Tractable Probabilistic Circuits

Guy Van den Broeck

Dagstuhl Seminar on Recent Advancements in Tractable Probabilistic Inference - Apr 19, 2022
Outline

1. What are tractable probabilistic circuits?
2. Are these models any good?
3. How far can we push tractable inference?
4. What is their expressive power?
Outline

1. What are tractable probabilistic circuits?
2. Are these models any good?
3. How far can we push tractable inference?
4. What is their expressive power?
Intractable and tractable models
"Every talk needs a joke and a literature overview slide, not necessarily distinct"
- after Ron Graham
a unifying framework for tractable models
Probabilistic circuits

computational graphs that recursively define distributions

Simple distributions are tractable “black boxes” for:
- EVL: output $p(x)$ (density or mass)
- MAR: output 1 (normalized) or Z (unnormalized)
- MAP: output the mode
Probabilistic circuits

computational graphs that recursively define distributions

\[p(X_1) = w_1 p_1(X_1) + w_2 p_2(X_1) \]

\[p(X) = p(Z = 1) \cdot p_1(X | Z = 1) + p(Z = 2) \cdot p_2(X | Z = 2) \]
Probabilistic circuits

computational graphs that recursively define distributions

\[
p(X_1) = w_1p_1(X_1) + w_2p_2(X_1)
\]
⇒ *mixtures*

\[
p(X_1, X_2) = p(X_1) \cdot p(X_2)
\]
⇒ *factorizations*
Tractable Probabilistic Inference

A class of queries \mathcal{Q} is tractable on a family of probabilistic models \mathcal{M} iff for any query $q \in \mathcal{Q}$ and model $m \in \mathcal{M}$ exactly computing $q(m)$ runs in time $O(\text{poly}(|m|))$.

\Rightarrow often poly will in fact be linear!

\Rightarrow Note: if \mathcal{M} is compact in the number of random variables X, that is, $|m| \in O(\text{poly}(|X|))$, then query time is $O(\text{poly}(|X|))$.
Likelihood

\[p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) \]
Likelihood \[p(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2) \]
$\mathbb{P}(X_1 = -1.85, X_2 = 0.5, X_3 = -1.3, X_4 = 0.2)$
Just sum, products and distributions?

Just arbitrarily compose them like a neural network!
Just sum, products and distributions?

just arbitrarily compose them like a neural network!

⇒ structural constraints needed for tractability
Tractable marginals

A sum node is \textit{smooth} if its children depend on the same set of variables.

A product node is \textit{decomposable} if its children depend on disjoint sets of variables.

Darwiche and Marquis, “A Knowledge Compilation Map”, 2002
\[\text{Smoothness} + \text{decomposability} = \text{tractable MAR} \]

If \(p(x) = \sum_i w_i p_i(x) \), (smoothness):

\[\int p(x) dx = \int \sum_i w_i p_i(x) dx = \]

\[= \sum_i w_i \int p_i(x) dx \]

\[\Rightarrow \text{integrals are “pushed down” to children} \]

[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]
If $p(x, y, z) = p(x)p(y)p(z)$, (decomposability):

\[
\int \int \int p(x, y, z)\,dx\,dy\,dz = \\
= \int \int \int p(x)p(y)p(z)\,dx\,dy\,dz = \\
= \int p(x)\,dx \int p(y)\,dy \int p(z)\,dz
\]

\Rightarrow integrals decompose into easier ones
Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR

⇒ linear in circuit size!

E.g. to compute $p(x_2, x_4)$:

- leaves over X_1 and X_3 output $Z_i = \int p(x_i) \, dx_i$
 ⇒ for normalized leaf distributions: 1.0

- leaves over X_2 and X_4 output EVI

- feedforward evaluation (bottom-up)
Smoothness + decomposability = tractable MAR

Forward pass evaluation for MAR

\[\Rightarrow \text{linear in circuit size!} \]

E.g. to compute \(p(x_2, x_4) \):
- leafs over \(X_1 \) and \(X_3 \) output \(Z_i = \int p(x_i) dx_i \)
 \[\Rightarrow \text{for normalized leaf distributions: 1.0} \]
- leafs over \(X_2 \) and \(X_4 \) output EVI
- feedforward evaluation (bottom-up)
Tractable MAR on PCs (Einsum Networks)

