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The Al Dilemma
s o)

Pure Logic Pure Learning

» Slow thinking: deliberative, cognitive,
model-based, extrapolation
 Amazing achievements until this day

* “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, ...




The Al Dilemma
s o)

Pure Logic Pure Learning

 Fast thinking: Instinctive, perceptive,
model-free, interpolation
 Amazing achievements recently

* “Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world



The FALSE Al Dilemma

B .
So all hope Is lost?
Probabilistic World Models

Joint distribution P(X)
Wealth of representations:

can be causal, relational, etc.
Knowledge + data
Reasoning + learning




Then why isn’t everything solved?

B

Pure Logic Probabilistic World Models Pure Learning

N

What did we gain?
What did we lose along the way?



B .

Pure Logic Probabilistic World Models Pure Learning

A New Synthesis of

Learning and Reasoning
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Motivation: Vision

if they appear in the same time ¢. We then introduce an
edge potential that enforces mutual exclusion:

1 lf Yt.i ; yt.]
0 otherwise

L'mutux(yt.b yt.j) = { (5)
This potential specifies the constraint that a player can
belappear only once in a frame] For example, if the i-th
detection y; ; has been assign to Bryant, y,; ; cannot have
the same identity because Bryant is impossible to appear

twice in a frame.

[Lu, W. L., Ting, J. A,, Little, J. J., & Murphy, K. P. (2013). Learning to track and identify players from broadcast sports videos.]



Motivation: Robotics

®

The method developed in this paper can be used in a
broad variety of semantic mapping and object manipulation
tasks, providing an efficient and effective way to incorporate
collision constraints|into a recursive state estimator, obtaining
~optimal or near-optimal solutions.

[Wong, L. L., Kaelbling, L. P., & Lozano-Perez, T., Collision-free state estimation. ICRA 2012]



Motivation: Language

* Non-local dependencies:
“At least one verb in each sentence”

« Sentence compression
“If a modifier is kept, its subject is also kept”

 NELL ontology and rules

... and much more!

[Chang, M., Ratinov, L., & Roth, D. (2008). Constraints as prior knowledge],
[Ganchey, K., Gillenwater, J., & Taskar, B. (2010). Posterior regularization for structured latent variable models]
... and many many more!



Motivation: Deep Learning
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[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Motivation: Deep Learning

solve tasks that require logic and
reasoning — a step toward more human-like Al.

... but ...
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To ensure that the
network always moved to a valid node, the output distribution was renormalized
over the set of possible triples outgoing from the current node

it also received input triples during the answer phase, indicating the actions cho-
sen on the previous time-step.

Mariposa &

El Segundo &

Douglas :-

Redondo Beach #

[Graves, A., Wayne, G., Reynolds, M., Harley, T., Danihelka, I., Grabska-Barwinska, A., et al.. (2016).
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626), 471-476.]



Knowledge vs. Data

* Where did the world knowledge go?

— Python scripts
» Decode/encode cleverly
 Fix inconsistent beliefs

— Rule-based decision systems
— Dataset design
—"a big hack” (with author's permission)

 |n some sense we went backwards

Less principled, scientific, and intellectually
satisfying ways of incorporating knowledge



Learning with Symbolic Knowledge

+ -

1. Must take at least one of Probability (P)
or Logic (L).

2. Probability (P) is a prerequisite for Al (A).

3. The prerequisites for KR (K) is either Al

(A) or Logic (L).




Learning with Symbolic Knowledge

+ -

Today’s machine learning tools

don’t take knowledge as input! ®




Deep Learnlng +[Constraints]

Wlth [Deep Neural ]

Symbolic Knowledge

Neural Network

Output is

probabillity vector p,
not Boolean logic!




