

Tractable Deep Generative Models

Guy Van den Broeck

Dagstuhl - Feb 16 2023

Controlled generation is still challenging ...

H generate a sentence with "pan" as the third word and "vegetable" as the fifth word.

Generate image

What do we have?

Prefix: "The weather is"

Constraint α: text contains "winter"

Model only does
$$p(\text{next-token}|\text{prefix}) = \frac{\text{cold}}{\text{warm}} \frac{0.05}{0.10}$$

Train some $q(. | \alpha)$ for a specific task distribution $\alpha \sim p_{\mathrm{task}}$ (amortized inference, encoder, masked model, seq2seq, prompt tuning,...)

Train $q(\text{next-token}|\text{prefix}, \alpha)$

What do we need?

Prefix: "The weather is"

Constraint α: text contains "winter"

$$\propto \sum_{\text{text}} p(\text{next-token, text, prefix}, \alpha)$$

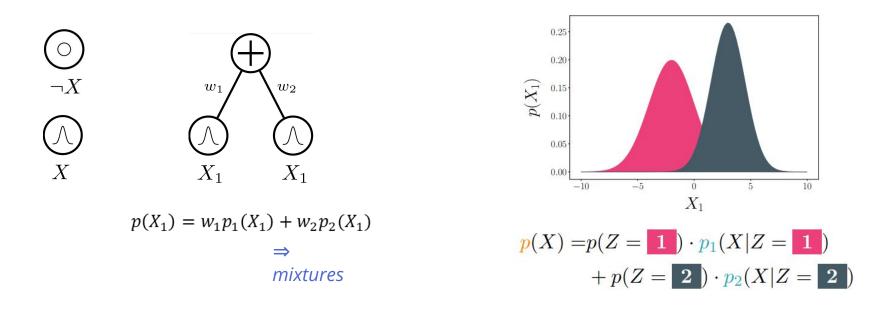
Marginalization!

Probabilistic circuits

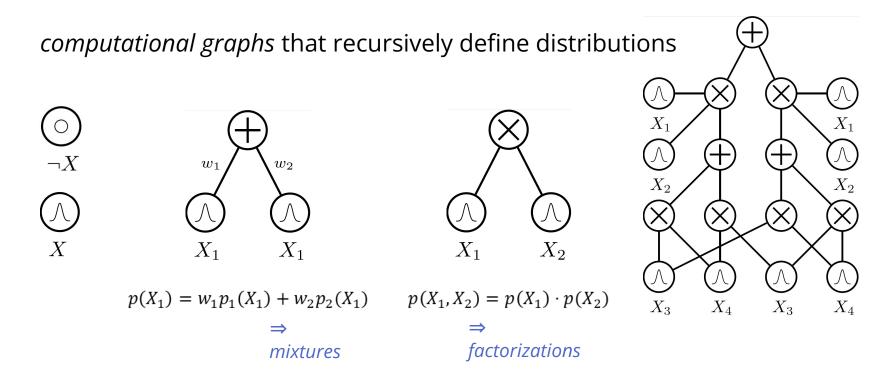
computational graphs that recursively define distributions

Probabilistic circuits

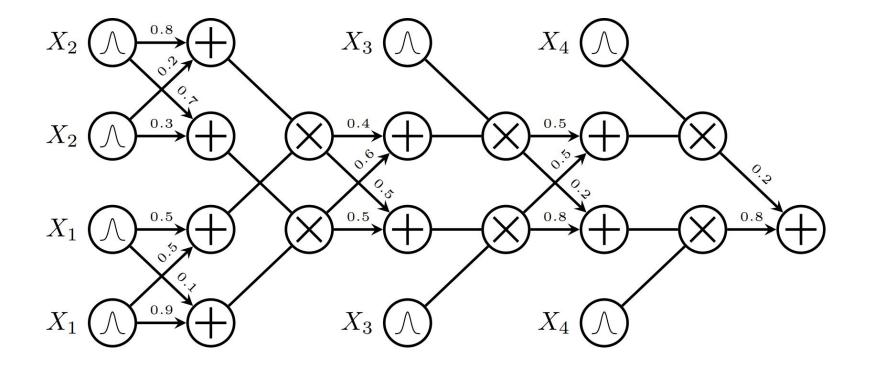
computational graphs that recursively define distributions



