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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs
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RealNVP MNs

The Alphabet Soup of probabilistic models
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Fully factorized

NaiveBayes AndOrGraphs PDGs

Trees PSDDs CNets LTMs SPNs NADEs

Thin Junction Trees ACs MADEs MAFs VAEs

Polytrees FVSBNs TACs IAFs NAFs RAEs

Mixtures BNs NICE FGs GANs

RealNVP MNs

a unifying framework for tractable models
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Why tractable inference?
or expressiveness vs tractability
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Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

Advanced representations
tracing the boundaries of tractability and connections to other formalisms

7/159



Why tractable inference?
or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?
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q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

q2: Which day is most likely to have a traffic jam on my
route to campus?
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

q2: Which day is most likely to have a traffic jam on my
route to campus?

How to answer several of these probabilistic queries?
© fineartamerica.com
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“What is the most likely street to have a traffic jam at 12.00?”

q1?

answering queries…
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“What is the most likely time to see a traffic jam at Sunset Blvd.?”
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≈
pm2(Y | X)
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…by fitting predictive models!
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“What is the probability of a traffic jam onWestwood Blvd. onMonday?”
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…by fitting predictive models!
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...

q1(m)?
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…by fitting generative models!
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X1 X2 X3 X4 X5

≈
pm(X)

...

q1(m)?

q2(m)?

qk(m)?

…e.g. exploratory data analysis
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamWwood = 1)
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Why probabilistic inference?

q1: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q1(m) = pm(Day = Mon, JamWwood = 1)

⇒ marginals
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)
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Why probabilistic inference?

q2: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day,Time, JamStr1, JamStr2, . . . , JamStrN}

q2(m) = argmaxd pm(Day = d ∧
∨

i∈route JamStri)

⇒ marginals + MAP + logical events

© fineartamerica.com
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).
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Tractable Probabilistic Inference

A class of queriesQ is tractable on a family of probabilistic modelsM
iff for any query q ∈ Q and modelm ∈M
exactly computing q(m) runs in timeO(poly(|m|)).

⇒ often poly will in fact be linear!

⇒ Note: ifM is compact in the number of random variablesX, that is,
|m| ∈ O(poly(|X|)), then query time isO(poly(|X|)).

⇒ Why exactness? Highest guarantee possible!
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Stay tuned for...

Next: 1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

After: We introduce probabilistic circuits as a unified
framework for tractable probabilistic modeling

13/159



Q:M

tractable bands
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day,Time, JamWwood , JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day,Time, JamWwood , JamStr2, . . . , JamStrN}

q3(m) = pm(X = {Mon, 12.00, 1, 0, . . . , 0})

…fundamental inmaximum likelihood learning

θMLE
m = argmaxθ

∏
x∈D pm(x; θ)

© fineartamerica.com
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Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]

Goodfellow et al., “Generative adversarial nets”, 2014 16/159



Generative Adversarial Networks

minθ maxϕ Ex∼pdata(x)

[
logDϕ(x)

]
+ Ez∼p(z)

[
log(1−Dϕ(Gθ(z)))

]
no explicit likelihood!

⇒ adversarial training instead of MLE
⇒ no tractable EVI

good sample quality
⇒ but lots of samples needed for MC

unstable training ⇒ mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 17/159



Q:M
GANs

EVI

tractable bands
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Variational Autoencoders

pθ(x) =
∫
pθ(x | z)p(z)dz

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma and Welling, “Auto-Encoding Variational Bayes”, 2014 19/159



Variational Autoencoders

log pθ(x) ≥ Ez∼qϕ(z|x)
[
log pθ(x | z)

]
−KL(qϕ(z | x)||p(z))

an explicit likelihood model!

... but computing log pθ(x) is intractable

⇒ an infinite and uncountable mixture
⇒ no tractable EVI

we need to optimize the ELBO…
⇒ which is “tricky” [Alemi et al. 2017; Dai

et al. 2019; Ghosh et al. 2019]
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Q:M
GANs

VAEs

EVI

tractable bands
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Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood!

…plus structured Jacobians
⇒ tractable EVI queries!

many neural variants
RealNVP [Dinh et al. 2016],
MAF [Papamakarios et al. 2017]
MADE [Germain et al. 2015],
PixelRNN [Oord et al. 2016]

Z

X

f−1f
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?
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q1(m) = pm(Day = Mon, JamWwood = 1)
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

General: pm(e) =
∫
pm(e,H) dH

where E ⊂ X, H = X \ E
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Marginal queries (MAR)

q1: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

q1(m) = pm(Day = Mon, JamWwood = 1)

tractable MAR⇒ tractable conditional queries
(CON):

pm(q | e) = pm(q, e)

pm(e)

© fineartamerica.com
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Tractable MAR : scene understanding

Fast and exact marginalization over unseen or “do not care” parts in the scene

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019 24/159



Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood!

…plus structured Jacobians
⇒ tractable EVI queries!
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Normalizing flows

pX(x) = pZ(f
−1(x))

∣∣∣det( δf−1

δx

)∣∣∣
an explicit likelihood!

…plus structured Jacobians
⇒ tractable EVI queries!

MAR is generally intractable:
we cannot easily integrate over f

⇒ unless f is “simple”, e.g. bijection

Z

X

f−1f

26/159
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VAEs

Flows
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I
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Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables
Edges: dependencies

+

Inference: conditioning [Darwiche 2001; Sang et al. 2005]

elimination [Zhang et al. 1994; Dechter 1998]

message passing [Yedidia et al. 2001; Dechter

et al. 2002; Choi et al. 2010; Sontag et al. 2011]

X1

X2

X3

X4

X5

28/159



Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-hard
⇒ [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and CON approximately
within a relative error of 2n

1−ϵ

for any fixed ϵ is NP-hard
⇒ [Dagum et al. 1993; Roth 1996]

29/159



Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical modelm?
Formally, the minimum width of any tree-decomposition ofm.

Fixed-parameter tractable: MAR and CON on a graphical modelm with
treewidthw take timeO(|X| · 2w), which is linear for fixed widthw
[Dechter 1998; Koller et al. 2009]. ⇒ what about bounding the treewidth by design?

