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The Alphabet Soup of probabilistic models
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Intractable and tractable models
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tractability is a spectrum
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Expressive models without compromises
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a unifying framework for tractable models
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Today 72th May

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable probabilistic modeling

Thursday 74th May

Learning circuits

learning their structure and parameters from data

Advanced representations

tracing the boundaries of tractability and connections to other formalisms 7152



Why tractable inference?

or the inherent trade-off of tractability vs. expressiveness



Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

© fineartamerica.com
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q;: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

qo: Which day is most likely to have a traffic jam on my
route to campus?
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

qo: Which day is most likely to have a traffic jam on my
route to campus?

How to answer several of these probabilistic queries?

© fineartamerica.com
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“What is the most likely street to have a traffic jam at 12.00?”

e
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answering queries...
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“What is the most likely street to have a traffic jam at 12.00?”
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answering queries...
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“What is the most likely to have a traffic jom at 2"
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...hy fitting predictive models!
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“What is the most likely to have a traffic jom at 2"
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“What is the most likely to see a traffic jam at 7"
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“What is the probability of a traffic jam on on ?”
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10/92



XU X2 X3 Xt XS

qi(m)? *

—————— - X:
/” \\J

P ? X

i (m? ~

- [ X X ] \J x

~.. _a x

qr(m)? Pm (X) x

...hy fitting generative models!
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

© fineartamerica.com
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day, Time, Jamgsy,1, Jamsy2, . . ., Jamsyn }

ql(m) = pm(Day = Mon, Jamwwood = 1)
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Why probabilistic inference?

q;: What is the probability that today is a Monday and
there is a traffic jam on Westwood Blvd.?

X = {Day, Time, Jamgsy,1, Jamsy2, . . ., Jamsyn }

ql(m) = pm(Day = Mon, Jamwwood = 1)
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Why probabilistic inference?

qo: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day, Time, Jams,1, Jamsyro, . . ., Jamsen }

q(m) = argmaxy pm(Day = d A V,croute JaMstri)
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Why probabilistic inference?

qo: Which day is most likely to have a traffic jam on my
route to campus?

X = {Day, Time, Jams,1, Jamsyro, . . ., Jamsen }

q(m) = argmaxy pm(Day = d A V,croute JaMstri)

© fineartamerica.com

=—> marginals + MAP + logical events
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢/(m) runs in time O(poly(|m])).
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Tractable Probabilistic Inference

A class of queries O is tractable on a family of probabilistic models M
iff for any query q € O and model m € M
exactly computing ¢/(m) runs in time O(poly(|m])).

—> often poly will in fact be linear!

=—> Note: if M is compact in the number of random variables X, that is,
|m| € O(poly(|X|)), then query time is O(poly(|X|)).

—> Why exactness? Highest guarantee possible!

1292



1. What are classes of queries?

2. Are my favorite models tractable?

3. Are tractable models expressive?

We introduce probabilistic circuits as a unified
framework for tractable probabilistic modeling

13/92



tractable bands
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Complete evidence (EVI)

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

©fineartamerica.com
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Complete evidence (EVI) s

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day, Time, Jamwwood , Jamsgr2, . . ., Jamsyn }

s (m) = pm(X = {Mon, 12.00, 1,0, ..., 0}) e

© fineartamerica.com
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Complete evidence (EVI) ¢

q3: What is the probability that today is a Monday at
12.00 and there is a traffic jam only on Westwood
Blvd.?

X = {Day, Time, Jamwwood , Jamsgr2, . . ., Jamsyn }

q3(m) = pp (X = {Mon, 12.00,1,0,...,0}) :

..fundamental in maximum likelihood learning © tineartamerica.con
MLE _ .
Om— = argmaxy [ [cep P (x;6)
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Generative Adversarial Networks

ming maxy Exp,,,,x) [108 Dp(X)] + Egup) [log(1 — Dy(Gy(2)))]

Gy Dy

Goodfellow et al., “Generative adversarial nets”, 2014 16/5
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ming maxy Exp,,,,x) [108 Dp(X)] + Egup) [log(1 — Dy(Gy(2)))]

no explicit likelihood!
=> adversarial training instead of MLE

—> no tractable EVI Gg Dci)

good sample quality
—> butlots of samples needed for MC

B unstable training —> mode collapse

Goodfellow et al., “Generative adversarial nets”, 2014 1752



tractable bands
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Variational Autoencoders

po(x) = [ po(x | 2)p(z)dz —

an explicit likelihood model!