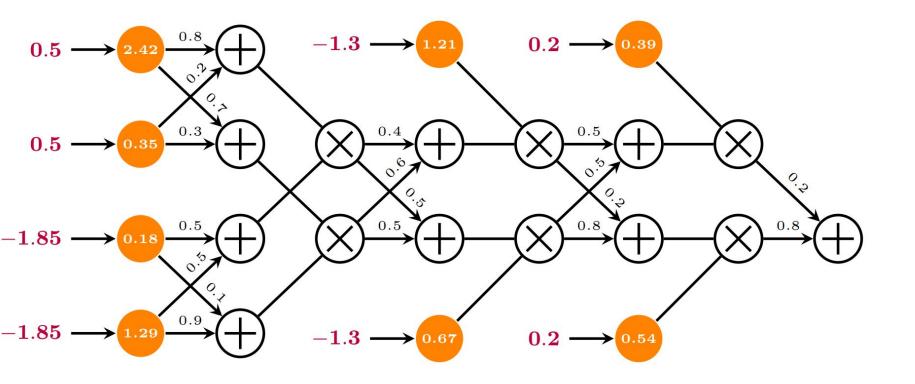
Probabilistic circuits



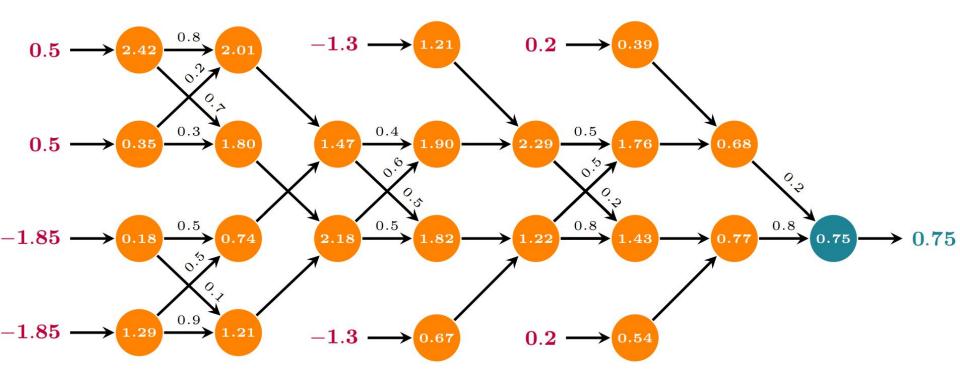
Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



Likelihood $p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$



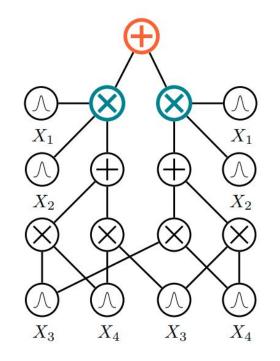
Likelihood
$$p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$$



If $m{p}(\mathbf{x}) = \sum_i w_i m{p}_i(\mathbf{x})$, (smoothness):

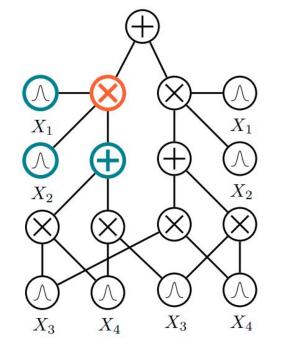
$$\int \mathbf{p}(\mathbf{x}) d\mathbf{x} = \int \sum_{i} w_{i} \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x} =$$
$$= \sum_{i} w_{i} \int \mathbf{p}_{i}(\mathbf{x}) d\mathbf{x}$$

