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Missing data at prediction time 

Train 
Classifier 

(ex. Logistic Regression) 

Predict } 
Test samples with 

Missing Features 



Common Approaches 

• Fill out the missing features, i.e. doing imputation. 

 

• Makes unrealistic assumptions  

(mean, median, etc). 

 

• More sophisticated methods such as MICE don’t  

scale to bigger problems (and also have assumptions). 

 

• We want a more principled way of dealing with missing data 

while staying efficient. 



Discriminative vs. Generative Models 

Terminology: 

 

• Discriminative Model: conditional probability distribution, 𝑃 𝐶 𝑋).  
For example, Logistic Regression. 

 

• Generative Model: joint features and class probability distribution, 𝑃 𝐶, 𝑋 .  

For example, Naïve Bayes. 

 

Suppose we only observe some features y in X, and we are missing m: 

𝑃 𝐶|𝒚 = 𝑃 𝐶,𝒎|𝒚

𝒎

∝ 𝑃 𝐶,𝒎, 𝒚

𝒎

 

  

We need a generative model! 



Generative vs Discriminative Models 

Discriminative Models 

(ex. Logistic Regression) 

 
𝑷 𝑪  𝑿) 

Generative Models 

(ex. Naïve Bayes) 

 
𝑷(𝑪, 𝑿) 
 

Missing 

Features 

 

Classification 

Accuracy 
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Generative Model Inference as Expectation 

Let’s revisit how generative models deal with missing data: 

𝑃 𝐶|𝒚 = 𝑃 𝐶,𝒎|𝒚

𝒎

 

                               =  𝑃 𝐶|𝒎, 𝒚

𝒎

𝑃 𝒎|𝒚  

  

                              = 𝔼𝒎 ~𝑃 𝑀|𝒚  𝑃 𝐶|𝒎, 𝒚  
 

It’s an expectation of a classifier under the feature distribution 



What to expect of classifiers? 

What if we train both kinds of models: 

1. Generative model for feature distribution 𝑃(𝑋). 

2. Discriminative model for the classifier 𝐹 𝑋 = 𝑃 𝐶  𝑋). 

 

“Expected Prediction” is a principled way to reason about outcome of classifier 

𝐹(𝑋) under feature distribution 𝑃(𝑋). 
 



Expected Predication Intuition 

• Imputation Techniques: Replace the missing-ness uncertainty with 

one or multiple possible inputs, and evaluate the models. 

 

• Expected Prediction: Considers all possible inputs and reason about 

expected behavior of the classifier. 

 



Hardness of Taking Expectations 

• In general, it is intractable for arbitrary pairs of  

discriminative and generative models. 

 

• Even when  

 Classifier F is Logistic Regression and  

 Generative model P is Naïve Bayes,  

    the task is NP-Hard. 
 

 

• How can we compute the expected prediction? 



Solution: Conformant learning 

Given a classifier and a dataset, learn a generative model that 

 

1. Conforms to the classifier: 𝐹 𝑋 = 𝑃 𝐶  𝑋). 
 

2. Maximizes the likelihood of generative model: 𝑃(𝑋). 

No missing features    →  Same quality of classification 

Has missing features  →  No problem, do inference 

Example: Naïve Bayes (NB) vs. Logistic Regression (LR): 

• Given NB there is one LR that it conforms to 

• Given LR there are many NB that conform to it 



Naïve Conformant Learning (NaCL) 

Logistic Regression 

Weights 
“Best” Conforming 

 Naïve Bayes } 
NaCL 

Optimization task as a Geometric Program 

GitHub: github.com/UCLA-StarAI/NaCL 

https://github.com/UCLA-StarAI/NaCL
https://github.com/UCLA-StarAI/NaCL
https://github.com/UCLA-StarAI/NaCL
https://github.com/UCLA-StarAI/NaCL
https://github.com/UCLA-StarAI/NaCL
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Experiments: Fidelity to Original Classifier 



Experiments: Classification Accuracy 



Sufficient Explanations of Classification 

Goal:  

    To explain an instance of classification 

 

Support Features:         

    Making them missing  
        →  probability goes down 

 

Sufficient Explanation:  

    Smallest set of support features  

    that retains the expected classification 
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What about better distributions and classifiers? 