EVI 10,958.72 nats

MAR 5,387.55 nats

Peharz et al., “Einsum Networks: Fast and Scalable Learning of Tractable Probabilistic Circuits”, 2020
We cannot decompose bottom-up a MAP query:

$$\max_q p(q \mid e)$$

since for a sum node we are marginalizing out a latent variable

$$\max_q \sum_i w_i p_i(q, e) = \max_q \sum_z p(q, z, e) \neq \sum_z \max_q p(q, z, e)$$

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]
Outline

1. What are tractable probabilistic circuits?
2. Are these models any good?
3. How far can we push tractable inference?
4. What is their expressive power?
Where do architectures come from?
Where do architectures come from?

Where do architectures come from?

Gens and Domingos, “Learning the Structure of Sum-Product Networks”, 2013
Where do architectures come from?

[Rahman et al. 2014]
Where do architectures come from?

\[S = W \text{ vec}(P) \]

\[P = N \otimes N' \]
Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

Learned CLT structure captures strong pairwise dependencies
Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

Learned CLT structure captures strong pairwise dependencies

Learned HCLT structure

Compile into an equivalent PC

From BN trees to circuits
via compilation
From BN trees to circuits
via compilation

...compile a leaf CPT

\[p(A|C = 0) \]

\[\text{.3} \quad \text{.7} \]

\[A = 0 \quad A = 1 \]
From BN trees to circuits
via compilation

...compile a leaf CPT...for all leaves...

\[p(A|C') \]
\[p(B|C') \]

\[
\begin{align*}
A &= 0 & A &= 1 \\
B &= 0 & B &= 1
\end{align*}
\]
From BN trees to circuits
via compilation

...and recurse over parents...
From BN trees to circuits
via compilation
Learning Expressive Probabilistic Circuits

Hidden Chow-Liu Trees

Learned CLT structure captures strong pairwise dependencies

Learned HCLT structure

Compile into an equivalent PC

Mini-batch Stochastic Expectation Maximization

Lossless Data Compression

Expressive probabilistic model $p(x)$ + Efficient coding algorithm

Determines the theoretical limit of compression rate

How close we can approach the theoretical limit
A Typical Streaming Code – Arithmetic Coding

We want to compress a set of variables (e.g., pixels, letters) \(\{x_1, x_2, \ldots, x_k\} \)

Compress \(x_1 \) with \(- \log p(x_1)\) bits
Compress \(x_2 \) with \(- \log p(x_2|x_1)\) bits
Compress \(x_3 \) with \(- \log p(x_3|x_1, x_2)\) bits

Need to compute

\[
\begin{align*}
p(X_1 < x_1) \\
p(X_1 \leq x_1) \\
p(X_2 < x_2|x_1) \\
p(X_2 \leq x_2|x_1) \\
p(X_3 < x_3|x_1, x_2) \\
p(X_3 \leq x_3|x_1, x_2) \\
& \quad \vdots
\end{align*}
\]
Lossless Neural Compression with Probabilistic Circuits

Probabilistic Circuits

- **Expressive**

 → SoTA likelihood on MNIST.

- **Fast**

 → Time complexity of en/decoding is $O(|p| \log(D))$, where D is the # variables and $|p|$ is the size of the PC.

Arithmetic Coding:

\[
\begin{align*}
 p(X_1 < x_1) \\
 p(X_1 \leq x_1) \\
 p(X_2 < x_2 | x_1) \\
 p(X_2 \leq x_2 | x_1) \\
 p(X_3 < x_3 | x_1, x_2) \\
 p(X_3 \leq x_3 | x_1, x_2) \\
 \vdots
\end{align*}
\]
Lossless Neural Compression with Probabilistic Circuits