 \Rightarrow integrals are "pushed down" to children



If $p(\mathbf{x}, \mathbf{y}, \mathbf{z}) = p(\mathbf{x})p(\mathbf{y})p(\mathbf{z})$, (decomposability):

$$\int \int \int \mathbf{p}(\mathbf{x}, \mathbf{y}, \mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \int \int \int \mathbf{p}(\mathbf{x}) \mathbf{p}(\mathbf{y}) \mathbf{p}(\mathbf{z}) d\mathbf{x} d\mathbf{y} d\mathbf{z} =$$
$$= \int \mathbf{p}(\mathbf{x}) d\mathbf{x} \int \mathbf{p}(\mathbf{y}) d\mathbf{y} \int \mathbf{p}(\mathbf{z}) d\mathbf{z}$$

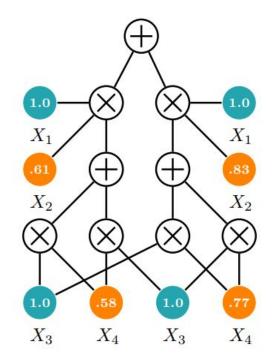


 \Rightarrow integrals decompose into easier ones

Forward pass evaluation for MAR

 \Rightarrow linear in circuit size!

E.g. to compute $p(x_2, x_4)$: leafs over X_1 and X_3 output $\mathbf{Z}_i = \int p(x_i) dx_i$ \Rightarrow for normalized leaf distributions: 1.0 leafs over X_2 and X_4 output **EV** feedforward evaluation (bottom-up)



Forward pass evaluation for MAR

 \Rightarrow linear in circuit size!

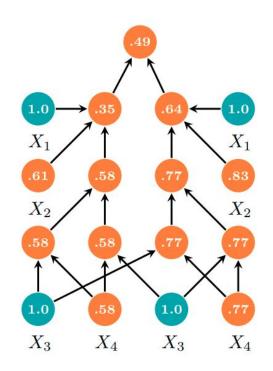
E.g. to compute $p(x_2, x_4)$:

leafs over X_1 and X_3 output $oldsymbol{Z}_i = \int p(x_i) dx_i$

 \Rightarrow for normalized leaf distributions: 1.0

leafs over X_2 and X_4 output **EVI**

feedforward evaluation (bottom-up)



	2008-2020
Tabular	•••
MNIST	$\mathbf{\Theta}$
F-MNIST	$\mathbf{\Omega}$
EMNIST-L	$\mathbf{\Theta}$
CIFAR	$\mathbf{\Theta}$
Imagenet32	$\mathbf{\Theta}$
Imagenet64	$\mathbf{\Theta}$

bpd	2008-2020	2020-2021
Tabular	•••	\odot
MNIST	\mathbf{Q}	😱 > 1.67
F-MNIST	\mathbf{Q}	😱 > 4.29
EMNIST-L	\mathbf{Q}	😱 > 2.73
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$
Imagenet64	\mathbf{O}	\odot

	2008-2020	2020-2021	ICLR 22
Tabular	•••	\odot	
MNIST	\mathbf{Q}	😱 > 1.67	1.20
F-MNIST	\mathbf{Q}	😱 > 4.29	3.34
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	😱 > 5.50
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	$\mathbf{\Theta}$
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	$\mathbf{\Theta}$

	2008-2020	2020-2021	ICLR 22	NeurIPS 22
Tabular	•••	\odot		
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14
F-MNIST	\mathbf{Q}	♀ > 4.29	3.34	3.27
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ > 5.50	\mathbf{Q}
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}

	Discrete Flow	Hierarchical VAE	PixelVAE
MNIST	1.90	1.27	1.39
F-MNIST	3.47	3.28	3.66
EMNIST-L	1.95	1.84	2.26