30/159



Low-treewidth PGMs

X1

X2

X3

X4

X5

Trees
[Meilă et al. 2000]

X1

X2

X3

X4

X5

Polytrees
[Dasgupta 1999]

X1 X2

X1 X3 X4

X3 X5

Thin Junction trees
[Bach et al. 2001]

If treewidth is bounded (e.g.≊ 20), exact MAR and CON inference is possible in practice

31/159



Tree distributions

A tree-structured BN [Meilă et al. 2000] where eachXi ∈ X has at most one parent PaXi
.

X1

X2

X3

X4

X5

p(X) =
∏n

i=1
p(xi|Paxi

)

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X|)
Exact learning from d examples takesO(|X|2 · d) with the classical Chow-Liu algorithm1

1Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 32/159
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What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

X1

X2

X3

X4

X5

Bounded-treewidth PGMs lose the ability to represent all possible distributions …

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 34/159



Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

EVI, MAR, CON queries scale linearly in k
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Mixtures

Mixtures as a convex combination of k (simpler) probabilistic models

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) =p(Z = 1 ) · p1(X|Z = 1 )

+ p(Z = 2 ) · p2(X|Z = 2 )

Mixtures are marginalizing a categorical latent variable Z with k values
⇒ increased expressiveness

35/159



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 36/159



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

⇒ mixture of Gaussians can approximate any distribution!

Expressive efficiency (succinctness) Ability to represent rich and effective classes of
functions compactly

⇒ but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens and Medabalimi, “On the Expressive Efficiency of Sum Product Networks”, 2014 36/159



How expressive efficient are mixture?
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How expressive efficient are mixture?

⇒ stack mixtures like in deep generative models 37/159
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmaxj pm(j1, j2, . . . | Day=M,Time=9)

General: argmaxq pm(q | e)

where Q ∪ E = X
© fineartamerica.com
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Maximum A Posteriori (MAP)
aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

…intractable for latent variable models!

max
q

pm(q | e) = max
q

∑
z

pm(q, z | e)

̸=
∑
z

max
q

pm(q, z | e) © fineartamerica.com

39/159
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MAP inference : image inpainting
7.3 Face Image Completion
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Figure 7.3: Examples of face image reconstructions, left half is covered.
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Predicting arbitrary patches
given a singlemodel
without the need of retraining.

Poon and Domingos, “Sum-Product Networks: a New Deep Architecture”, 2011
Sguerra and Cozman, “Image classification using sum-product networks for autonomous flight of
micro aerial vehicles”, 2016 40/159
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

General: argmaxq pm(q | e)
= argmaxq

∑
h pm(q,h | e)

where Q ∪H ∪ E = X

© fineartamerica.com
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Marginal MAP (MMAP)
aka Bayesian Network MAP

q6: Which combination of roads is most likely to be
jammed on Monday at 9am?

q6(m) = argmaxj pm(j1, j2, . . . | Time=9)

⇒ NPPP-complete [Park et al. 2006]

⇒ NP-hard for trees [de Campos 2011]

⇒ NP-hard even for Naive Bayes [ibid.]

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q2(m) = argmaxd pm(Day = d∧
∨

i∈route JamStr i)

⇒ marginals + MAP + logical events

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

⇒ counts + group comparison

© fineartamerica.com
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Advanced queries

q2: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

and more:

expected classification agreement
[Oztok et al. 2016; Choi et al. 2017, 2018]

expected predictions [Khosravi et al. 2019c]
© fineartamerica.com
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

X1

X2

X3

X4

X5

p(x) =
∏n

i=1
p(xi)

Complete evidence, marginals and MAP, MMAP inference is linear!

⇒ but definitely not expressive…

47/159
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EVI MAR CON MAP MMAP ADV

I
I
I
I I

tractable bands
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Expressive models are not very tractable…
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and tractable ones are not very expressive…
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X

probabilistic circuits are at the “sweet spot”
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Probabilistic Circuits



Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)
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Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

54/159



Probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

⇒ operational semantics!

⇒ by constraining the graph we can make inference tractable…
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Stay tuned for...

Next: 1. What are the building blocks of probabilistic circuits?
⇒ How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
⇒ tractable classes induced by structural properties

After: How can probabilistic circuits be learned?

55/159



Distributions as computational graphs

X

Base case: a single node encoding a distribution
⇒ e.g., Gaussian PDF continuous random variable
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Distributions as computational graphs

¬X

Base case: a single node encoding a distribution
⇒ e.g., indicators forX or ¬X for Boolean random variable

56/159



Distributions as computational graphs

x

X

pX(x)

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode
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Distributions as computational graphs

1.3

X

.33

Simple distributions are tractable “black boxes” for:

EVI: output p(x) (density or mass)

MAR: output 1 (normalized) or Z (unnormalized)

MAP: output the mode

56/159



Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0

⇒ e.g. modeling a multivariate Gaussian with diagonal covariance matrix…
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Factorizations as product nodes
Divide and conquer complexity

p(X1, X2, X3) = p(X1) · p(X2) · p(X3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

X1 X2 X3

⇒ …with a product node over some univariate Gaussian distribution
57/159



Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 ×

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
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Factorizations as product nodes
Divide and conquer complexity

p(x1, x2, x3) = p(x1) · p(x2) · p(x3)

X1 X2 X3

X1

X2

X3

0.0

0.5

1.0

1.5

2.0

2.5

3.0 .36

0.8

X1

0.5

X2

0.9

X3

⇒ feedforward evaluation
57/159



Mixtures as sum nodes
Enhance expressiveness

−10 −5 0 5 10

X1

0.00

0.05

0.10

0.15

0.20

0.25

p(
X

1)

p(X) = w1·p1(X)+w2·p2(X)

⇒ e.g. modeling a mixture of Gaussians…
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Mixtures as sum nodes
Enhance expressiveness

X1 X1

w1 w2

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ …as a weighted sum node over Gaussian input distributions
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Mixtures as sum nodes
Enhance expressiveness

.44

0.2

X1

0.5

X1

0.2 0.8

p(x) = 0.2·p1(x)+0.8·p2(x)

⇒ by stacking them we increase expressive efficiency
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1
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A grammar for tractable models
Recursive semantics of probabilistic circuits
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Recursive semantics of probabilistic circuits