SoTA compression rates

<table>
<thead>
<tr>
<th>Dataset</th>
<th>HCLT (ours)</th>
<th>IDF</th>
<th>BitSwap</th>
<th>BB-ANS</th>
<th>JPEG2000</th>
<th>WebP</th>
<th>McBits</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>1.24 (1.20)</td>
<td>1.96 (1.90)</td>
<td>1.31 (1.27)</td>
<td>1.42 (1.39)</td>
<td>3.37</td>
<td>2.09 (1.98)</td>
<td></td>
</tr>
<tr>
<td>FashionMNIST</td>
<td>3.37 (3.34)</td>
<td>3.50 (3.47)</td>
<td>3.35 (3.28)</td>
<td>3.69 (3.66)</td>
<td>3.93</td>
<td>4.62 (3.72)</td>
<td></td>
</tr>
<tr>
<td>EMNIST (Letter)</td>
<td>1.84 (1.80)</td>
<td>2.02 (1.95)</td>
<td>1.90 (1.84)</td>
<td>2.29 (2.26)</td>
<td>3.62</td>
<td>3.31 (3.12)</td>
<td></td>
</tr>
<tr>
<td>EMNIST (ByClass)</td>
<td>1.89 (1.85)</td>
<td>2.04 (1.98)</td>
<td>1.91 (1.87)</td>
<td>2.24 (2.23)</td>
<td>3.61</td>
<td>3.34 (3.14)</td>
<td></td>
</tr>
</tbody>
</table>

Compress and decompress 5-40x faster than NN methods with similar bitrates

<table>
<thead>
<tr>
<th>Method</th>
<th># parameters</th>
<th>Theoretical bpd</th>
<th>Codeword bpd</th>
<th>Comp. time (s)</th>
<th>Decomp. time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PC (HCLT, $M = 16$)</td>
<td>3.3M</td>
<td>1.26</td>
<td>1.30</td>
<td>9</td>
<td>44</td>
</tr>
<tr>
<td>PC (HCLT, $M = 24$)</td>
<td>5.1M</td>
<td>1.22</td>
<td>1.26</td>
<td>15</td>
<td>86</td>
</tr>
<tr>
<td>PC (HCLT, $M = 32$)</td>
<td>7.0M</td>
<td>1.20</td>
<td>1.24</td>
<td>26</td>
<td>142</td>
</tr>
<tr>
<td>IDF</td>
<td>24.1M</td>
<td>1.90</td>
<td>1.96</td>
<td>288</td>
<td>592</td>
</tr>
<tr>
<td>BitSwap</td>
<td>2.8M</td>
<td>1.27</td>
<td>1.31</td>
<td>578</td>
<td>326</td>
</tr>
</tbody>
</table>

Can be effectively combined with Flow models to achieve better generative performance

<table>
<thead>
<tr>
<th>Model</th>
<th>CIFAR10</th>
<th>ImageNet32</th>
<th>ImageNet64</th>
</tr>
</thead>
<tbody>
<tr>
<td>RealNVP</td>
<td>3.49</td>
<td>4.28</td>
<td>3.98</td>
</tr>
<tr>
<td>Glow</td>
<td>3.35</td>
<td>4.09</td>
<td>3.81</td>
</tr>
<tr>
<td>IDF</td>
<td>3.32</td>
<td>4.15</td>
<td>3.90</td>
</tr>
<tr>
<td>IDF++</td>
<td>3.24</td>
<td>4.10</td>
<td>3.81</td>
</tr>
<tr>
<td>PC+IDF</td>
<td>3.28</td>
<td>3.99</td>
<td>3.71</td>
</tr>
</tbody>
</table>
Tractable and expressive generative models of genetic variation data

Mehhua Dang, Anji Liu, Xinzhui Wei, Sriram Sankararaman, and Guy Van den Broeck, Tractable and expressive generative models of genetic variation data, RECOMB 2022
<table>
<thead>
<tr>
<th>Dataset</th>
<th>PC</th>
<th>Bipartite flow</th>
<th>AF/SCF</th>
<th>IAF/SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penn Treebank</td>
<td>1.23</td>
<td>1.38</td>
<td>1.46</td>
<td>1.63</td>
</tr>
</tbody>
</table>