	2008-2020	2020-2021	ICLR 22	NeurIPS 22	ICLR 23
Tabular	•••	<u></u>			
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14	
F-MNIST	\mathbf{Q}	😱 > 4.29	3.34	3.27	
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58	
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ 5.50	$\mathbf{\Omega}$	4.38
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}		4.39
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	$\mathbf{\Theta}$	4.12

	2008-2020	2020-2021	ICLR 22	NeurIPS 22	ICLR 23	Today
Tabular	•••	\odot				
MNIST	\mathbf{Q}	😱 > 1.67	1.20	1.14		
F-MNIST	\mathbf{Q}	😱 > 4.29	3.34	3.27		2
EMNIST-L	\mathbf{Q}	😱 > 2.73	1.80	1.58		2
CIFAR	\mathbf{Q}	$\mathbf{\Theta}$	♀ > 5.50	$\mathbf{\Theta}$	4.38	3.87
Imagenet32	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	\mathbf{Q}	4.39	4.06
Imagenet64	\mathbf{Q}	$\mathbf{\Theta}$	\mathbf{Q}	$\mathbf{\Theta}$	4.12	3.80

	Flow	Hierarchical VAE	Diffusion
CIFAR	3.35	3.08	2.65
Imagenet32	4.09	3.96	3.72
Imagenet64	3.81	-	3.40

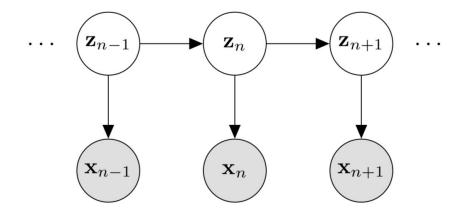
The *better* bitter lesson:
Scale up the fancy method!

- Custom GPU kernels [AAAI21]
- General-purpose architecture [NeurIPS21, ICLR22]
- Pruning without losing likelihood [NeurIPS22]
- Latent variable distillation [ICLR23]
 - Expectation Maximization < Embeddings

Controlled generation is still challenging ...

H generate a sentence with "pan" as the third word and "vegetable" as the fifth word.

Step 1: distill a PC that *approximates* the distribution of a LLM.



- Generate a *Probabilistic Circuit* architecture from a *Hidden Markov Model*
 - 50k emission tokens *x*
 - 4096 hidden states z
- Train on data sampled from GPT2-Large
- Same tricks as before (latent variable distillation)

Step 2: compute p(next-token | prefix, α) via PC

Dynamic programming in PyTorch using constraint α

Can be complex: many keywords, inflections, positions, ...

CommonGen: a challenging constrained generation benchmark:

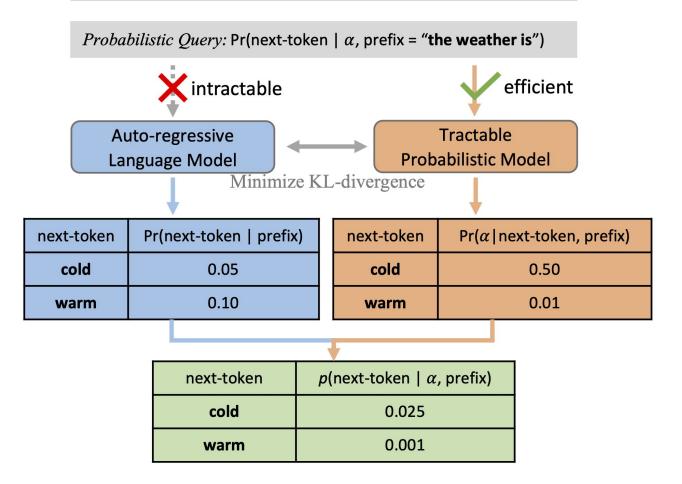
Method	Quality BLEU-4		Const Satisfa	
Unsupervised	test1	test2	test1	test2
InsNet (Lu et al., 2022a)	18.7	-	100.0	
NeuroLogic (Lu et al., 2021)	-	24.7	-	<96.7
A*esque (Lu et al., 2022b)	-	28.6	-	<97.1
NADO (Meng et al., 2022)	26.2	-	<96.1	-
PC	27.5	-	100.0	100.0

