

Reasoning about Learned Models' Behavior

Guy Van den Broeck

Human-Centered Al Conference, Pepperdine - Oct 23, 2021

The Al Dilemma

Pure (Logic) Reasoning Pure Learning

The AI Dilemma

Pure Learning

- Slow thinking: deliberative, cognitive, model-based, extrapolation
- Human-centered
- Amazing achievements until this day
- "Pure logic is brittle" noise, uncertainty, incomplete knowledge, ...

The Al Dilemma

Pure (Logic) Reasoning

Pure Learning

- Fast thinking: instinctive, perceptive, model-free, interpolation
- Data-centered
- Amazing achievements recently
- "Pure learning is brittle" bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world

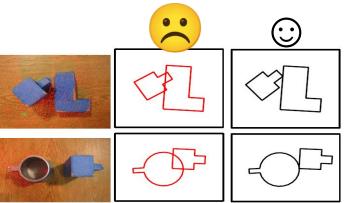
The Al Dilemma

- Learn statistical models subject to logical knowledge
- Integrate reasoning into modern learning algorithms
- Reason about learned models' behavior
 - Algorithmic Fairness Explainability

Deep Learning with Output Constraints

Knowledge in Vision, Robotics, NLP

People appear at most once in a frame

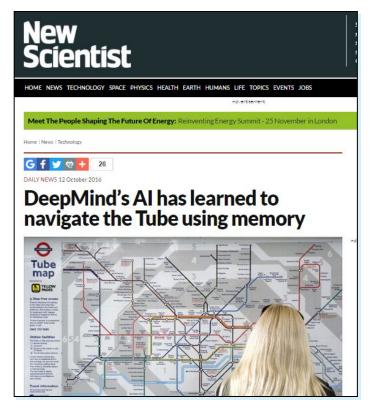


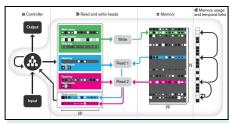
Rigid objects don't overlap

At least one verb in each sentence.

If X and Y are married, then they are people.

Motivation: Deep Learning





[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Motivation: Deep Learning

DeepMind's latest technique uses external memory to solve tasks that require logic and reasoning — a step toward more human-like Al.

... but ...

optimal planner recalculating a shortest path to the end node. To ensure that the network always moved to a valid node, the output distribution was renormalized over the set of possible triples outgoing from the current node. The performance

it also received input triples during the answer phase, indicating the actions chosen on the previous time-step. This makes the problem a 'structured prediction'

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwińska, A., et al.. (2016). Hybrid computing using a neural network with dynamic external memory. *Nature*, *538*(7626), 471-476.]

Knowledge vs. Data

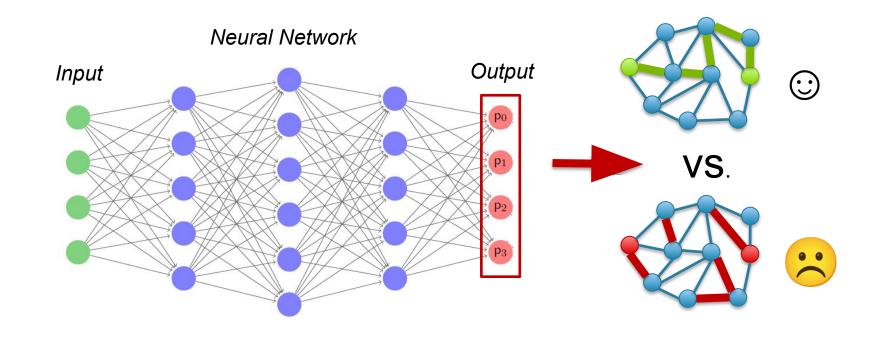
- Where did the world knowledge go?
 - Python scripts
 - Decode/encode cleverly
 - Fix inconsistent beliefs
 - Rule-based decision systems
 - Dataset design
 - "a big hack" (with author's permission)

Knowledge vs. Data

- Where did the world knowledge go?
 - Python scripts
 - Decode/encode cleverly
 - Fix inconsistent beliefs
 - Rule-based decision systems
 - Dataset design
 - "a big hack" (with author's permission)
- In some sense we went backwards

Less principled, scientific, and intellectually satisfying ways of incorporating knowledge

Deep Learning with Symbolic Knowledge

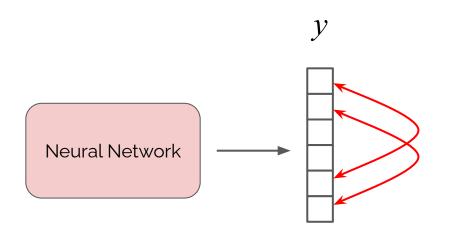


A PyTorch Framework for Learning with Constraints

Kareem Ahmed Tao Li Thy Ton Quan Guo, Kai-Wei Chang Parisa Kordjamshidi Vivek Srikumar Guy Van den Broeck Sameer Singh

http://pylon-lib.github.io

Declarative Knowledge of the Output



How is the output structured?
Are all possible outputs valid?
How are the outputs related to each other?