Generative  Discriminative  



Hardness of Taking Expectations 

If 𝑓 is a regression circuit, and 𝑝 is a generative circuit  

  with different vtree              Proved #P-Hard 

If 𝑓 is a classification circuit, and 𝑝 is a generative circuit  

  with different vtree              Proved NP-Hard 

 

If 𝑓 is a regression circuit, and 𝑝 is a generative circuit  

  with the same vtree           Polytime algorithm 



23 

Regression Experiments 



Approximate Expectations of Classification 

What to do for classification circuits? 

(Even with same vtree, expectation was intractable.) 

 

 Approximate classification using Taylor series 

of the underlying regression circuit. 

 

 

 

 

 Requires higher order moments  

of regression circuit… 

 

 This is also efficient! 

 

 

 



Exploratory Classifier Analysis 

Expected predictions enable reasoning about behavior of predictive models  

 

We have learned an regression and a probabilistic circuit for  

“Yearly health insurance costs of patients” 

 

Q1: Difference of costs between smokers and non-smokers  

 

 

 

…or between female and male patients? 

 

 



Exploratory Classifier Analysis 

Can also answer more complex queries like: 

 

Q2: Average cost for female (F) smokers (S)  

        with one child (C) in the South East  (SE)? 

Q3: Standard Deviation of the cost for the same sub-population? 
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Algorithmic Fairness 

Race (Civil Rights Act of 1964) 

Color (Civil Rights Act of 1964) 

Sex (Equal Pay Act of 1963; Civil Rights Act of 1964) 

Religion (Civil Rights Act of 1964) 

National origin (Civil Rights Act of 1964) 

Citizenship (Immigration Reform and Control Act) 

Age (Age Discrimination in Employment Act of 1967) 

Pregnancy (Pregnancy Discrimination Act) 

Familial status (Civil Rights Act of 1968) 

Disability status (Rehabilitation Act of 1973; 

Americans with Disabilities Act of 1990) 

Veteran status (Vietnam Era Veterans' Readjustment 

Assistance Act of 1974; Uniformed Services 

Employment and Reemployment Rights Act);  

Genetic information (Genetic Information 

Nondiscrimination Act) 

Legally recognized  

‘protected classes’ 



Individual Fairness 

Data 

• Individual fairness:  

• Existing methods often define individuals as a  

fixed set of observable features 

• Lack of discussion of certain features  

not being observed at prediction time 

= 



What about learning from fair data? 

G. Farnadi 

Input 

? 

Independent 

Model learned from repaired  

data can still be unfair! 

 

 

Number of discrimination patterns: 

Michael Feldman, Sorelle A Friedler, John Moeller, Carlos Scheidegger, and Suresh Venkata-subramanian.  Certifying and removing disparate impact.  

 In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 259–268.ACM, 2015 



Individual Fairness with Partial Observations 

• Degree of discrimination: Δ 𝒙, 𝒚 = 𝑃 𝑑 𝒙𝒚 − 𝑃 𝑑 𝒚  

 

 

 

  “What if the applicant had not disclosed their gender?” 

• 𝜹-fairness: Δ 𝒙, 𝒚 ≤ 𝛿, ∀𝒙, 𝒚 

• A violation of δ-fairness is a discrimination pattern 𝐱, 𝐲. 

Decision given 

partial evidence 

Decision without 

sensitive attributes 



Discovering and Eliminating Discrimination 

1. Verify whether a  
  Naive Bayes classifier is 𝜹-fair  
  by mining the classifier for 
  discrimination patterns 

 

2. Parameter learning algorithm    
  for Naive Bayes classifier to  
  eliminate discrimination patterns 

G. Farnadi 

Sensitive non-Sensitive 

Decision 



Technique: Signomial Programming 

G. Farnadi 

argmax 𝑃(𝐶, 𝑋1, 𝑋2, … , 𝑋𝑚, 𝑌1, 𝑌2, , … , 𝑌𝑛) 

𝑠. 𝑡. 