Rezende et al., “Stochastic backprop. and approximate inference in deep generative models”, 2014
Kingma et al., “Auto-Encoding Variational Bayes”, 2014 1952
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log Py (%) > By, (aix) [L0gpo(x | 2)] — KL(g4(2 | %)||p(2))

an explicit likelihood model! —0
B ... but computing log py(x) is intractable
=—> an infinite and uncountable mixture
=—> no tractable EVI
we need to optimize the ELBO...

=> which is “tricky” [Alemi et al. 2017, Dai —
etal. 2019; Ghosh et al. 2019]

2092
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Normalizing flows

px(x) = pa(f~1(00) [det (41

an explicit likelihood!

229,



Normalizing flows

px(x) = pa(f~1(00) [det (41

an explicit likelihood!

I ..plus structured Jacobians f f!
—> tractable EVI queries!
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Normalizing flows

px(x) = pa(f~(0) [aer (%))

an explicit likelihood!

B ..plus structured Jacobians
—> tractable EVI queries!

B many neural variants
RealNVP [Dinh et al. 2016,
MAF [Papamakarios et al. 2017]
MADE [Germain et al. 2015],
PixelRNN [Oord et al. 2016]

229,



Marginal queries (MAR)

q,: What is the probability that today is a Monday &
%208 and there is a traffic jam esk on Westwood
Blvd.?

©fineartamerica.com
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Marginal queries (MAR)

q,: What is the probability that today is a Monday &
%208 and there is a traffic jam esk on Westwood
Blvd.?

ql(m) = pm(Day = MonaJamWwood = 1)

©fineartamerica.com
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Marginal queries (MAR)

q;: What is the probability that today is a Monday e
%208 and there is a traffic jam esk on Westwood
Blvd.?

ql(m) = pm(Day = MonaJamWwood = 1)

General: pm(e) = [ pm(e, H)dH

where EC X, H=X\E

© fineartamerica.com
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Marginal queries (MAR)

q;: What is the probability that today is a Monday e
%208 and there is a traffic jam esk on Westwood
Blvd.?

ql(m) = pm(Day = MonaJamWwood = 1)

tractable MAR => tractable conditional queries
(CONY:

o Pm(q; €)
pm(q | e) - pm(e)

© fineartamerica.com

2392


fineartamerica.com

Tractable MAR -

original

SUPAIR
result

SUPAIR
recon-
struction

AR
result

AR
recon-
struction

scene understanding

1.00 1.
o
8075 8075
3
S 050 2050
—— SuPAR € —— SuPAR
302  SuARwiobg | 3 025 — SuPaRwiobg
— AR S —
0.00 0.00
00 200 300 50 100 150 200 25
time (s) time (s)
(a) MNIST (b) Sprites

1 1.00
g g
8075 8075
3 3
g 050 g 050
€ — SuPAR € — suPAIR
So02s " suanwong | 3025 — cwarwiobs
S — AR S — AR

o 0.00

100 200 300 400
time (s)

(c) Noisy MNIST

100 200 300 400
time (s)

(d) Grid MNIST

Fast and exact marginalization over unseen or “do not care” parts in the scene

Stelzner et al., “Faster Attend-Infer-Repeat with Tractable Probabilistic Models”, 2019
Kossen et al., “Structured Object-Aware Physics Prediction for Video Modeling and Planning”, 2019

24,9,



Normalizing flows

px(x) = pa(f~1(00) [det (41

an explicit likelihood!