Semantic Loss

Q: How close Is output p to satisfying constraint a?
Answer:. Semantic loss function L(a,p)

« Axioms, for example:
— If a constrains to one label, L(a,p) Is cross-entropy
— If a implies B then L(a,p) 2 L(B,p) (a more strict)

* Implied Properties: __— SEMANTIC
— If a is equivalent to 3 then L(a,p) = L(B,p) Loss!
— If p Is Boolean and satisfies a then L(a,p) =0



Semantic Loss: Definition

Theorem: Axioms imply unique semantic loss:

L(ap)x—log S J[ » I (1-po

x=a ix=X; drm—— X,

. /
Y

Probability of getting state x after
flipping coins with probabillities p

N\ /
Y

Probability of satisfying a after
flipping coins with probabillities p




Simple Example: Exactly-One

« Data must have some label
We agree this must be one of the 10 digits:

« Exactly-one constraint  (x1 Vx,V x3

] —1Xq1 V —1X?9
— For 3 classes: - VRV
« Semantic loss: | X1 V X3
L*(exactly-one, p) o< — log Z o H (1—p;)
i=l  j= 1J$é?

J

Only xi =1 after flipping coins

U J
Y

Exactly one true x after flipping coins




Semi-Supervised Learning

* |ntuition: Unlabeled data must have some label
Cf. entropy minimization, manifold learning

e C(Class1 * C(Class1

4 Class 2 . - 4 Class?2

= Unlabeled A, . = Unlabeled
. A I

« Minimize exactly-one semantic loss on unlabeled data

Train with
existing loss + w - semantic loss




3

Accuracy % with # of used labels 100 1000 ALL

AtlasRBF (Pitelis et al., 2014) 919 (+0.95) 96.32 (+£0.12) 98.69

Deep Generative (Kingma et al., 2014) 96.67(+0.14) 97.60 (+0.02) 99.04

Virtual Adversarial (Miyato et al., 2016)  97.67 98.64 99.36

Ladder Net (Rasmus et al., 2015) 98.94 (+0.37) 99.16 (£0.08) 99.43 (+0.02)
Baseline: MLP, Gaussian Noise 78.46 (£1.94) 9426 (£0.31) 99.34 (+0.08)
Baseline: Self-Training 72.55 (£4.21)  87.43(£3.07)

Baseline: MLP with Entropy Regularizer  96.27 (:0.64)  98.32 (£0.34) 99.37 (4+0.12)

MLP with Semantic Loss 98.38 (£0.51) 9878 (+0.17)  99.36 (+0.02)
Accuracy % with # of used labels] 100 500 1000 ALL
Ladder Net (Rasmus et al., 2015)| 81.46 (+0.64 ) | 85.18 (+0.27) 86.48 (+0.15) 90.46
Baseline: MLP, Gaussian Noise 69.45 (£2.03) | 78.12 (£1.41) 80.94 (+0.84) 89.87
MLP with Semantic Loss 86.74 (£0.71) | 89.49 (+0.24) 89.67 (x=0.09) 89.81

Same conclusion on CIFAR10

Experimental Evaluation

Competitive with
state of the art

INn semi-supervised

deep learning

Outperforms SoA!

Accuracy % with # of used labels 4000 ALL
CNN Baseline in Ladder Net 76.67 (=0.61) | 90.73
Ladder Net (Rasmus et al., 2015) 79.60 (=0.47)
Baseline: CNN. Whitening, Cropping | 77.13 90.96
CNN with Semantic Loss 81.79 90.92
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But what about real constraints?

o, e .

 Path constraint

= S NS f
e 1

VS.

« Example: 4x4 grids
224 =184 paths + 16,777,032 non-paths
» Easily encoded as logical constraints ©

[Nishino et al., Choi et al.]



How to Compute Semantic Loss?

 |[n general: #P-hard ®

L(a,p)ox—log > ] » J] @-ps)

x=a ixEX; ==X



Reasoning Tool: Logical Circuits

Representation of @

logical sentences: L L
A

(CA=D)V (=CAD)

ale

C XORD




Reasoning Tool: Logical Circuits

Representation of
logical sentences:

Input:

A B C D

0

1

1

0

A
0o

G




Tractable for Logical Inference

* Is there a solution? (SAT)
— SAT(a Vv p) Iff SAT(a) or SAT(S) (always)
— SAT(a A B) iff 227



Decomposable Circuits

AR

B,C,D




Tractable for Logical Inference

* |s there a solution? (SAT) v
— SAT(a v B) iff SAT(a) or SAT(B) (always)
— SAT(a A B) iff SAT(a) and SAT(B) (decomposable)

 How many solutions are there? (#SAT)

« Complexity linear in circuit size ©



Deterministic Circuits

£
.