Text data
Training SotA likelihood full MNIST probabilistic circuit model in ~7 minutes on GPU: https://github.com/Juice-jl/ProbabilisticCircuits.jl/blob/master/examples/train_mnist_hclt.ipynb

<table>
<thead>
<tr>
<th>Dataset</th>
<th>PC (ours)</th>
<th>IDF</th>
<th>Hierarchical VAE</th>
<th>PixelVAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>MNIST</td>
<td>1.20</td>
<td>2.90</td>
<td>1.27</td>
<td>1.39</td>
</tr>
<tr>
<td>FashionMNIST</td>
<td>3.34</td>
<td>3.47</td>
<td>3.28</td>
<td>3.65</td>
</tr>
<tr>
<td>EMNIST (Letter split)</td>
<td>1.80</td>
<td>1.95</td>
<td>1.84</td>
<td>2.29</td>
</tr>
<tr>
<td>EMNIST (ByClass split)</td>
<td>1.85</td>
<td>1.98</td>
<td>1.87</td>
<td>2.23</td>
</tr>
</tbody>
</table>

* Note: all reported numbers are bits-per-dimension (bpd). The results are extracted from [1].

We start by importing ProbabilisticCircuits.jl and other required packages:

```julia
using ProbabilisticCircuits
using MLDatasets
using CUDA
```

We first load the MNIST dataset from MLDatasets.jl and move them to GPU:
Expressive models without compromises
Outline

1. What are tractable probabilistic circuits?
2. Are these models any good?
3. How far can we push tractable inference?
4. What is their expressive power?
We cannot decompose bottom-up a MAP query:

$$\max_q p(q \mid e)$$

since for a sum node we are marginalizing out a latent variable

$$\max_q \sum_i w_i p_i(q, e) = \max_q \sum_z p(q, z, e) \neq \sum_z \max_q p(q, z, e)$$

⇒ MAP for latent variable models is intractable [Conaty et al. 2017]
Determinism

A sum node is deterministic if only one of its children outputs non-zero for any input.

\[
\Rightarrow \text{allows tractable MAP inference} \\
\arg\max_x p(x)
\]

\(w_1 \)
\(w_2 \)

\(X_1 \leq \theta \)
\(X_2 \)
\(X_1 > \theta \)
\(X_2 \)

deterministic circuit

Darwiche and Marquis, “A Knowledge Compilation Map”, 2002
Determinism + decomposability = tractable MAP

If \(p(q, e) = \sum_i w_i p_i(q, e) = \max_i w_i p_i(q, e) \),
(deterministic sum node):

\[
\max_q p(q, e) = \max_q \sum_i w_i p_i(q, e) \\
= \max_q \max_i w_i p_i(q, e) \\
= \max_i \max_q w_i p_i(q, e)
\]

\[\Rightarrow\] one non-zero child term, thus sum is max
Determinism + decomposability = tractable MAP

If \(p(q, e) = p(q_x, e_x, q_y, e_y) = p(q_x, e_x)p(q_y, e_y) \) (decomposable product node):

\[
\max_q p(q \mid e) = \max_q p(q, e)
\]

\[
= \max_{q_x, q_y} p(q_x, e_x, q_y, e_y)
\]

\[
= \max_{q_x} p(q_x, e_x) \cdot \max_{q_y} p(q_y, e_y)
\]

\[\Rightarrow \text{solving optimization independently}\]
Determinism + decomposability = tractable MAP

Evaluating the circuit twice:
bottom-up and **top-down** \[\Rightarrow\] *still linear in circuit size!*

E.g., for \(\text{argmax}_{x_1,x_3} p(x_1, x_3 \mid x_2, x_4)\):
1. turn sum into max nodes and distributions into max distributions
2. evaluate \(p(x_2, x_4)\) bottom-up
3. retrieve max activations top-down
4. compute **MAP states** for \(X_1\) and \(X_3\) at leaves
Queries as pipelines: KLD

\[\text{KLD}(p \parallel q) = \int p(x) \times \log((p(x)/q(x)))dX \]
Queries as pipelines: Cross Entropy

\[H(p, q) = \int p(x) \times \log(q(x)) \, dx \]