Step 3: let LLM & PC control auto-regressive generation together

Require both fluency β and constraint α : $p_{\text{PC}}(x_{t+1}|x_{1:t}, \alpha, \beta)$ $\propto p_{\text{PC}}(\alpha|x_{1:t+1}, \beta) \cdot p_{\text{PC}}(x_{t+1}|x_{1:t}, \beta)$ $\propto p_{\text{PC}}(\alpha|x_{1:t+1}) \cdot p_{\text{PC}}(x_{t+1}|x_{1:t}, \beta)$ (independence) $\propto p_{\text{PC}}(\alpha|x_{1:t+1}) \cdot p_{\text{LLM}}(x_{t+1}|x_{1:t})$ (sleight of hand)

Method	Quality BLEU-4		Const Satisfa	
Unsupervised	test1	test2	test1	test2
InsNet (Lu et al., 2022a)	18.7	-	100.0	
NeuroLogic (Lu et al., 2021)	-	24.7	-	<96.7
A*esque (Lu et al., 2022b)	-	28.6	-	<97.1
NADO (Meng et al., 2022)	26.2	-	<96.1	-
PC	27.5	-	100.0	100.0
PC & GPT2-Large	29.9	29.4	100.0	100.0

Lexical Constraint α *:* the sentence contains keyword "winter"



CommonGen: a challenging constrained generation task

Method	Quality BLEU-4		Const Satisfa	12
Unsupervised	test1	test2	test1	test2
InsNet (Lu et al., 2022a)	18.7	-	100.0	
NeuroLogic (Lu et al., 2021)	-	24.7	-	<96.7
A*esque (Lu et al., 2022b)	-	28.6	-	<97.1
NADO (Meng et al., 2022)	26.2	-	<96.1	-
PC	27.5	-	100.0	100.0
PC & GPT2-Large	29.9	29.4	100.0	100.0
Supervised	test1	test2	test1	test2
NeuroLogic (Lu et al., 2021)	-	26.7	-	93.9
A*esque (Lu et al., 2022b)	-	28.2	-	97.9
NADO (Meng et al., 2022)	30.8	-	88.8	-
PC & GPT2-Large	34.1	32.9	100.0	100.0

State-of-the-art performance on the CommonGen dataset, beating baselines from various families of constrained generation techniques with a large margin. All baselines use GPT2-large as the base model.

- Restrict the support of the learned distribution
 - "if the image is classified as a dog, it must also be an animal"

	Duminar	Excer	Mamari
	DATASET	EXACT	МАТСН
		HMCNN	MLP+SPL
SotA	CELLCYCLE	3.05 ± 0.11	3.79 ± 0.18
	DERISI	1.39 ± 0.47	2.28 ± 0.23
Hierarchical	EISEN	5.40 ± 0.15	6.18 ± 0.33
	EXPR	4.20 ± 0.21	5.54 ± 0.36
Multi-Label	GASCH1	3.48 ± 0.96	4.65 ± 0.30
	GASCH2	3.11 ± 0.08	3.95 ± 0.28
Classification	SEQ	5.24 ± 0.27	7.98 ± 0.28
Classification	SPO	1.97 ± 0.06	1.92 ± 0.11
	DIATOMS	48.21 ± 0.57	58.71 ± 0.68
	ENRON	5.97 ± 0.56	8.18 ± 0.68
	IMCLEF07A	79.75 ± 0.38	86.08 ± 0.45
	IMCLEF07D	76.47 ± 0.35	81.06 ± 0.68

- Restrict the support of the learned distribution
 - "if the image is classified as a dog, it must also be an animal"
 - "predict a sparse vector/subset"