C —C - D D




Deterministic Circuits

A
25" v

A -

[l




How many solutions are there? (#SAT)

X

Th A5

AN O

o..
2 2
1] (2] (1] (1

C —C —D D

1 1 1 1




Tractable for Logical Inference

Is there a solution? (SAT) v

How many solutions are there? (#SAT) v
Conjoin, disjoin, equivalence checking, etc. v
Complexity linear in circuit size ©

Compilation into circuit by
— | exhaustive SAT solver
— 1 conjoin/disjoin/negate

[Darwiche and Marquis, JAIR 2002]



How to Compute Semantic Loss?

* |n general: #P-hard ®
* With a logical circuit for a: Linear ©
« Example: exactly-one constraint:

N
S AN

XL L2 —&r3 S| €2 €r3 Pl'(.l.’l) Pl( ﬁ;l’g) Pl'(ﬁ;l':g) Pl'(_kf.'l) Pl‘(;l'g) Pl‘(;l’g)

L(a,p) =L(/ ), p)

X

 Why? Decomposability and determinism!



Predict Shortest Paths

Add semantic loss
for path constraint

Test accuracy % | Coherent | Incoherent | Constraint
d-layer MLP 5.62 85.91 6.99
Semantic loss 28.51 83.14 69.89
Is prediction Are individual Is output
the shortest path? edge predictions a path?
This is the real task! correct?

(same conclusion for predicting sushi preferences, see paper)



Conclusions 1

Knowledge is (hidden) everywhere in ML
Semantic loss makes logic differentiable
Performs well semi-supervised

Requires hard reasoning in general
— Reasoning can be encapsulated in a circuit
— No overhead during learning

Performs well on structured prediction
A little bit of reasoning goes a long way!
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Another False Dilemma?

Classical Al Methods

Hungry? $25?
Am | hungry?
Sleep? Restau
rant?
Have 1255 ? leep
H BN Buy a hamburger

Clear Modeling Assumption
Well-understood

Neural Networks

O O O (] ||
o f 4
BEEEREEEARARARERD:
olojolclclololo

“Black Box”
Empirical performance



Probabilistic Circuits

Tractable
Probabilistic
Models

Nicola Di Mauro

SPNs, ACs
PSDDs, CNs

Input:
A B C D
0 1 1 O

Pr(4,B,C,D) =0.096

(J\

1

1 .8 0.1 0.9
0.9 0.8][0.2
0 0
-B
0

—(Q
|
Q
|
»
»


http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

Properties, Properties, Properties!

Read conditional independencies from structure
Interpretable parameters (XAl) e

(conditional probabilities of logical sentences)

Closed-form parameter learning I
Efficient reasoning (linear ©)

— Computing conditional probabilities Pr(x|y)

— MAP inference: most-likely assignment to x given y

— Even much harder tasks: expectations, KLD, entropy,
logical queries, decision making queries, etc.



Probabilistic Circults:

Density estimation benchmarks: tractable vs. intractable

Dataset
nltcs
msnbc
kdd2000
plants
audio
jester
netflix

accidents
retail
pumbs*

dna
Kosarek

Msweb

best circuit
-5.99

-6.04

-2.12
-11.84
-39.39
-51.29
-55.71

-26.89

-10.72

-22.15

-79.88
-10.52

-9.62

BN MADE
-6.02  -6.04
-6.04  -6.06
219 207

-12.65 12.32

-40.50 -38.95

-51.07 -52.23

-57.02 -55.16

-26.32  -26.42

-10.87 -10.81

2172 -22.3

-80.65 -82.77

-10.83 -
-9.70  -9.59

VAE
-5.99
-6.09
-2.12

-12.34
-38.67
-51.54
-54.73

-29.11

-10.83

-25.16

-94.56
-10.64

-9.73

Performance

Dataset best circuit BN MADE VAE
Book -33.82 -36.41 -33.95 -33.19
movie -50.34 -54.37 -48.7 -47.43
webkb -149.20 -157.43 -149.59 -146.9
cr52 -81.87 -87.56 -82.80 -81.33
c20ng -151.02 -158.95 -153.18 -146.90
bbc -229.21 -257.86 -242.40 -240.94
ad -14.00 -18.35 -13.65 -18.81