\(p \quad \rightarrow \quad \times \quad \rightarrow \quad \int \)

\(q \quad \rightarrow \quad \log \quad \rightarrow \quad r \)

\(\Rightarrow \text{we can reuse the operations!} \)
<table>
<thead>
<tr>
<th>Operation</th>
<th>Input conditions</th>
<th>Output conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOG</td>
<td>(\log(p))</td>
<td>Sm, Dec, Det</td>
</tr>
</tbody>
</table>

smooth, decomposable, deterministic

smooth, decomposable
Tractable circuit operations

<table>
<thead>
<tr>
<th>Operation</th>
<th>Tractability</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUM</td>
<td>(\theta_1 p + \theta_2 q)</td>
<td>(+Cmp)</td>
</tr>
<tr>
<td>PRODUCT</td>
<td>(p \cdot q)</td>
<td>Cmp (+Det, +SD)</td>
</tr>
<tr>
<td>POWER</td>
<td>(p^n, n \in \mathbb{N})</td>
<td>SD (+Det)</td>
</tr>
<tr>
<td></td>
<td>(p^\alpha, \alpha \in \mathbb{R})</td>
<td>Sm, Dec, Det (+SD)</td>
</tr>
<tr>
<td>QUOTIENT</td>
<td>(p/q)</td>
<td>Cmp; (q) Det (+(p) Det, +SD)</td>
</tr>
<tr>
<td>LOG</td>
<td>(\log(p))</td>
<td>Sm, Dec, Det (+SD)</td>
</tr>
<tr>
<td>EXP</td>
<td>(\exp(p))</td>
<td>linear</td>
</tr>
</tbody>
</table>

Inference by tractable operations

systematically derive tractable inference algorithm of complex queries

<table>
<thead>
<tr>
<th></th>
<th>Query</th>
<th>Tract. Conditions</th>
<th>Hardness</th>
</tr>
</thead>
<tbody>
<tr>
<td>CROSS ENTROPY</td>
<td>$-\int p(x) \log q(x) , dX$</td>
<td>Cmp, q Det</td>
<td>#P-hard w/o Det</td>
</tr>
<tr>
<td>SHANNON ENTROPY</td>
<td>$-\sum p(x) \log p(x)$</td>
<td>Sm, Dec, Det</td>
<td>coNP-hard w/o Det</td>
</tr>
<tr>
<td>Rényi Entropy</td>
<td>$(1 - \alpha)^{-1} \log \int p^\alpha(x) , dX, \alpha \in \mathbb{N}$</td>
<td>SD</td>
<td>#P-hard w/o SD</td>
</tr>
<tr>
<td>Mutual Information</td>
<td>$\int p(x, y) \log (p(x, y)/(p(x)p(y)))$</td>
<td>Sm, Dec, Det*</td>
<td>coNP-hard w/o SD</td>
</tr>
<tr>
<td>Kullback-Leibler Div.</td>
<td>$\int p(x) \log (p(x)/q(x)) , dX$</td>
<td>Cmp, Det</td>
<td>#P-hard w/o Det</td>
</tr>
<tr>
<td>Rényi’s Alpha Div.</td>
<td>$(1 - \alpha)^{-1} \log \int p^\alpha(x)q^{1-\alpha}(x) , dX, \alpha \in \mathbb{N}$</td>
<td>Cmp, q Det</td>
<td>#P-hard w/o Det</td>
</tr>
<tr>
<td>Itakura-Saito Div.</td>
<td>$\int [p(x)/q(x) - \log (p(x)/q(x)) - 1] , dX$</td>
<td>Cmp, Det</td>
<td>#P-hard w/o Det</td>
</tr>
<tr>
<td>Cauchy-Schwarz Div.</td>
<td>$-\log \frac{\int p(x)q(x) , dX}{\sqrt{\int p^2(x) , dX \int q^2(x) , dX}}$</td>
<td>Cmp</td>
<td>#P-hard w/o Cmp</td>
</tr>
<tr>
<td>Squared loss</td>
<td>$\int (p(x) - q(x))^2 , dX$</td>
<td>Cmp</td>
<td>#P-hard w/o Cmp</td>
</tr>
</tbody>
</table>