Learning this from data is inefficient Much easier to express this declaratively

How can do we inject declarative knowledge into PyTorch training code?

Library that extends PyTorch to allow injection of declarative knowledge

- Easy to Express Knowledge: users write arbitrary constraints on the output
- Integrates with PyTorch: minimal change to existing code
- Efficient Training: compiles into loss that can be efficiently optimized

```
PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)
```

1) Specify knowledge as a predicate

```
def check(y):
    ...
    return isValid
```

```
PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

    loss += constraint_loss(check)(py)
```

1 Specify knowledge as a predicate def check(v):

```
def check(y):
    ...
    return isValid
```

2 Add as loss to training

```
loss += constraint_loss(check)
```

```
PyTorch Code

for i in range(train_iters):
    ...
    py = model(x)
    ...
    loss = CrossEntropy(py,...)

    loss += constraint_loss(check)(py)
```

1 Specify knowledge as a predicate

```
def check(y):
    ...
    return isValid
```

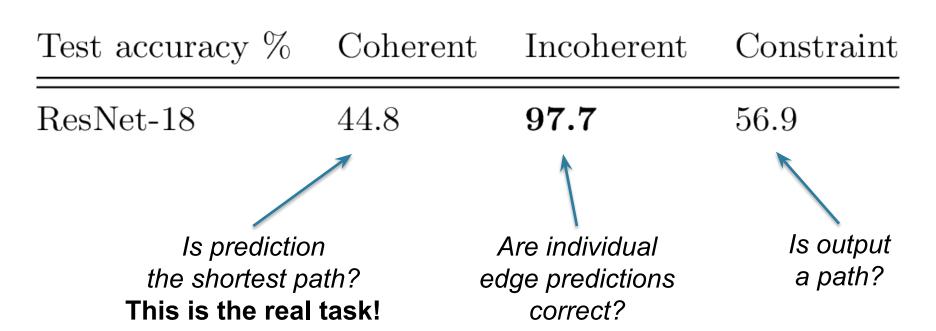
2 Add as loss to training
loss += constraint_loss(check)

pylon derives the gradients (solves a combinatorial problem)

Warcraft Shortest Path

Predicting the min-cost simple-path in a grid

Warcraft min-cost simple-path prediction results



Warcraft min-cost simple-path prediction results

Test accuracy %	Coherent	Incoherent	Constraint	
ResNet-18	44.8	97.7	56.9	
+ Semantic loss	50.9	97.7	67.4	

Warcraft min-cost simple-path prediction results

Test accuracy %	Coherent	Incoherent	Constraint
ResNet-18	44.8	97.7	56.9
Semantic loss	50.9	97.7	67.4
+ Entropy All	51.5	97.6	67.7
+ Entropy Circuit	55.0	$\boldsymbol{97.9}$	69.8

- Joint entity-relation extraction in natural language processing
- Semantic role labeling in natural language processing
- Training MNIST recognition network from arithmetic supervision
- Training neural net to solve Sudoku
- Learning to rank
- etc.

How do you get the loss function? What magic is this?

$$L^{s}(\alpha, p) \propto -\log \sum_{\mathbf{x} \models \alpha} \prod_{i: \mathbf{x} \models X_{i}} p_{i} \prod_{i: \mathbf{x} \models \neg X_{i}} (1 - p_{i})$$

Probability of satisfying constraint α after sampling from neural net output layer **p**

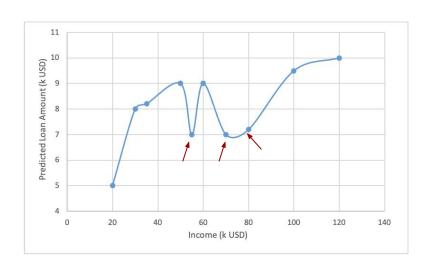
In general: #P-hard 😕

We do this probabilistic-logical reasoning during learning in a computation graph

Neural Networks

Monotonicity Invariants for

Predict Loan Amount

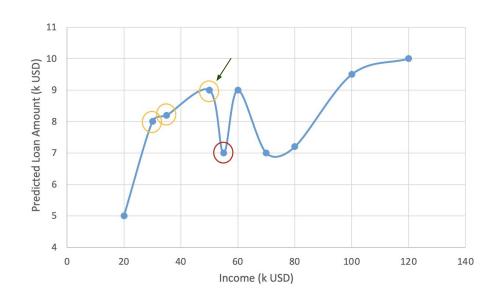


Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge):