Tractable Representations

Probabilistic |

Models Applications

Antonio Vergari
Universitg of Cabdomia, Los Angeles
Nicola Di Pﬂauro

Guy Van den Broeck
University of Calidornia, Los Angeles

7 - Canference an Decertatedy in Ariificial Infellipence (U042 2015 Tol dwwr



http://web.cs.ucla.edu/~guyvdb/slides/TPMTutorialUAI19.pdf

But what if | only want to classify?
Pr(Y|4, B, C,D)




Logistic Pr(Y = 1| 4,B,C,D)

" . 1
Circuits = = 0.869
1+ exp(—1.9)
—2.6 —5.8
.0

A

0 1@3 2.3@4
Input: B S
A B C D PrY|AB,C,D) B ﬁoB

1

0O 1 1 0 ? ¢f |=C¢ D




Learning Logistic Circults

Parameter learning reduces to logistic regression:

Pr(Y =1 |x) = o

Features assoclated with each wire
“Global Circuit Flow” features

Learning parameters 6 Is convex optimization!

Greedy structure learning (cf. decision trees)



Comparable Accuracy with Neural Nets

ACCURACY % ON DATASET MNIST FASHION
BASELINE: LOGISTIC REGRESSION 85.3 79.3
BASELINE: KERNEL LOGISTIC REGRESSION 97.7 88.3
RANDOM FOREST 97.3 81.6
3-LAYER MLP 97.5 84.8
RAT-SPN (PEHARZ ET AL. 2018) 98.1 89.5
SVM WITH RBF KERNEL 98.5 87.8
5-LAYER MLP 99.3 89.8

£ 2 RIN AR Sy X

LOGISTIC CIRCUIT (REAL-VALUED) 99 4 91.3

CNN WITH 3 CONV LAYERS 99.1 90.7
RESNET (HE ET AL. 2016) 99.5 93.6




Significantly Smaller in Size

NUMBER OF PARAMETERS MNIST FASHION

BASELINE: LOGISTIC REGRESSION <1K <1K
BASELINE: KERNEL LOGISTIC REGRESSION 1,521 K 3.930K

LLOGISTIC CIRCUIT (REAL-VALUED) 182K 467K

OGISTIC CIRCUIT (BINARY 63 K 614K
3-LAYER MLP 1.411K 1.411K
RAT-SPN (PEHARZ ET AL. 2018) 8.500K 650K
CNN WITH 3 CONV LAYERS 2,.196K 2.196K
5-LAYER MLP 2.411K 2.411K

RESNET (HE ET AL. 2016) 4,838K 4,838K




Better Data Efficiency

ACCURACY % WITH % OF TRAINING DATA MNIST FASHION

100% 10% 2% 100% 10%
5-LAYER MLP 99.3 98.2 94.3 89.8 86.5
CNN WITH 3 CONV LAYERS 99.1 08.1 95.3 90.7 87.6
LOGISTIC CIRCUIT (BINARY) 97.4 96.9 94.1 87.6 86.7

LOGISTIC CIRCUIT (REAL-VALUED) 94 97.6 961 91.3 87.8




Probabillistic & Logistic Circults

Statistical ML
“Probability”

Connectionism

Symbolic Al Deep

“LogiC”



Reasoning about
World Model + Classifier

“Pure learning is brittle”

bias, algorithmic fairness, interpretability, explainability, adversarial attacks,
unknown unknowns, calibration, verification, missing features, missing
labels, data efficiency, shift in distribution, general robustness and safety

fails to incorporate a sensible model of the world

* Given a learned predictor F(x)

* Given a probabilistic world model P(x)

* How does the world act on learned predictors?
Can we solve these hard problems?