X1 X1 X1
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×

X1 X2
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X1 X1 X1
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×

X1 X2

×
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A grammar for tractable models
Recursive semantics of probabilistic circuits

X1 X1 X1

w1 w2

×

X1 X2

×

X1 X2

×

X1 X2

w1 w2

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Building PCs in Python with SPFlow

import spn.structure.leaves.parametric.Parametric as param
from param import Categorical , Gaussian

PC = 0.4 * (Categorical(p=[0.2, 0.8], scope=0) *
(0.3 * (Gaussian(mean=1.0, stdev=1.0, scope=1) *

Categorical(p=[0.4, 0.6], scope=2))
+ 0.7 * (Gaussian(mean=-1.0, stdev=1.0, scope=1) *

Categorical(p=[0.6, 0.4], scope=2)))) \
+ 0.6 * (Categorical(p=[0.2, 0.8], scope=0) *

Gaussian(mean=0.0, stdev=0.1, scope=1) *
Categorical(p=[0.4, 0.6], scope=2))

Molina et al., “SPFlow: An easy and extensible library for deep probabilistic learning using
sum-product networks”, 2019 60/159



Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however …

PGMs Circuits

Nodes: random variables unit of computations
Edges: dependencies order of execution

Inference: conditioning

elimination

message passing

feedforward pass

backward pass

⇒ they are computational graphs, more like neural networks
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

X1

X2

X3

X4

X5

X6

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

×

just arbitrarily compose them like a neural network!
⇒ structural constraints needed for tractability
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Which structural constraints
to ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
⇒ just like in factorization!

×

X1 X2 X3

decomposable circuit

×

X1 X1 X3

non-decomposable circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 64/159



Smoothness
aka completeness

A sum node is smooth if its children depend of the same variable sets
⇒ otherwise not accounting for some variables

X1 X1

w1 w2

smooth circuit

X1 X2

w1 w2

non-smooth circuit

⇒ smoothness can be easily enforced [Shih et al. 2019]

Darwiche and Marquis, “A knowledge compilation map”, 2002 65/159



Smoothness + decomposability = tractable MAR

Computing arbitrary integrations (or summations)
⇒ linear in circuit size!

E.g., suppose we want to compute Z:∫
p(x)dx
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Smoothness + decomposability = tractable MAR

If p(x) =
∑

i wipi(x), (smoothness):

∫
p(x)dx =

∫ ∑
i

wipi(x)dx =

=
∑
i

wi

∫
pi(x)dx

⇒ integrals are “pushed down” to children

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

If p(x,y, z) = p(x)p(y)p(z), (decomposability):

∫ ∫ ∫
p(x,y, z)dxdydz =

=

∫ ∫ ∫
p(x)p(y)p(z)dxdydz =

=

∫
p(x)dx

∫
p(y)dy

∫
p(z)dz

⇒ integrals decompose into easier ones

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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leafs overX1 andX3 outputZi =
∫
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⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

× ×

× ×× ×

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR
⇒ linear in circuit size!

E.g. to compute p(x2, x4):

leafs overX1 andX3 outputZi =
∫
p(xi)dxi

⇒ for normalized leaf distributions: 1.0

leafs overX2 andX4 output EVI

feedforward evaluation (bottom-up)

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1

.83

X2

1.0

X3

.58

X4

1.0

X3

.77

X4
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Smoothness + decomposability = tractable CON

Analogously, for arbitrary conditional queries:

p(q | e) = p(q, e)

p(e)

1. evaluate p(q, e) ⇒ one feedforward pass

2. evaluate p(e) ⇒ another feedforward pass

⇒ …still linear in circuit size!

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Tractable MAR on PCs (Einsum Networks)

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 68/159

10, 958.72 nats (joint) 5, 387.55 nats (marginal)



Tractable CON on PCs (Einsum Networks)

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 69/159

Original Missing Conditional sample



Tractable MAR : Robotics

Pixels for scenes and abstractions for maps
decompose along circuit structures.

Fast and exact marginalization over unseen
or “do not care” scene and map parts for
hierarchical planning robot executions

Pronobis and Rao, “Learning Deep Generative Spatial Models for Mobile Robots”, 2016
Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning
in large-scale environments”, 2017
Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”,
2018 70/159



Smoothness + decomposability = tractable MAP

We can also decompose bottom-up a MAP query:

argmax
q

p(q | e)
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Smoothness + decomposability = tractable MAP

We cannot decompose bottom-up a MAP query:

argmax
q

p(q | e)

since for a sum node we are marginalizing out a latent variable

argmax
q

∑
i

wipi(q, e) = argmax
q

∑
z

p(q, z, e) ̸=
∑
z

argmax
q

p(q, z, e)

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]

72/159



Determinism
aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
⇒ e.g. if their distributions have disjoint support

×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

deterministic circuit

×

X1 X2

×

X1 X2

w1 w2

non-deterministic circuit

Darwiche and Marquis, “A knowledge compilation map”, 2002 73/159



Determinism + decomposability = tractable MAP

Computing maximization with arbitrary evidence e
⇒ linear in circuit size!

E.g., suppose we want to compute:

max
q

p(q | e)

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

If p(q, e) =
∑

i wipi(q, e) = maxi wipi(q, e),
(deterministic sum node):

max
q

p(q, e) = max
q

∑
i

wipi(q, e)

= max
q

max
i

wipi(q, e)

= max
i

max
q

wipi(q, e)

⇒ one non-zero child term, thus sum is max

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

74/159



Determinism + decomposability = tractable MAP

If p(q, e) = p(qx, ex,qy, ey) = p(qx, ex)p(qy, ey)
(decomposable product node):

max
q

p(q | e) = max
q

p(q, e)

= max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size! × ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and top-down ⇒ still linear in circuit size!

