cdot \underbrace{0.5}_{z=T} \right)$$

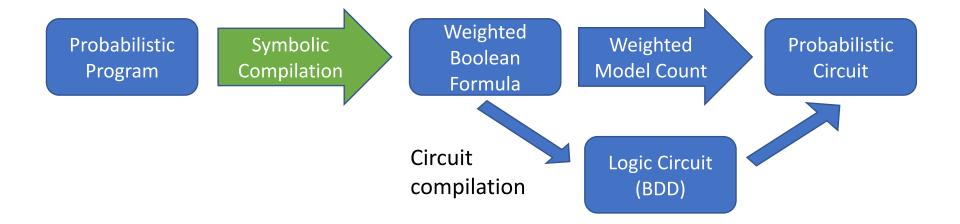
Symbolic Compilation in Dice

- Construct Boolean formula
- Satisfying assignments ≈ paths
- Variables are flips
- Associate weights with flips
- Compile factorized circuit

```
1 let x = flip<sub>1</sub> 0.1 in
2 let y = if x then flip<sub>2</sub> 0.2 else
3 flip<sub>3</sub> 0.3 in
4 let z = if y then flip<sub>4</sub> 0.4 else
5 flip<sub>5</sub> 0.5 in z
```

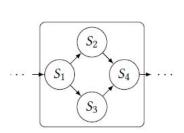
 $0.1 \cdot 0.2 \cdot 0.4 + 0.1 \cdot 0.8 \cdot 0.5 + 0.9 \cdot 0.3 \cdot 0.4 + 0.9 \cdot 0.7 \cdot 0.5$ x = Tx=Tz=Ty = Fz=Tx = Fy=Tz=T x = Fy = Fz=Tv=T.471 f_3 (.48)(.47) $f_1 f_2 f_4 \vee f_1 \bar{f}_2 f_5 \vee \bar{f}_1 f_3 f_4 \vee \bar{f}_1 \bar{f}_3 f_5$ $\left(.4\right)$ (.5)0

Symbolic Compilation to Probabilistic Circuits



State of the art for discrete probabilistic program inference!

Factorized Inference in Dice



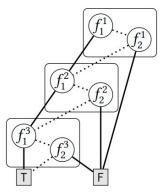
(a) Network diagram.

2

5

fun diamond(s_1 :Bool):Bool { let route = flip₁ 0.5 in let s_2 = if route then s_1 else F in let s_3 = if route then F else s_1 in let drop = flip₂ 0.0001 in $s_2 \lor (s_3 \land \neg drop)$ } diamond(diamond(diamond(T)))

(b) Probabilistic program defining the network.



(c) diamond function.

(d) Final BDD.

Network Verification

PPL benchmarks from PL community

Benchmark	Psi (ms)	DP (ms)	Dice (ms)	# Paths	BDD Size
Grass	167	57	1.0	9.5×10^{1}	15
Burglar Alarm	98	10	1.1	2.5×10^{2}	11
Coin Bias	94	23	1.0	4	13
Noisy Or	81	152	1.0	1.6×10^{4}	35
Evidence1	48	32	1.0	9	5
Evidence2	59	28	1.0	9	6
Murder Mystery	193	75	1.0	1.6×10^{1}	6

Scalable Inference

Benchmark	Psi (ms)	DP (ms)	Dice (ms)	# Parameters	# Paths	BDD Size
Cancer [48]	772	46	1.0	10	1.1×10^{3}	28
Survey [73]	2477	152	2.0	21	1.3×10^{4}	73
Alarm [5]	×	×	9.0	509	1.0×10^{36}	1.3×10^{3}
Insurance [7]	×	X	75.0	984	1.2×10^{40}	1.0×10^{5}
Hepar2 [63]	×	X	54.0	1453	2.9×10^{69}	1.3×10^{3}
Hailfinder [1]	×	X	526.0	2656	2.0×10^{76}	6.5×10^{4}
Pigs	×	X	32.0	5618	7.3×10^{492}	35
Water [43]	×	X	2926.0	$1.0 imes 10^4$	3.2×10^{54}	5.1×10^{4}
Munin [3]	×	×	1945.0	$8.1 imes 10^{5}$	2.1×10^{1622}	1.1×10^4

Conclusions

- Are we already in the age of computational abstractions?
- Probabilistic circuits for
 learning deep <u>tractable</u> probabilistic models
- **Probabilistic programs** as the new probabilistic knowledge representation language
- Two computational abstractions go hand in hand

Thanks

My students/postdoc who did the real work are graduating.

There are some awesome people on the academic job market!