What to expect of classifiers?

* Missing features at prediction time
* What is expected prediction of F(x) In P(x)?

Erply)= By ym)

M: Missing features
y: Observed Features

100 —TMNIST
i 7 5 “‘\_‘\\‘\\ ‘.:.:-.*:-;L:* ~
3 75 . \“‘\\
é 50 50 —— T (ours)\‘\\ ’
y Y - m
< 25 25 -+ M ;




Explaining classifiers on the world

If the world looks like P(x),
then what part of the data Is sufficient for
F(X) to make the prediction it makes?

.
. :
S T}

!
5 i
.::.-'-’.+



gk WhE

Outline

The Al dilemma: logic vs. learning

Deep learning with symbolic knowledge
Efficient reasoning during learning

New machine learning formalisms
Statistical relational learning (tutorial)



B .

Pure Logic Probabilistic World Models Pure Learning

High-Level Probabilistic
Representations

Reasoning, and Learning



Graphical Model Learning (peari 19ss]

g,

Medical Records Bayesian Network

Asthma Smokes

Charlie 0

[N

Dave

SJoyloig

Spuoli4

[y

Eve

FrqnkBig data ? Rows are independent
v during learning and
Frank 1 0.3 0.2 .

inference!

Frank 1 0.2 0.6




Statistical Relational Representations

Augment graphical model with relations between entities (rows).

Intuition

Asthma Smokes

+ Friends have similar
smoking habits

+ Asthma can be hereditary

Markov Logic

2.1 Asthma = Cough

3.5 Smokes = Cough

1.9 Smokes(x) A Friends(x,y)
= Smokes(y)

1.5 Asthma (x) A Family(x,y)
= Asthma (y)




Equivalent Graphical Model

o Statistical relational model (e.g., MLN)

1.9 Smokes(x) A Friends(x,y) = Smokes(y)

o Ground atom/tuple = random variable in {true,false}
e.g., Smokes(Alice), Friends(Alice,Bob), etc.

o Ground formula = factor in propositional factor graph

Smokes(Alice) I
Friends(Alice,Alice)

f;

Friends(Alice,Bob) Friends(Bob,Alice)



Relational PGMs

Markov logic

Probabilistic soft logic (relaxation)

— Random variables become continuous degrees of
truth

— Inference by convex optimization
— Talk to Angelika

Relational dependency networks
— Learn local relational models that define a sampler
— Talk to Sriraam

Light on logic, heavy on PGMs



Probabilistic Logic g

Programming

® | toss (biased) coin}& draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads. probabilistic fact: heads is true with probability 0.4
(and false with 0.6)



Probabilistic Logic g

Programming

® toss (biased) coin & /draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads. annotated disjunction: first ball is red with
probability 0.3 and blue with 0.7

0.3 :: col(l,red); 0.7 :: col(l,blue) <- true.

62



Probabilistic Logic g

Programming

J

® toss (biased) coin & /draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads. annotated disjunction: first ball is red with
probability 0.3 and blue with 0.7

7 :: col(l,blue) <- true.

3 :: col(2,green);

0.5 :: col(2,blue) <- true.

:: col(l,red);
:: col(2,red);

N W

0.
0.

annotated disjunction: second ball is red with probability 0.2, green
with 0.3, and blue with 0.5

63
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win

Probabilistic Logic g

Programming

® toss (biased) coin & draw ball from each urn

® | win if (heads and a red ball) lor (two balls of same color)

:: heads.

:: col(l,red); 0.7 :: col(l,blue) <- true.
:: col(2,red); 0.3 :: col(2,green);
0.5 :: col(2,blue) <- true.

:— heads, col(_ ,red). logical rule encoding background
knowledge

64



Probabilistic Logic g

Programming

® toss (biased) coin & draw ball from each urn

® | win if (heads and a red ball) lor (two balls of same color)

0.4 :: heads.