E.g., for argmaxx1,x3
p(x1, x3 | x2, x4):

1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(x2, x4) bottom-up

3. retrieve max activations top-down

4. compute MAP states forX1 andX3 at leaves

× ×

max

max max

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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× ×
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max max

× ×× ×
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MAP inference : image segmentation

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017
Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016
Friesen and Domingos, “Submodular Sum-product Networks for Scene Understanding”, 2016 75/159



Determinism + decomposability = tractable MMAP

Analogously, we could also do a MMAP query?:

argmax
q

∑
z

p(q, z | e)

76/159



Determinism + decomposability = tractable MMAP

We cannot decompose a MMAP query!

argmax
q

∑
z

p(q, z | e)

we still have latent variables to marginalize…

We need more structural properties!
⇒ more advanced queries in Part 4 later…
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Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable

smooth

deterministic

circuits

Therefore they support
tractable

EVI

MAR/CON

MAP

D

C

A B

80/159



Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

⇒ parameters are attached to the leaves
⇒ …but can be moved to the sum node edges [Rooshenas et al. 2014]

Lowd and Rooshenas, “Learning Markov Networks With Arithmetic Circuits”, 2013 81/159



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

× ×

× ×× ×

X3 X4

X1 X2 X1 X2

0.3 0.7

0.5 0.5 0.9 0.1

⇒ deterministic SPNs are also called selective [Peharz et al. 2014]
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Cutset Networks (CNets)

CNets
[Rahman et al. 2014] are

decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014
Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015 83/159



Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014a] are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015
Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 84/159



Probabilistic Decision Graphs

PDGs [Jaeger 2004] are
structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Jaeger, “Probabilistic decision graphs—combining verification and AI techniques for probabilistic
inference”, 2004
Jaeger et al., “Learning probabilistic decision graphs”, 2006 85/159



AndOrGraphs

AndOrGarphs
[Dechter et al. 2007] are

structured
decomposable

smooth

deterministic

They support tractable

EVI

MAR/CON

MAP

Complex queries!

Dechter and Mateescu, “AND/OR search spaces for graphical models”, 2007
Marinescu and Dechter, “Best-first AND/OR search for 0/1 integer programming”, 2007 86/159
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How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:

Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs

MADEs [Germain et al. 2015]

VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013
Peharz et al., “Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019 88/159



How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81
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Hybrid intractable + tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

⇒ decomposing a joint ELBO: better lower-bounds than a single VAE
⇒ more expressive efficient and less data hungry

Tan and Peharz, “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 90/159
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Learning probabilistic circuits

A probabilistic circuit C over variablesX is a computational graph encoding
a (possibly unnormalized) probability distribution p(X) parameterized byΩ

Learning a circuit C from dataD can therefore involve learning the graph
(structure) and/or its parameters
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Learning probabilistic circuits
Parameters Structure
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Stay tuned for...

Next: 1. How to learn circuit parameters?
⇒ convex optimization, EM, SGD, Bayesian learning, …

2. How to learn the structure of circuits?
⇒ local search, random structures, ensembles, …

After: How circuits are related to other tractable models?

94/159



Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

…end of Learning section!
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Learning probabilistic circuits

Probabilistic circuits are (peculiar) neural networks… just backprop with SGD!

wait but…

SGD is slow to converge…can we do better?

How to learn normalized weights?

Can we exploit structural properties somehow?
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Learning input distributions
As simple as tossing a coin

X1

The simplest PC: a single input distribution pL with parameters θ
⇒ maximum likelihood (ML) estimation over dataD
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Learning input distributions
As simple as tossing a coin

X1

The simplest PC: a single input distribution pL with parameters θ
⇒ maximum likelihood (ML) estimation over dataD

E.g. Bernoulli with parameter θ

θ̂ML =

∑
x∈D 1[x = 1] + α

|D|+ 2α
⇒ Laplace smoothing
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Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))
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Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Where:

A(θ) : log-normalizer

h(x) base-measure

T (x) sufficient statistics

θ natural parameters

orϕ expectation parameters — 1:1 mapping with θ⇒θ = θ(ϕ)
97/159



Learning input distributions
General case: still simple

Bernoulli, Gaussian, Dirichlet, Poisson, Gamma are exponential families of the form:

pL(x) = h(x) exp(T (x)Tθ − A(θ))

Maximum likelihood estimation is still “counting”:

ϕ̂ML = ED[T (x)] =
1

|D|
∑
x∈D

T (x)

θ̂ML = θ(ϕ̂ML)
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The simplest “real” PC: a sum node
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Recall that sum nodes representmixture models:

pS(x) =
K∑
k=1

wkpLk(x)
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Recall that sum nodes represent latent variable models:

pS(x) =
K∑
k=1

p(Z = k)p(x | Z = k)
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Expectation-Maximization (EM)
Learning latent variable models: the EM recipe

Expectation-maximization=maximum-likelihood under missing data.

Given: p(X,Z) whereX observed, Zmissing at random.

θnew ← argmaxθ Ep(Z |X;θold) [log p(X,Z;θ)]
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Expectation-Maximization for mixtures

θnew ← argmaxθ Ep(Z |X;θold) [log p(X, Z;θ)]

ML if Z was observed:

ŵk =

∑
z∈D 1[z = k]

|D|
ϕ̂k =

∑
x,z∈D 1[z = k]T (x)∑

z∈D 1[z = k]

Z is unobserved—but we have p(Z = k |x) ∝ wk Lk(x).

wnew
k =

∑
x∈D p(Z = k |x)

|D|
ϕnew

k =

∑
x,z∈D p(Z = k |x)T (x)∑

z∈D p(Z = k |x)
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Expectation-Maximization for PCs

EM for mixtures well understood.

Mixtures are PCs with 1 sum node.

The general case, PCs with many sum nodes, is similar …

…but a bit more complicated.
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…but a bit more complicated.
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Expectation-Maximization for PCs
[Peharz et al. 2016]

X X
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Expectation-Maximization for PCs
[Peharz et al. 2016]
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Expectation-Maximization for PCs
[Peharz et al. 2016]

X X

w1 w2

102/159

P (Z = 1 | ctx=1) P (Z = 2 | ctx=1)

P (X |Z = 1, ctx=1) P (X |Z = 2, ctx=1)

ctx = 1



Expectation-Maximization
Tractable MAR (smooth, decomposable)
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For learning, we need to know
for each sum S:

1. Is S reached (ctx =?)

2. Which child does it select (ZS =?)
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Expectation-Maximization
Tractable MAR (smooth, decomposable)
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For learning, we need to know
for each sum S:

1. Is S reached (ctx =?)

2. Which child does it select (ZS =?)

We can infer it: p(ctx, ZS |x)



Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 104/159
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Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ This also works with missing values in x!