Even harder queries

Marginal MAP

Given a set of query variables $Q \subset X$ and evidence e,
find: $\text{argmax}_q p(q|e)$

⇒ *i.e. MAP of a marginal distribution on* Q

 *} NP$^{P^p}$-complete for PGMs

 *} NP-hard even for PCs tractable for marginals, MAP & entropy
Pruning circuits

Any parts of circuit not relevant for MMAP state can be pruned away

e.g. $p(X_1 = 1, X_2 = 0)$

We can find such edges in *linear time*
Iterative MMAP solver

- Prune edges
- Tighten bounds

<table>
<thead>
<tr>
<th>Dataset</th>
<th>runtime (s)</th>
<th>(% solved)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NLCTS</td>
<td>0.01 (10)</td>
<td>0.63 (10)</td>
</tr>
<tr>
<td>MSNBC</td>
<td>0.03 (10)</td>
<td>0.73 (10)</td>
</tr>
<tr>
<td>KDD</td>
<td>0.04 (10)</td>
<td>0.68 (10)</td>
</tr>
<tr>
<td>Plants</td>
<td>2.95 (10)</td>
<td>2.72 (10)</td>
</tr>
<tr>
<td>Audio</td>
<td>2041.33 (6)</td>
<td>13.70 (10)</td>
</tr>
<tr>
<td>Jester</td>
<td>2913.04 (2)</td>
<td>14.74 (10)</td>
</tr>
<tr>
<td>Netflix</td>
<td>– (0)</td>
<td>47.18 (10)</td>
</tr>
<tr>
<td>Accidents</td>
<td>109.56 (10)</td>
<td>15.86 (10)</td>
</tr>
<tr>
<td>Retail</td>
<td>0.06 (10)</td>
<td>0.81 (10)</td>
</tr>
<tr>
<td>Pumsb-star</td>
<td>2208.27 (7)</td>
<td>20.88 (10)</td>
</tr>
<tr>
<td>DNA</td>
<td>– (0)</td>
<td>505.75 (9)</td>
</tr>
<tr>
<td>Kosarek</td>
<td>48.74 (10)</td>
<td>3.41 (10)</td>
</tr>
<tr>
<td>MSWeb</td>
<td>1543.49 (10)</td>
<td>1.28 (10)</td>
</tr>
<tr>
<td>Book</td>
<td>– (0)</td>
<td>46.50 (10)</td>
</tr>
<tr>
<td>EachMovie</td>
<td>– (0)</td>
<td>1216.89 (8)</td>
</tr>
<tr>
<td>WebKB</td>
<td>– (0)</td>
<td>575.68 (10)</td>
</tr>
<tr>
<td>Reuters-52</td>
<td>– (0)</td>
<td>120.58 (10)</td>
</tr>
<tr>
<td>20 NewsGrp.</td>
<td>– (0)</td>
<td>504.52 (9)</td>
</tr>
<tr>
<td>BBC</td>
<td>– (0)</td>
<td>2757.18 (3)</td>
</tr>
<tr>
<td>Ad</td>
<td>– (0)</td>
<td>1254.37 (8)</td>
</tr>
</tbody>
</table>

Tractable Computation of Expected Kernels

- How to compute the expected kernel given two distributions p, q?

$$\mathbb{E}_{x \sim p, x' \sim q}[k(x, x')]$$

- Circuit representation for kernel functions, e.g., $k(x, x') = \exp\left(-\sum_{i=1}^{4} |X_i - X'_i|^2\right)$
Tractable Computation of Expected Kernels: Applications

- Reasoning about support vector regression (SVR) with missing features

\[\mathbb{E}_{x_m \sim p(x_m | x_o)} \left[\sum_{i=1}^{m} w_i k(x_i, x) + b \right] \]

missing features

SVR model

- Collapsed Black-box Importance Sampling: minimize kernelized Stein discrepancy

importance weights

\[w^* = \arg\min_{w} \left\{ w^\top K_{p,s} w \left| \sum_{i=1}^{n} w_i = 1, w_i \geq 0 \right\} \]

expected kernel matrix

Model-Based Algorithmic Fairness: FairPC

Learn classifier given
• features S and X
• training labels/decisions D

Group fairness by demographic parity:

Fair decision D_f should be independent of the sensitive attribute S

Discover the latent fair decision D_f by learning a PC.