0.3 :: col(l,red); 0.7 :: col(l,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green);
0.5 :: col(2,blue) <- true.
win :- heads, col( ,red). logical rule encoding background

win :- col(1,C), col(2,C). knowledge

65



Probabilistic Logic g

Programming

® toss (biased) coin & draw ball from each urn

® win if (heads and a red ball) or (two balls of same color)

0.4 :: heads. probabilistic
choices
0.3 :: col(l,red); 0.7 :: col(l,blue) <- true.
0.2 :: col(2,red); 0.3 :: col(2,green);
0.5 :: col(2,blue) <- true

win :- heads, col( ,red).

win :- col(1,C), col(2,C). cONSEQUENtes

66



Possible Worlds

:: col(2,blue) <- true

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

0.4x0.3x0.3

H@®
W




Possible Worlds

:: col(2,blue) <- true

win :- heads, col(_,red).
win :- col(1,C), col(2,C).

0.4x0.3x0.3 (1-0.4)x0.3 x0.2

H@® 00
W W




Possible Worlds

:: col(2,blue) <- true

win :- heads, col(_,red).

win :- col(1,C), col(2,C).

0.4x0.3x0.3 (1-0.4)x0.3x0.2 (1-0.4)x0.3x0.3

H@® 00 Q-
W W




P(win)= ? =0.562

0.024

HQ®O®
W

0.036

0.036

00
W

H@®
W

0.054

0.060

H QO
W

0.090

0.056

HO@O®
W

0.084

Hee|

Marginal
Probability

0.084

0.126

0.210

h




Probabilistic (Logic) Programming

Discrete probabilistic reachability program:

Logic Program (ProblLog)

Functional Program (Scala-like)

path (X,Y) :- edge(X,Y).
path (X,Y) :- edge(X,2),
path(z,Y) .
edge (X,Y) :- ..random vars..
3 0.3 S > d
0.1
0.5 ﬂ 7
b

def path(start,end,visited=List () )={
if (start == end)
return true
if (visited.contains (start))
return false
return start.neighbors.exists{
path( ,end, (visited+start))

}
}

nodeA.neighbors = ..random vars..
nodeB.neighbors = ..random vars..




Probabilistic Programming
Research

Programming Languages Artificial Intelligence




Probabilistic Databases

Has anyone published a paper with both Erdos and Einstein !J B

* Tuple-independent probabilistic database

7 X P S X y P
% Erdos | 0.9 g Erdos Renyi 0.6
'8 Einstein | 0.8 g Einstein Pauli 0.7

Pauli 0.6 © Obama Erdos 0.1

« Learned from the web, large text corpora, ontologies,
etc., using statistical machine learning.

[Suciu’11]



L ——

Pure Logic Probabilistic World Models Pure Learning

Probabilistic Logic Programming
Prolog meets probabilistic Al
Talk to Luc, Angelika, Vaishak, Kristian, etc.

Probabilistic Databases
Databases meets probabilistic Al
Talk to Dan, Dan, Ismail, Carsten, etc.

Weighted Model Integration e —
SAT modulo theories meets probabillistic Al
Talk to Vaishak



http://starai.cs.ucla.edu/papers/VdBFTDB17.pdf

Approximate
Lifted Probabilistic Inference

* Message passing symmetries

— Identify which nodes will receive identical messages
throughout algorithm

— Fractional automorphisms
— Found by color passing
— Talk to Kristian, Sriraam, Martin Grohe

e Lifted MCMC

— Compute exact automorphisms
— Fun with group theory tools
— Make MCMC samplers mix exponentially faster



Conclusions

N

Pure Logic Probabilistic World Models Pure Learning

N

Bring high-level Bring back
representations, models of the world,
general knowledge, and supporting new tasks,
efficient high-level and reasoning about
reasoning to what we have learned,
probabilistic models without compromising

learning performance



Conclusions

* There is a lot of value in working on
pure logic, pure learning

» But we can do more
by finding a synthesis, a confluence

Let’s get rid of this false dilemma...



Thanks