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 104/159



Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ Similar updates for leaves, when in exponential family.

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 104/159



Expectation-Maximization
Tractable MAR (smooth, decomposable)

wnew
i,j ←

∑
x∈D p[ctxi = 1, Zi = j |x;wold]∑

x∈D p[ctxi = 1 |x;wold]

We get all the required statistics with a single backprop pass:

p[ctxi = 1, Zi = j |x;wold] =
1

p(x)

∂p(x)

∂Si(x)
Nj(x)w

old
i,j

⇒ also derivable from a concave-convex procedure (CCCP) [Zhao et al. 2016b]

Darwiche, “A Differential Approach to Inference in Bayesian Networks”, 2003
Peharz et al., “On the Latent Variable Interpretation in Sum-Product Networks”, 2016 104/159



EM with Einsum Networks @PyTorch

Creating a PC as an EinsumNetwork [Peharz et al. 2020] for MNIST

train_x , valid_x , test_x = get_mnist_images([7])

graph = Graph.poon_domingos_structure(shape=(28,28), delta=[7])
args = EinsumNetwork.Args(num_var=train_x.shape[1], num_dims=1,

num_classes=1, num_sums=28,
num_input_distributions=28,
exponential_family=EinsumNetwork.BinomialArray ,
exponential_family_args={'N':255},
online_em_frequency=1, online_em_stepsize=0.05)

PC = EinsumNetwork.EinsumNetwork(graph, args)
PC.initialize()
PC.to('cuda')

https://github.com/cambridge-mlg/EinsumNetworks 105/159
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EM with Einsum Networks @PyTorch

…and training its parameters with EM

for epoch_count in range(10):
train_ll , valid_ll , test_ll = compute_loglikelihood()
start_t = time.time()

for idx in get_batches(train_x , 100):
outputs = PC.forward(train_x[idx, :])
log_likelihood = EinsumNetwork.log_likelihoods(outputs).sum()
log_likelihood.backward()
PC.em_process_batch()

print_performance(epoch_count , train_ll , valid_ll , test_ll , time.time() - start_t)

https://github.com/cambridge-mlg/EinsumNetworks 106/159
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EM with Einsum Networks @PyTorch

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”,
2020 107/159



Expectation-Maximization
Tractable MAR/MAP (smooth, decomposable, deterministic)
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Deterministic circuit⇒ at most one non-zero sum child (for complete input).
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Likewise, if the first child is non-zero:
⇒ P (Z = 1 |x) = 1

Thus, the latent variables are actually observed in deterministic circuits!
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Thus, the latent variables are actually observed in deterministic circuits!



Example
Tractable MAR/MAP (smooth, decomposable, deterministic)
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Example
Tractable MAR/MAP (smooth, decomposable, deterministic)
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For each sum node, we know

1. if it is reached (ctx = 1)

2. which child it selects

⇒ MLE by counting!



Exact ML
Tractable MAR/MAP (smooth, decomposable, deterministic)

Given a complete datasetD, the maximum-likelihood sum-weights are:

wML
i,j =

∑
x∈D 1{x |= [i ∧ j]}∑

x∈D 1{x |= [i]}

⇒ global maximum with single pass overD
⇒ regularization, e.g. Laplace-smoothing, to avoid division by zero

⇒ when missing data, fallback to EM

Kisa et al., “Probabilistic sentential decision diagrams”, 2014
Peharz et al., “Learning Selective Sum-Product Networks”, 2014 111/159
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Training PCs in Julia with Juice.jl
Training maximum likelihood parameters of probabilistic circuits
with determinism is incredibly fast.

julia> using ProbabilisticCircuits;
julia> data, structure = load(...);
julia> num_examples(data)
17412
julia> num_edges(structure)
270448
julia> @btime estimate_parameters(structure , data);

63.585 ms (1182350 allocations: 65.97 MiB)

Custom SIMD and CUDA kernels to parallelize over layers and training examples.

https://github.com/Juice-jl/ 112/159
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Bayesian parameter learning

Formulate a prior p(w,θ) over sum-weights and leaf-parameters and perform posterior
inference:

p(w,θ|D) ∝ p(w,θ) p(D|w,θ)

Moment matching (oBMM) [Jaini et al. 2016; Rashwan et al. 2016]

Collapsed variational inference algorithm [Zhao et al. 2016a]

Gibbs sampling [Trapp et al. 2019; Vergari et al. 2019]
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Learning probabilistic circuits
Parameters Structure
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closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016b]
SGD [Sharir et al. 2016; Peharz et al. 2019b]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016a; Trapp et al. 2019; Vergari et al. 2019]
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Image-tailored (handcrafted) structures
“Recursive Image Slicing”
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⇒ Smooth & Decomposable
⇒ Tractable MAR
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“Recursive Data Slicing” — LearnSPN

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013 116/159
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Try to find independent groups
of random variables
Fail→ cluster→ sum node
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“Recursive Data Slicing” — LearnSPN
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⇒ Continue until no further
leaf can be expanded.
⇒ Clustering ratios also deliver
(initial) parameters.
⇒ Smooth & Decomposable
⇒ Tractable MAR



LearnSPN
Variants

ID-SPN [Rooshenas et al. 2014]

LearnSPN-b/T/B [Vergari et al. 2015]

for heterogeneous data [Molina et al. 2018]

using k-means [Butz et al. 2018] or SVD splits [Adel et al. 2015]

learning DAGs [Dennis et al. 2015; Jaini et al. 2018]

approximating independence tests [Di Mauro et al. 2018]
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Convert into PC… Resulting PC
is deterministic.



Cutset networks (CNets)
Variants

Variable selection based on entropy [Rahman et al. 2014]

Can be extended to mixtures of CNets using EM [ibid.]