Max Likelihood 

Naive Bayes 

𝛿-fair  

constraints } 
𝑃(𝐶|𝑋1, 𝑋2, … , 𝑋𝑚, 𝑌1, 𝑌2, … , 𝑌𝑛) − 𝑃(𝐶|𝑌1, 𝑌2, … , 𝑌𝑛) ≤ 𝛿 

𝑃(𝐶|𝑋1, 𝑌1) − 𝑃(𝐶|𝑌1) ≤ 𝛿 

𝑃(𝐶|𝑋𝑚, 𝑌1) − 𝑃(𝐶|𝑌1) ≤ 𝛿 

𝑃(𝐶|𝑋1, 𝑋2, 𝑌1) − 𝑃(𝐶|𝑌1) ≤ 𝛿 

𝑃(𝐶|𝑋1, 𝑌𝑛) − 𝑃(𝐶|𝑌𝑛) ≤ 𝛿 

… 

… 

… 

… 



Cutting Plane Approach 

G. Farnadi 

 

Learning 

subject to 

fairness 

constraints 

 

 
Discrimination 

discovery  

in the learned 

model 

 

Add constraints 

Learned model 



Which constraints to add? 

G. Farnadi 

Discrimination 

Divergence 

Most probable 

Most violated 



Quality of Learned Models? 

G. Farnadi 

Almost as good (likelihood) as  

unconstrained unfair model 

Higher accuracy than  

other fairness approaches, 

while recognizing discrimination  

patterns involving missing data 
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Current learning approaches 

Likelihood 

Optimization 

Inference-Free ✘ 

Consistent for MCAR ✔ 

Consistent for MAR ✔ 

Consistent for MNAR ✘ 

Maximum Likelihood ✔ 



Current learning approaches 

Likelihood 

Optimization 

Expectation 

Maximization 

Inference-Free ✘ ✘ 

Consistent for MCAR ✔ ✔/✘ 

Consistent for MAR ✔ ✔/✘ 

Consistent for MNAR ✘ ✘ 

Maximum Likelihood ✔ ✔/✘ 

Closed Form n/a ✘ 

Passes over the data n/a ? 



Current learning approaches 

Likelihood 

Optimization 

Expectation 

Maximization 

Inference-Free ✘ ✘ 

Consistent for MCAR ✔ ✔/✘ 

Consistent for MAR ✔ ✔/✘ 

Consistent for MNAR ✘ ✘ 

Maximum Likelihood ✔ ✔/✘ 

Closed Form n/a ✘ 

Passes over the data n/a ? 

Conventional wisdom: downsides are inevitable! 



Reasoning about Missingness Mechanisms 

X1 RX1 

X1 
* 

RX2 

RX4 

RX3 

( X1 ) ( X3 ) 

( X2 ) ( X4 ) 

Gender Qualification 

Experience Income 

X2 
* 

( X1 ) ( X3 ) 

( X2 ) ( X4 ) 

Gender Qualification 

Experience Income 

+ (a causal mechanism) 



Deletion Algorithms for Missing Data Learning 

Likelihood 

Optimization 

Expectation 

Maximization 

Deletion 
[our work] 

Inference-Free ✘ ✘ ✔ 

Consistent for MCAR ✔ ✔/✘ ✔ 

Consistent for MAR ✔ ✔/✘ ✔ 

Consistent for MNAR ✘ ✘ ✔/✘ 

Maximum Likelihood ✔ ✔/✘ ✘ 

Closed Form n/a ✘ ✔ 

Passes over the data n/a ? 1 



Benefits bear out in practice! 

INCONSISTENT 



Conclusions 

• Missing data is a central problem in machine learning 

• We can do better than classical tools from statistics 

• By doing reasoning about the data distribution! 

 In a generative model that conforms to the classifier 

 Expectations using tractable circuits as new ML models 

 Using causal missingness mechanisms 

• Important in addressing problems of  

robustness, fairness, and explainability 
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