B ..plus structured Jacobians f f!
—> tractable EVI queries!

25/9;
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px(x) = pa(f~(0) [aer (%))

an explicit likelihood!
B ..plus structured Jacobians
—> tractable EVI queries!

MAR is generally intractable:
we cannot easily integrate over f
=> unless f is “simple”, e.g. bijection

26/92



GANs

VAEs

HEB<

Flows

) CELLEEEE ) ¢
y ITTTIIE } 4
3

tractable bands
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Probabilistic Graphical Models (PGMs)

Declarative semantics: a clean separation of modeling assumptions from inference

Nodes: random variables

Edges: dependencies 6“@
+ () @‘@

Inference: conditioning [Darwiche 2001; Sang et al. 2005]
elimination [Zhang et al. 1994, Dechter 1998]

B message passing [vedidia et al. 2001, Dechter
et al. 2002; Choi et al. 2010; Sontag et al. 2011]

2892



Complexity of MAR on PGMs

Exact complexity: Computing MAR and CON is #P-hard
=—>  [Cooper 1990; Roth 1996]

Approximation complexity: Computing MAR and COND approximately
within a relative error of 2 * for any fixed € is NP-hard
—> [Dagum et al. 1993; Roth 1996]

29,9,



Why? Treewidth!

Treewidth:

Informally, how tree-like is the graphical model m?
Formally, the minimum width of any tree-decomposition of m.

Fixed-parameter tractable: MAR and CON on a graphical model m with
treewidth w take time O(|X| - 2*), which is linear for fixed width w

[Dechter 1398; Koller et al. 2009)]. => what about bounding the treewidth by design?

3092



Low-treewidth PGMs

Trees Polytrees Thin Junction trees
[Meild et al. 2000] [Dasgupta 1999] [Bach et al. 2001]

If treewidth is bounded (e.g. = 20), exact MAR and CON inference is possible in practice

312



Tree distributions

A tree-structured BN [\eili et al. 2000] where each X; € X has at most one parent Pay,.

p(X) =] _ plailPas,)

@@

Exact querying: EVI, MAR, CON tasks linear for trees: O(|X])

Exact learning from d examples takes O(|X|? - d) with the classical Chow-Liu algorithm'

'Chow et al., “Approximating discrete probability distributions with dependence trees”, 1968 32



GANs

VAEs

Flows

HHBEBx

Trees

tractable bands
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What do we lose?

Expressiveness: Ability to represent rich and complex classes of distributions

Bounded-treewidth PGMs lose the ability to represent all possible distributions ...

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014

34/



Mixtures as a convex combination of £ (simpler) probabilistic models

0.15 j)(X> = W11 (X)+w2])2(X)

00

0.05

0.00

EVI, MAR, CON queries scale linearly in k

3592



Mixtures as a convex combination of £ (simpler) probabilistic models

0.20 —p Z - X|Z -
3 -B) (X2 - B

0.00

—10 -5 0 5 10
Xi
Mixtures are marginalizing a categorical latent variable 7 with k values

—> increased expressiveness
35/92



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions

=> mixture of Gaussians can approximate any distribution!

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 36192



Expressiveness and efficiency

Expressiveness: Ability to represent rich and effective classes of functions
=> mixture of Gaussians can approximate any distribution!
Expressive efficiency (succinctness) Ability to represent rich and effective classes of

functions compactly
—> but how many components does a Gaussian mixture need?

Cohen et al., “On the expressive power of deep learning: A tensor analysis”, 2016
Martens et al., “On the Expressive Efficiency of Sum Product Networks”, 2014 36192



How expressive efficient are mixture?
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How expressive efficient are mixture?
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How expressive efficient are mixture?