Structure search over OR-graphs/CL-trees [Di Mauro et al. 2015b]

Boosted CNets [Rahman et al. 2016]

Randomized CNets, Bagging [Di Mauro et al. 2017]
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Further Algorithms for Structure Learning
Variants

Greedy discrete optimization
[Lowd et al. 2008; Peharz et al. 2014; Liang et al. 2017a; Dang et al. 2020]

Randomized structures [Di Mauro et al. 2017; Peharz et al. 2019b]

Ensembles, Bagging [Di Mauro et al. 2015a,b], Boosting [Rahman et al. 2016]
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Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016b]
SGD [Sharir et al. 2016; Peharz et al. 2019b]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016a; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a; Dang et al. 2020]
random RAT-SPNs [Peharz et al. 2019b] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

? ?
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EVI inference : density estimation

dataset single models ensembles dataset single models ensembles

nltcs -5.99 [ID-SPN] -5.99 [LearnPSDDs] dna -79.88 [SPGM] -80.07 [SPN-btb]

msnbc -6.04 [Prometheus] -6.04 [LearnPSDDs] kosarek -10.59 [Prometheus] -10.52 [LearnPSDDs]

kdd -2.12 [Prometheus] -2.12 [LearnPSDDs] msweb -9.73 [ID-SPN] -9.62 [XCNets]

plants -12.54 [ID-SPN] -11.84 [XCNets] book -34.14 [ID-SPN] -33.82 [SPN-btb]

audio -39.77 [BNP-SPN] -39.39 [XCNets] movie -51.49 [Prometheus] -50.34 [XCNets]

jester -52.42 [BNP-SPN] -51.29 [LearnPSDDs] webkb -151.84 [ID-SPN] -149.20 [XCNets]

netflix -56.36 [ID-SPN] -55.71 [LearnPSDDs] cr52 -83.35 [ID-SPN] -81.87 [XCNets]

accidents -26.89 [SPGM] -29.10 [XCNets] c20ng -151.47 [ID-SPN] -151.02 [XCNets]

retail -10.85 [ID-SPN] -10.72 [LearnPSDDs] bbc -248.5 [Prometheus] -229.21 [XCNets]

pumbs* -22.15 [SPGM] -22.67 [SPN-btb] ad -15.40 [CNetXD] -14.00 [XCNets]
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Learning probabilistic circuits
Parameters Structure

G
en

er
at
iv
e deterministic

closed-form MLE [Kisa et al. 2014b; Peharz et al. 2014]
non-deterministic
EM [Poon et al. 2011; Peharz 2015; Zhao et al. 2016b]
SGD [Sharir et al. 2016; Peharz et al. 2019b]
Bayesian [Jaini et al. 2016; Rashwan et al. 2016]
[Zhao et al. 2016a; Trapp et al. 2019; Vergari et al. 2019]

greedy
top-down [Gens et al. 2013; Rooshenas et al. 2014]
[Rahman et al. 2014; Vergari et al. 2015]
bottom-up [Peharz et al. 2013]
hill climbing [Lowd et al. 2008, 2013; Peharz et al. 2014]
[Dennis et al. 2015; Liang et al. 2017a; Dang et al. 2020]
random RAT-SPNs [Peharz et al. 2019b] XCNet [Di Mauro et al. 2017]

Di
sc
ri
m
in
at
iv
e

deterministic
convex-opt MLE [Liang et al. 2019]
non-deterministic
EM [Rashwan et al. 2018]
SGD [Gens et al. 2012; Sharir et al. 2016]
[Peharz et al. 2019b]

greedy
top-down [Shao et al. 2019]
hill climbing [Rooshenas et al. 2016; Liang et al. 2019]
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Advanced Representations



D

C

A B

X1

X2 X3

C1

C2 C3
0.4 0.6

X4X5

X6 X3

0.7

X5X6

X4 X2

0.8

X5X4

X6 X2

0.2

X3X6

X5 X4

0.3

From Part 1: probabilistic circuits unify tractable
probabilistic models
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Tractability to other semi-rings

Tractable probabilistic inference exploits efficient summation for decomposable
functions in the probability commutative semiring:

(R,+,×, 0, 1)
analogously efficient computations can be done in other semi-rings:

(S,⊕,⊗, 0⊕, 1⊗)
⇒ Algebraic model counting [Kimmig et al. 2017], Semi-ring

programming [Belle et al. 2016]
Historically, very well studied for boolean functions:

(B = {0, 1},∨,∧, 0, 1) ⇒ logical circuits!
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Logical circuits

∧ ∧

∨

X̄4 X̄3

∨ ∨

∧ ∧∧ ∧

X3 X4

X1 X2 X̄1 X̄2

s/d-D/NNFs
[Darwiche et al. 2002a]

O/BDDs
[Bryant 1986]

SDDs
[Darwiche 2011]

Logical circuits are compact representations for boolean functions…
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Logical circuits
structural properties

…and like probabilitistic circuits, one can define structural properties: (structured)
decomposability, smoothness, determinism allowing for tractable computations

Darwiche and Marquis, “A knowledge compilation map”, 2002 128/159



Logical circuits
a knowledge compilation map

…inducing a hierarchy of tractable logical circuit families

Darwiche and Marquis, “A knowledge compilation map”, 2002 129/159



Logical circuits
connection to probabilistic circuits through WMC

A task called weighted model counting (WMC)

WMC(∆, w) =
∑
x|=∆

∏
l∈x

w(l)

Probabilistic inference by WMC:
1. Encode probabilistic model as WMC formula∆
2. Compile∆ into a logical circuit (e.g. d-DNNF, OBDD, SDD, etc.)
3. Tractable MAR/CON by tractable WMC on circuit
4. Answer complex queries tractably by enforcing more structural properties
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Logical circuits
connection to probabilistic circuits through WMC

Resulting compiled WMC circuit equivalent to probabilistic circuit
⇒ parameter variables→ edge parameters

λā λa

×× × ×

θa|c̄θā|c̄ θā|c θa|c θb̄|c̄ θb|c̄

λb̄ λb

×× × ×

θb̄|c θb|c

λc̄ λc

× ×

θc̄ θc

Compiled circuit of WMC encoding

A = ā A = a

θā|c̄ θa|c̄ θā|c θa|c

B = b̄ B = b

θb̄|c̄ θb|c̄ θb̄|c θb|cC = c̄ C = c

× ×

θc̄ θc

Equivalent probabilistic circuit
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From BN trees to circuits
via compilation

D

C

A B

→

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1
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From BN trees to circuits
via compilation