[Choi et al. AAAI21]
Probabilistic Sufficient Explanations

Goal: explain an instance of classification (a specific prediction)

Explanation is a subset of features, s.t.
1. The explanation is “probabilistically sufficient”
 Under the feature distribution, given the explanation, the classifier is likely to make the observed prediction.
2. It is minimal and “simple”

[Khosravi et al. IJCAI19, Wang et al. XXAI20]
Prediction with Missing Features

See work on

- Expected predictions / conformant learning [Khosravi et al.]
- Generative forests [Correia et al.]
tractability is a spectrum
Outline

1. What are tractable probabilistic circuits?
2. Are these models any good?
3. How far can we push tractable inference?
4. What is their expressive power?
Expressive efficiency of circuits

Neither smooth & decomposable nor deterministic & consistent circuits are more succinct than the other!

Choose tractable circuit family based on your query

More theoretical questions remaining
“Complete the map”

ask YooJung Choi and Stefan Mengel
Probabilistic circuits seem awfully general.

Are all tractable probabilistic models probabilistic circuits?
DPPs are models where probabilities are specified by (sub)determinants

\[
L = \begin{bmatrix}
1 & 0.9 & 0.8 & 0 \\
0.9 & 0.97 & 0.96 & 0 \\
0.8 & 0.96 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

\[
\Pr_L(X_1 = 1, X_2 = 0, X_3 = 1, X_4 = 0) = \frac{1}{\det(L + I)} \det(L^{\{1,2\}})
\]
Are all tractable probabilistic models probabilistic circuits?

Probabilistic Circuits (PCs)

Graphical Models (w/ bounded tree-width)

Determinantal Point Processes (DPPs)

Relationship between PCs and DPPs

Probabilistic Circuits

Positive Dependence

Fully Factorized

Determinantal Point Processes

We cannot tractably represent DPPs with subclasses of PCs

PSDDs

More Tractable

Deterministic and Decomposable PCs

Deterministic PCs with \textit{no} negative parameters

Deterministic PCs with negative parameters

Decomposable PCs with \textit{no} negative parameters (SPNs)

Decomposable PCs with negative parameters

Fewer Constraints

\textit{We don’t know}

Probabilistic Generating Circuits

A Tractable Unifying Framework for PCs and DPPs

Probability Generating Functions

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>\Pr_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.48</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.16</td>
</tr>
</tbody>
</table>

$$g_\beta = \left(0.16z_1z_2z_3+0.04z_1z_2+0.08z_1z_3+0.02z_1+0.48z_2z_3+0.12z_2+0.08z_3+0.02\right).$$

$$g_\beta = (0.1(z_1+1)(6z_2+1)-0.4z_1z_2)(0.8z_3+0.2).$$
Probabilistic Generating Circuits (PGCs)

1. Sum nodes \oplus with weighted edges to children.
2. Product nodes \otimes with unweighted edges to children.
3. Leaf nodes: z_i or constant.

$$g_\beta = (0.1(z_1 + 1)(6z_2 + 1) - 0.4z_1z_2)(0.8z_3 + 0.2)$$
DPPs as PGCs

The generating polynomial for a DPP with kernel L is given by:

$$g_L = \frac{1}{\text{det}(L + I)} \text{det}(I + L\text{diag}(z_1, \ldots, z_n)).$$

Constant

Division-free determinant algorithm (Samuelson-Berkowitz algorithm)

g_L can be represented as a PGC of size $O(n^4)$
PGCs Support Tractable Likelihoods/Marginals

Purely symbolic

\[z_i = \begin{cases}
 t, & X_i = 1 \\
 0, & X_i = 0 \\
 1, & \text{otherwise}
\end{cases} \]

\[\Pr(X_1 = 1, X_2 = 0, \ldots) =? \]

\[p(t) = \alpha_k t^k + \cdots + \alpha_1 t \]

\[\alpha_k \text{ gives the answer} \]
Example

Pr(X_2 = 1, X_3 = 0) = ?