Increasing income should increase the approved loan amount

Counterexamples

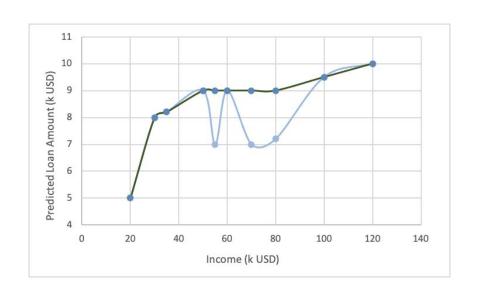


$$\exists x, y \ x \le y \implies f(x) > f(y)$$

Computed using SMT(LRA) logical reasoning solver

Maximal counterexamples (largest violation) using OMT

Counterexample-Guided Predictions



Monotonic Envelope:

- Replace each prediction by its maximal counterexample
- Envelope construction is online (during prediction)
- Guarantees monotonic predictions for any ReLU neural net
- Works for high-dimensional input
- Works for multiple monotonic features

Monotonic Envelope: Performance

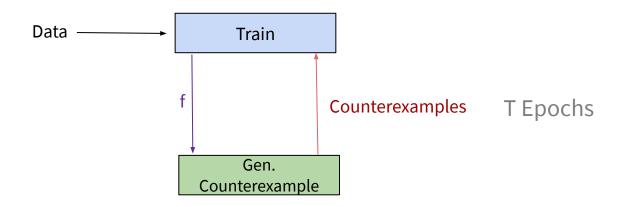
Dataset	Feature	NN _b	Envelope
,	Weight	9.33±3.22	9.19±3.41
Auto-MPG	Displ.	9.33 ± 3.22	9.63 ± 2.61
	W,D	9.33 ± 3.22	9.63 ± 2.61
	W,D,HP	9.33 ± 3.22	9.63 ± 2.61
Boston	Rooms	14.37±2.4	14.19±2.28
	Crime	14.37 ± 2.4	14.02 ± 2.17

Dataset	Feature	NN_b	Envelope
	Trestbps	0.85 ± 0.04	0.85 ± 0.04
Heart	Chol.	0.85 ± 0.04	0.85 ± 0.05
	T,C	0.85 ± 0.04	0.85 ± 0.05
Adult	Cap. Gain	0.84	0.84
Addit	Hours	0.84	0.84

Guaranteed monotonicity at little to no cost

Counterexample-Guided Learning

How to use monotonicity to improve model quality? "Monotonicity as inductive bias"



Counterexample-Guided Learning: Performance

,							
Dataset	Feature	NN_b	CGL	Dataset	Feature	NN _b	CGL
Auto-MPG	Weight Displ. W,D W,D,HP	9.33±3.22 9.33±3.22 9.33±3.22 9.33±3.22	$9.04{\pm}2.76$ $9.08{\pm}2.87$ $8.86{\pm}2.67$ $8.63{\pm}2.21$	Heart	Trestbps Chol. T,C	0.85±0.04 0.85 ± 0.04 0.85±0.04	0.86 ± 0.02 0.85 ± 0.05 0.86 ± 0.06
Boston	Rooms Crime	14.37±2.4 14.37±2.4	12.24±2.87 11.66±2.89	Adult	Cap. Gain Hours	0.84 0.84	0.84 0.84

Monotonicity is a *great* inductive bias for learning

Counterexample-Guided Monotonicity Enforced Training (COMET)

Table 4: Monotonicity is an effective inductive bias. COMET outperforms Min-Max networks on all datasets. COMET outperforms DLN in regression datasets and achieves similar results in classification datasets.

Dataset	Features	Min-Max	DLN	Сомет
Auto- MPG	Weight Displ. W,D W,D,HP	9.91 ± 1.20 11.78 ± 2.20 11.60 ± 0.54 10.14 ± 1.54	16.77 ± 2.57 16.67 ± 2.25 16.56 ± 2.27 13.34 ± 2.42	8.92±2.93 9.11±2.25 8.89±2.29 8.81±1.81
Boston	Rooms Crime	30.88 ± 13.78 25.89 ± 2.47	15.93 ± 1.40 12.06 ± 1.44	11.54±2.55 11.07±2.99

Dataset	Features	Min-Max	DLN	Сомет
Heart	Trestbps Chol. T,C	0.75 ± 0.04 0.75 ± 0.04 0.75 ± 0.04	0.85 ± 0.02 0.85 ± 0.04 0.86 ± 0.02	$\begin{array}{c} 0.86{\pm}0.03 \\ 0.87{\pm}0.03 \\ 0.86{\pm}0.03 \end{array}$
Adult	Cap. Gain Hours	0.77 0.73	0.84 0.85	0.84 0.84