. Lo . 37
—> stack mixtures like in deep generative models ”



7.1

Flows

Trees

Mixtures

Hagme-

tractable bands
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

© fineartamerica.com

39/92


fineartamerica.com

Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

q5: Which combination of roads is most likely to be
jammed on Monday at 9am?

q5(m) = argmax; pum (1. J2, .. | Day=M, Time=9)

© fineartamerica.com
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Maximum A Posteriori (MAP) m

aka Most Probable Explanation (MPE) ‘L}; Ca

qs5: Which combination of roads is most likely to be
jammed on Monday at 9am?

is (m) = argmax; pua(j1. o, . | Day=M, Time=9)

General: argmax, pm(q | )

© fineartamerica.com
where QUE =X
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Maximum A Posteriori (MAP)

aka Most Probable Explanation (MPE)

qs5: Which combination of roads is most likely to be
jammed on Monday at 9am?

...intractable for latent variable models!

max p (g | ©) = max ) pm(a, 2| e)
z

7& E max I)rn(q7 VA | e) ©fnartamerica.com
q
z

3992
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MAP inference § image inpainting

Original

Predicting arbitrary patches
given a single model
without the need of retraining.

Covered

BACK-ORIG

SUM

BACK-MPE

Poon et al., “Sum-Product Networks: a New Deep Architecture”, 2011

Sguerra et al., “lmage classification using sum-product networks for autonomous flight of micro
aerial vehicles”, 2016 40,2
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Marginal MAP (MMAP)

aka Bayesian Network MAP

qg: Which combination of roads is most likely to be

jammed ew-Mowndey at 9am?

© fineartamerica.com
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Marginal MAP (MMAP)

aka Bayesian Network MAP

qg: Which combination of roads is most likely to be

jammed ew-Mowndey at 9am?

qs(m) = argmax; pm(ji,Jj2,-.. | Time=9)

© fineartamerica.com
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Marginal MAP (MMAP)

aka Bayesian Network MAP

Qg: Which combination of roads is most likely to be

jammed ew-Mowndey at 9am?
qs(m) = argmax; pm(ji,Jj2,-.. | Time=9)

General: argmax, pm(q | )

= argman thm(q7 h | e)

where QUHUE =X

© fineartamerica.com
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Marginal MAP (MMAP) . e

aka Bayesian Network MAP \ i

Qg: Which combination of roads is most likely to be

jammed ew-Mowndey at 9am?

qs(m) = argmax; pm(ji,Jj2,-.. | Time=9)

=> NP™-complete [Park et al. 2006]
=> NP-hard for trees [Campos 2011] © tineartanerica. con
—> NP-hard even for Naive Bayes [ibid.]

4292
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VAEs
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Advanced queries

q>: Which day is most likely to have a traffic jom on
my route to campus?

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 4455
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to campus?

q»(m) = argmaxy pm(Day = dAV, ¢ oute JaMstr i)

=> marginals + MAP + logical events

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 4455
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 4455
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Advanced queries

qo: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

=> counts + group comparison

©fineartamerica.com

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015 4455
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Advanced queries - Los ANGELES

qo: Which day is most likely to have a traffic jam on
my route to campus?

q7: What is the probability of seeing more traffic jams
in Westwood than Hollywood?

and more:

I expected classification agreement -
[Oztok et al. 2016; Choi et al. 2017, 2018]

©fineartamerica.com

I expected predictions [kKhosravi et al. 2019b]

Bekker et al., “Tractable Learning for Complex Probability Queries”, 2015
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VAEs

Flows

Trees
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Mixtures

tractable bands
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Fully factorized models

A completely disconnected graph. Example: Product of Bernoullis (PoBs)

® © px) =T p()
®) ©

Complete evidence, marginals and MAP, MMAP inference is linear!

=—> but definitely not expressive...

4792
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Flows

Trees

Mixtures
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Factorized

tractable bands
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less expressive

efficient

A

larger tractable bands

smaller tractable bands

B 3

more expressive

efficient

49,92



larger tractable bands

AN

()]
g 2
2 i
[ ) n W
w e [
2@ | 59
g5 ¢ NADEs g BNs X ©
o & v =
w @ NFs Qo
& m g
= £

'AEs

smaller tractable bands

Expressive models are not very tractable...