D

C

A B

Bottom-up compilation: starting from leaves…
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.3 .7

p(A|C = 0)
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT

A = 0 A = 1

.6 .4

p(A|C = 1)
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From BN trees to circuits
via compilation

D

C

A B

…compile a leaf CPT…for all leaves…

A = 0 A = 1 B = 0 B = 1

p(A|C) p(B|C)
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From BN trees to circuits
via compilation

D

C

A B

…and recurse over parents…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.2
.8

p(C|D = 0)
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From BN trees to circuits
via compilation

D

C

A B

…while reusing previously compiled nodes!…

A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

.9

.1

p(C|D = 1)
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From BN trees to circuits
via compilation

D

C

A B
A = 0 A = 1 B = 0 B = 1

C = 0 C = 1

× ×

× ×

D = 0 D = 1

.5 .5

p(D)
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Compilation : probabilistic programming

Chavira et al., “Compiling relational Bayesian networks for exact inference”, 2006
Holtzen et al., “Symbolic Exact Inference for Discrete Probabilistic Programs”, 2019
De Raedt et al.; Riguzzi; Fierens et al.; Vlasselaer et al., “ProbLog: A Probabilistic Prolog and Its
Application in Link Discovery.”; “A top down interpreter for LPAD and CP-logic”; “Inference and
Learning in Probabilistic Logic Programs using Weighted Boolean Formulas”; “Anytime Inference in
Probabilistic Logic Programs with Tp-compilation”, 2007; 2007; 2015; 2015
Olteanu et al.; Van den Broeck et al., “Using OBDDs for efficient query evaluation on probabilistic
databases”; Query Processing on Probabilistic Data: A Survey, 2008; 2017
Vlasselaer et al., “Exploiting Local and Repeated Structure in Dynamic Bayesian Networks”, 2016 133/159



Smooth ∨ decomposable ∨ deterministic
∨ structured decomposable PCs?

smooth dec. det. str.dec.

Arithmetic Circuits (ACs) [Darwiche 2003] 4 4 4 8
Sum-Product Networks (SPNs) [Poon et al. 2011] 4 4 8 8

Cutset Networks (CNets) [Rahman et al. 2014] 4 4 4 8
Probabilistic Decision Graphs [Jaeger 2004] 4 4 4 4

PSDDs [Kisa et al. 2014a] 4 4 4 4
AndOrGraphs [Dechter et al. 2007] 4 4 4 4
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Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X2

×

X1 X2

X3

×

×

X1 X2

×

X1 X2

X3

×

structured decomposable circuit
135/159



Structured decomposability

A product node is structured decomposable if decomposes according to a node in a vtree
⇒ stronger requirement than decomposability

X3

X1 X2

vtree

×

X1 X3

×

X1 X3

X2

×

×

X1 X2

×

X1 X2

X3

×

non structured decomposable circuit
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Probability of logical events

q8: What is the probability of having a traffic jam on
my route to campus?

© fineartamerica.com

136/159
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Probability of logical events

q8: What is the probability of having a traffic jam on
my route to campus?

q8(m) = pm(
∨

i∈route JamStr i)

⇒ marginals + logical events

© fineartamerica.com
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Smoothness + structured decomp. = tractable PR

Computing p(α): the probability of arbitrary
logical formula

Multilinear in circuit sizes if the logical circuit:

is smooth, structured decomposable,
deterministic

shares the same vtree

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3

137/159



Smoothness + structured decomp. = tractable PR

If p(x) =
∑

i wipi(x),α =
∨

j αj ,
(smooth p)
(smooth + deterministicα):

p(α) =
∑
i

wipi

∨
j

αj

 =
∑
i

wi

∑
j

pi (αj)

⇒ probabilities are “pushed down” to
children

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

If p(x,y) = p(x)p(y),α = β ∧ γ ,
(structured decomposability):

p(α) = p (β ∧ γ) · p (β ∧ γ) = p (β) · p (γ)

⇒ probabilities decompose into simpler
ones

× ×

× ×
X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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Smoothness + structured decomp. = tractable PR

To compute p(α):

compute the probability for each pair of
probabilistic and logical circuit nodes for
the same vtree node

⇒ cache the values!

feedforward evaluation (bottom-up)

× ×

× ×

X3 X3

X1X2 X2 X1

X3

∧

∨

∨

∧ ∧

X1 > 0.6 ¬X2 X1 ≤ 0.3
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structured decomposability = tractable…
Symmetric and group queries (exactly-k, odd-number, etc.) [Bekker et al. 2015]

For the “right” vtree

Probability of logical circuit event in probabilistic circuit [Choi et al. 2015b]

Multiply two probabilistic circuits [Shen et al. 2016]

KL Divergence between probabilistic circuits [Liang et al. 2017b]

Same-decision probability [Oztok et al. 2016]

Expected same-decision probability [Choi et al. 2017]

Expected classifier agreement [Choi et al. 2018]

Expected predictions [Khosravi et al. 2019b]
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ADV inference : expected predictions

Reasoning about the output of a classifier or regressor f given
a distribution p over the input features

⇒ missing values at test time
⇒ exploratory classifier analysis

E
xm∼pθ(xm|xo)

[
fk
ϕ (x

m,xo)
]

Closed form moments for f and p as structured decomposable
circuits with same v-tree

Khosravi et al., “On Tractable Computation of Expected Predictions”, 2019 139/159



ADV inference in Julia with Juice.jl

using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

q8: How different is the insurance costs between smokers and non smokers?

groups = make_observations([["!smoker"], ["smoker"]])
exps, _ = Expectation(pc, rc, groups);
println("Smoker    : \$ $(exps[2])");
println("Non-Smoker: \$ $(exps[1])");
println("Difference: \$ $(exps[2] - exps[1])");
Smoker : $ 31355.32630488978
Non-Smoker: $ 8741.747258310648
Difference: $ 22613.57904657913

https://github.com/Juice-jl/ 140/159
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ADV inference in Julia with Juice.jl

using ProbabilisticCircuits
pc = load_prob_circuit(zoo_psdd_file("insurance.psdd"));
rc = load_logistic_circuit(zoo_lc_file("insurance.circuit"), 1);

q9: Is the predictive model biased by gender?

groups = make_observations([["male"], ["female"]])
exps, _ = Expectation(pc, rc, groups);
println("Female  : \$ $(exps[2])");
println("Male    : \$ $(exps[1])");
println("Diff    : \$ $(exps[2] - exps[1])");
Female : $ 14170.125469335406
Male : $ 13196.548926381849
Diff : $ 973.5765429535568

https://github.com/Juice-jl/ 141/159
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Stay tuned for...