SotA

Learning to

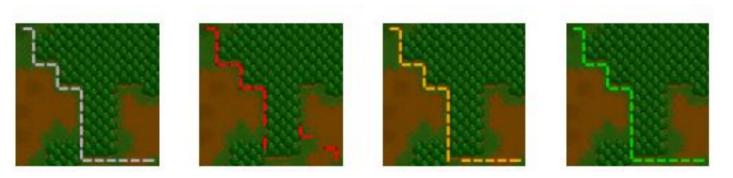
Method	Appearance		Palate		Taste	
	Test MSE	Precision	Test MSE	Precision	Test MSE	Precision
SIMPLE (Ours)	$\textbf{2.35} \pm \textbf{0.28}$	$\textbf{66.81} \pm \textbf{7.56}$	$\textbf{2.68} \pm \textbf{0.06}$	$\textbf{44.78} \pm \textbf{2.75}$	$\textbf{2.11} \pm \textbf{0.02}$	$\textbf{42.31} \pm \textbf{0.61}$
L2X (t = 0.1)	10.70 ± 4.82	30.02 ± 15.82	6.70 ± 0.63	$\textbf{50.39} \pm \textbf{13.58}$	6.92 ± 1.61	$\textbf{32.23} \pm \textbf{4.92}$
SoftSub $(t = 0.5)$	$\textbf{2.48} \pm \textbf{0.10}$	52.86 ± 7.08	2.94 ± 0.08	39.17 ± 3.17	2.18 ± 0.10	$\textbf{41.98} \pm \textbf{1.42}$
I-MLE ($\tau = 30$)	$\textbf{2.51} \pm \textbf{0.05}$	$\textbf{65.47} \pm \textbf{4.95}$	2.96 ± 0.04	40.73 ± 3.15	2.38 ± 0.04	$\textbf{41.38} \pm \textbf{1.55}$

Results for three aspects with k = 10

Explain Results for aspect Aroma, for k in $\{5, 10, 15\}$

Method	k = 5		k = 10		k = 15	
	Test MSE	Precision	Test MSE	Precision	Test MSE	Precision
SIMPLE (Ours)	$\textbf{2.27} \pm \textbf{0.05}$	$\textbf{57.30} \pm \textbf{3.04}$	$\textbf{2.23} \pm \textbf{0.03}$	$\textbf{47.17} \pm \textbf{2.11}$	3.20 ± 0.04	$\textbf{53.18} \pm \textbf{1.09}$
L2X (t = 0.1)	5.75 ± 0.30	33.63 ± 6.91	6.68 ± 1.08	26.65 ± 9.39	7.71 ± 0.64	23.49 ± 10.93
SoftSub $(t = 0.5)$	2.57 ± 0.12	$\textbf{54.06} \pm \textbf{6.29}$	2.67 ± 0.14	44.44 ± 2.27	$\textbf{2.52} \pm \textbf{0.07}$	37.78 ± 1.71
I-MLE ($\tau = 30$)	2.62 ± 0.05	$\textbf{54.76} \pm \textbf{2.50}$	2.71 ± 0.10	$\textbf{47.98} \pm \textbf{2.26}$	2.91 ± 0.18	39.56 ± 2.07

- Restrict the support of the learned distribution
 - "if the image is classified as a dog, it must also be an animal"
 - "predict a sparse vector/subset"
 - Neurosymbolic Al



- Restrict the support of the learned distribution
 - "if the image is classified as a dog, it must also be an animal"
 - "predict a sparse vector/subset"
 - Neurosymbolic Al
- Information-theoretic queries (Entropy, KLD)
- Marginal MAP inference
- Causal inference

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu/publications/

Discussion

1. Exact likelihood vs. ELBO vs. implicit GAN objective.

Does likelihood-tractability matter?

- 2. Does tractability help (bias) or hurt (capacity) learning?
- 3. Learn p(next-token|prefix) then run $p(\text{next-token}|\text{prefix}, \alpha)$ vs. learn $q(\text{next-token}|\text{prefix}, \alpha)$ for $\alpha \sim p_{\text{task}}$ *When do we care?*
- 4. Which task do you want a tractable generative model for?