<table>
<thead>
<tr>
<th>X_1</th>
<th>X_2</th>
<th>X_3</th>
<th>Pr_β</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0.12</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0.48</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0.02</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0.08</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0.04</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0.16</td>
</tr>
</tbody>
</table>
Experiment Results: Amazon Baby Registries

SimplePGC achieves SOTA result on 11/15 datasets

<table>
<thead>
<tr>
<th></th>
<th>DPP</th>
<th>Strudel</th>
<th>EiNet</th>
<th>MT</th>
<th>SimplePGC</th>
</tr>
</thead>
<tbody>
<tr>
<td>bath</td>
<td>-8.55</td>
<td>-8.38</td>
<td>-8.49</td>
<td>-8.53</td>
<td>-8.29</td>
</tr>
<tr>
<td>bedding</td>
<td>-8.65</td>
<td>-8.50</td>
<td>-8.55</td>
<td>-8.59</td>
<td>-8.41</td>
</tr>
<tr>
<td>carseats</td>
<td>-4.74</td>
<td>-4.79</td>
<td>-4.72</td>
<td>-4.76</td>
<td>-4.64</td>
</tr>
<tr>
<td>diaper</td>
<td>-10.61</td>
<td>-9.90</td>
<td>-9.86</td>
<td>-9.93</td>
<td>-9.72</td>
</tr>
<tr>
<td>feeding</td>
<td>-11.86</td>
<td>-11.42</td>
<td>-11.27</td>
<td>-11.30</td>
<td>11.17</td>
</tr>
<tr>
<td>furniture</td>
<td>-4.38</td>
<td>-4.39</td>
<td>-4.38</td>
<td>-4.43</td>
<td>-4.34</td>
</tr>
<tr>
<td>gifts</td>
<td>-3.51</td>
<td>3.39</td>
<td>-3.42</td>
<td>-3.48</td>
<td>-3.47</td>
</tr>
<tr>
<td>health</td>
<td>-7.40</td>
<td>-7.37</td>
<td>-7.47</td>
<td>-7.49</td>
<td>-7.24</td>
</tr>
<tr>
<td>media</td>
<td>-8.36</td>
<td>7.62</td>
<td>-7.82</td>
<td>-7.93</td>
<td>-7.69</td>
</tr>
<tr>
<td>moms</td>
<td>-3.55</td>
<td>-3.52</td>
<td>3.48</td>
<td>-3.54</td>
<td>-3.53</td>
</tr>
<tr>
<td>safety</td>
<td>-4.28</td>
<td>-4.43</td>
<td>-4.39</td>
<td>-4.36</td>
<td>-4.28</td>
</tr>
<tr>
<td>strollers</td>
<td>-5.30</td>
<td>-5.07</td>
<td>-5.07</td>
<td>-5.14</td>
<td>-5.00</td>
</tr>
<tr>
<td>toys</td>
<td>-8.05</td>
<td>7.61</td>
<td>-7.84</td>
<td>-7.88</td>
<td>-7.62</td>
</tr>
</tbody>
</table>

Conclusion

1. What are tractable probabilistic circuits?
2. Are these models any good?
3. How far can we push tractable inference?
4. What is their expressive power?
Learn more about probabilistic circuits?

Tutorial (3h)

Overview Paper (80p)

https://youtu.be/2RAG5-L9R70

Probabilistic Circuits: A Unifying Framework for Tractable Probabilistic Models

YooJung Choi
Antonio Vergari
Guy Van den Broeck

Computer Science Department
University of California
Los Angeles, CA, USA

Contents

1 Introduction 3
2 Probabilistic Inference: Models, Queries, and Tractability 4
 2.1 Probabilistic Models 5
 2.2 Probabilistic Queries 6
 2.3 Tractable Probabilistic Inference 8
 2.4 Properties of Tractable Probabilistic Models 9