Next: 1. How precise is the characterization of tractable circuits by
structural properties? ⇒ necessary conditions

2. How do structural constraints affect the circuit sizes?
⇒ succinctness analysis

After: Conclusions!
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow tractable computation of
marginal queries.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

× ×× ×
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1.0

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

1.0

X1

.61

X2

1.0

X1
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow tractable computation of
marginal queries.

⇒ Are these properties necessary?

× ×

× ×× ×
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Smoothness + decomposability = tractable MAR

Recall: Smoothness and decomposability allow tractable computation of
marginal queries.

⇒ Are these properties necessary?
⇒ Yes! Otherwise, integrals do not decompose.

× ×

× ×× ×
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow tractable computation of MAP
queries.

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×
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Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow tractable computation of MAP
queries.

⇒ However, decomposability is not necessary!

× ×

× ×× ×
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X3 X4 X3 X4

× ×
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max max

× ×× ×

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

.35 .64

.49

.58 .77

.58 .77.58 .77

.66

X1

.61

X2

.2

X1

.83

X2

1.2

X3

.58

X4

1.8

X3

.77

X4

144/159



Determinism + decomposability = tractable MAP

Recall: Determinism and decomposability allow tractable computation of MAP
queries.

⇒ However, decomposability is not necessary!
⇒ A weaker condition, consistency, suffices.

× ×

× ×× ×

X1

X2
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X2

X3 X4 X3 X4

× ×

max

max max

× ×× ×
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Consistency

A product node is consistent if any variable shared between its children appears in a
single leaf node

⇒ decomposability implies consistency

X1 X2 X3

×

w1 w2 w3 w4

consistent circuit

X1 X2 ≤ θ X2 > θ X3

×

w1 w2 w3 w4

inconsistent circuit 145/159



Determinism + consistency = tractable MAP
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Determinism + consistency = tractable MAP

Ifmaxqshared p(q, e) =
maxqshared p(qx, ex) ·maxqshared p(qy, ey) (consistent):

max
q

p(q, e) = max
qx,qy

p(qx, ex,qy, ey)

= max
qx

p(qx, ex) ·max
qy

p(qy, ey)

⇒ solving optimization independently

× ×

× ×× ×

X1

X2

X1

X2

X3 X4 X3 X4
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Expressive efficiency of circuits

Tractability is defined w.r.t. the size of the model.

How do structural constraints affect expressive efficiency (succinctness) of
probabilistic circuits?

⇒ Again, connections to logical circuits
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Expressive efficiency of circuits

A family of probabilistic circuitsM1 is at least as succinct asM2

iff for everym2 ∈M2, there existsm1 ∈M1 that represents

the same distribution and |m1| ≤ |poly(m2)|.
⇒ denotedM1 ≤M2

⇒ strictly more succinct iffM1 ≤M2 andM1 ̸≥ M2
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

?

Are smooth&decomposable circuits as
succinct as deterministic & consistent ones,
or vice versa?
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Smooth&decomposable circuits strictly
more succinct than
deterministic&decomposable ones

Smooth&consistent circuits are equally
succinct as smooth&decomposable ones
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

? det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

?
≤

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤
≤,
̸≥

Consider following circuit over Boolean variables:∏r
i (Yi · Zi1 + (¬Yi) · Zi2), Zij ∈ X

Size linear in the number of variables

Deterministic and consistent

Marginal (with no evidence) is the solution
to #P-hard SAT′ problem [Valiant 1979]⇒
no tractable circuit for marginals!
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Expressive efficiency of circuits

smooth & Decomp.

MAR

det. & cons.

MAP

det. & Decomp.

[Darwiche et al. 2002b]

: strictly more succinct

smooth & cons.

[Peharz et al. 2015]*

: equally succinct

̸≤

̸≤

Consider the marginal distribution p(X) from a
naive Bayes distribution p(X, C):
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Conclusions



Why tractable inference?
or expressiveness vs tractability

Probabilistic circuits
a unified framework for tractable probabilistic modeling

Learning circuits
learning their structure and parameters from data

Advanced representations
tracing the boundaries of tractability and connections to other formalisms
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Q:M
GANs

VAEs

Flows

Trees

Mixtures

Factorized
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I
I
I
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takeaway #1: tractability is a spectrum
152/159



m
or
e
ex

pr
es
si
ve

effi
ci
en

t

le
ss

ex
pr
es
si
ve

effi
ci
en

t

more tractable queries

less tractable queries
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CNets

BNs

NFs

ACsAoGs

NADEs

MNs
VAEs

GANs

Fully factorized
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takeaway #2: you can be both tractable and expressive
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×

X1 X2 X3 X1 X1

w1 w2
×

X1 ≤ θ X2

×

X1 > θ X2

w1 w2

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning
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Challenge #1
scaling tractable learning

Learn tractable models
onmillions of datapoints
and thousands of features
in tractable time!
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Challenge #2
deep theoretical understanding

Trace a precise picture
of the whole tractabile spectrum
and complete the map of succintness!
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Challenge #3
advanced and automated reasoning

Move beyond single probabilistic queries
towards fully automated reasoning!
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Readings

Probabilistic circuits: Representation and Learning
starai.cs.ucla.edu/papers/LecNoAAAI20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65po5d

Slides for this tutorial
starai.cs.ucla.edu/slides/CS201.pdf
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Code

Juice.jl advanced logical+probabilistic inference with circuits in Julia
github.com/Juice-jl/ProbabilisticCircuits.jl

SumProductNetworks.jl SPN routines in Julia
github.com/trappmartin/SumProductNetworks.jl
SPFlow easy and extensible python library for SPNs
github.com/SPFlow/SPFlow
Libra several structure learning algorithms in OCaml
libra.cs.uoregon.edu

More refs ⇒ github.com/arranger1044/awesome-spn
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