COMET = Provable Guarantees + SotA Results

Reasoning about the Feature Distribution

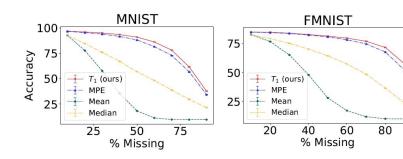
Reasoning about World Model + Classifier

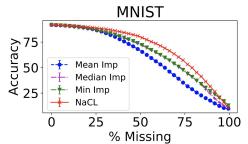
- "Pure learning is brittle"
 bias, algorithmic fairness, interpretability, explainability, adversarial attacks, unknown unknowns, calibration, verification, missing features, missing labels, data efficiency, shift in distribution, general robustness and safety fails to incorporate a sensible model of the world
 - Given a learned predictor F(x) over features x
 - Given a probabilistic world model P(x) a feature distribution
 - How does the world act on learned predictors?
 Can we solve these hard problems?

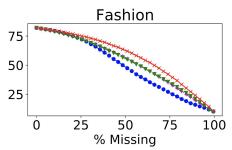
What to expect of classifiers?

- Missing features at prediction time
- What is expected prediction of F(x) in P(x)?

$$E_{\mathcal{F},P}(\mathbf{y}) = \mathop{\mathbb{E}}_{\mathbf{m} \sim P(\mathbf{M}|\mathbf{y})} [\mathcal{F}(\mathbf{ym})]$$
 M: Missing features y: Observed Features







Explaining classifiers on the world

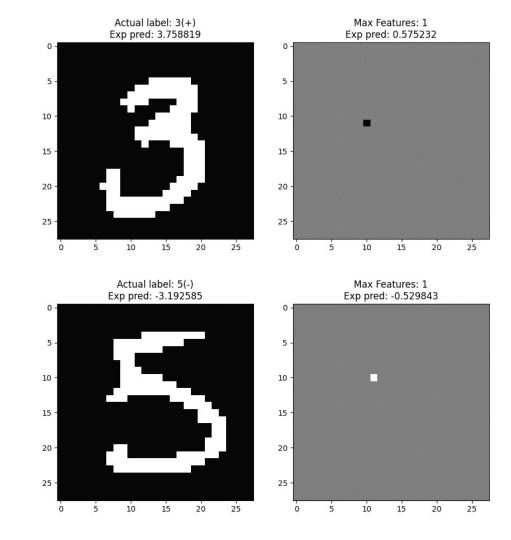
If the world looks like P(x), then what part of the data is **sufficient** for F(x) to make the prediction it makes?

Probabilistic Sufficient Explanations

Correctly Classified Examples

Binary classification: 3 vs 5

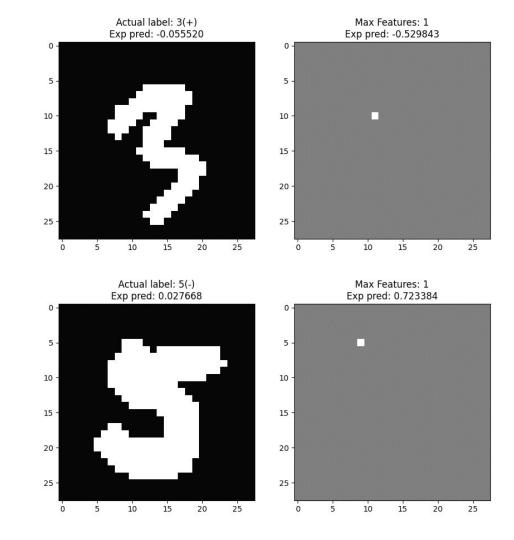
Used decision forest classifier and probabilistic circuit feature distribution



Misclassified Examples

Binary classification: 3 vs 5

Used decision forest classifier and probabilistic circuit feature distribution



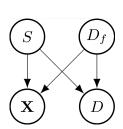
Algorithmic Fairness: Latent Fair Decisions

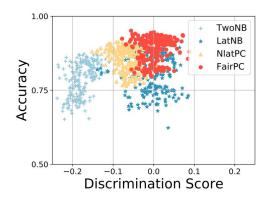
Learn classifier given

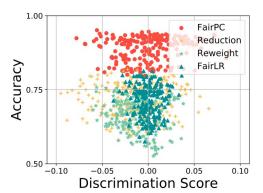
- features S and X
- training labels/decisions D

Unknown fair decision D_f should be independent of the sensitive attribute S

Discover the **latent fair decision** D_f by learning distribution $P(S,X,D_f,D)$ where D_f is 'fair'.







competitive classification accuracy and better fairness guarantee

The Al Dilemma

- Learn statistical models subject to logical knowledge
- Integrate reasoning into modern learning algorithms
- Reason about learned models' behavior
 - Algorithmic Fairness Explainability

Thanks

This was the work of many wonderful students/postdoc/collaborators!

References: http://starai.cs.ucla.edu/publications/