50/92



larger tractable bands
Fully factorized
e % [

o
g >
= =
e [ )
w e Q0 c
2o s 2
g5 ¢ NADEs g BNs g5
o & v =
w @ NFs v o
¢ s -

smaller tractable bands

and tractable ones are not very expressive...
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larger tractable bands

Fully factorized X
o % [

v g
2 2
) n W
nw e o c
Lo 59
85 ¢ NADES g BNs g5
3 E o &
w @ NFs v o
- £

smaller tractable bands

probabilistic circuits are at the “sweet spot”

529,



Probabilistic Circuits



Probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

54,9,



Probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

—> operational semantics!
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Probabilistic circuits

A probabilistic circuit C over variables X is a computational graph encoding a
(possibly unnormalized) probability distribution p(X)

—> operational semantics!

—> by constraining the graph we can make inference tractable...

54,9,



1. What are the building blocks of probabilistic circuits?

=—>  How to build a tractable computational graph?

2. For which queries are probabilistic circuits tractable?
=> tractable classes induced by structural properties

How can probabilistic circuits be learned?

55/92



Distributions as computational graphs

X

Base case: a single node encoding a distribution
—> e.g, Gaussian PDF continuous random variable

56/92



Distributions as computational graphs

- X

Base case: a single node encoding a distribution
—> e.g, indicators for X or =X for Boolean random variable

56/92



Distributions as computational graphs
x —)@—) px ()
X

Simple distributions are tractable “black boxes” for:

B EVI: output p(x) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

56/92



Distributions as computational graphs
1.3 —>®—> 33

X

Simple distributions are tractable “black boxes” for:

B EVI: output p(x) (density or mass)
B MAR: output 1 (normalized) or Z (unnormalized)
B MAP: output the mode

56/92



Factorizations as product nodes

Divide and conquer complexity

p(X1, Xo, X3) = p(X1) - p(Xz) - p(X3)

3.0
2.5
2.0
1.5
1.0
0.5
0.0
1 '7 3

—> e.g. modeling a multivariate Gaussian with diagonal covariance matrix...
5792



Factorizations as product nodes

Divide and conquer complexity

p(X1, Xo, X3) = p(X1) - p(Xz) - p(X3)

3.0 8

2.5

2.0

L5

o W W W
03 X, Xy Xs

X X X3

—> ...with a product node over some univariate Gaussian distribution
5792



Factorizations as product nodes

Divide and conquer complexity

(@1, 0, 23) = p(21) - p(22) - P(23)

3.0
25
2.0
15
® ® O
05 X1 Xo X3
0.0
1 2 3

—> feedforward evaluation
5792



Factorizations as product nodes

Divide and conquer complexity

(@1, 0, 23) = p(21) - p(22) - P(23)

3.0 @
25
YARN
15
i ® ®© O
05 X1 Xo X3
0.0
X X X3

—> feedforward evaluation
5792



Mixtures as sum nodes

Enhance expressiveness

P(X) = wy-pi (X)Fwepo(X)

—> e.g. modeling a mixture of Gaussians...
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Mixtures as sum nodes

Enhance expressiveness

w1 w2

p(x) =0.2:p1 () +0.8-ps(2)
X1 X1

—> ...as a weighted sum node over Gaussian input distributions
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Mixtures as sum nodes

Enhance expressiveness
O% NB
p(x) =0.2:p1 () +0.8-ps(2)

=> by stacking them we increase expressive efficiency
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A grammar for tractable models

Recursive semantics of probabilistic circuits
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Recursive semantics of probabilistic circuits

@ﬁ@

X1 X1 X1
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A grammar for tractable models

Recursive semantics of probabilistic circuits

wls 2w2 S 2
X1 X1 X1 X1 X
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A grammar for tractable models

Recursive semantics of probabilistic circuits
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A grammar for tractable models

Recursive semantics of probabilistic circuits
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Probabilistic circuits are not PGMs!

They are probabilistic and graphical, however ...

PGMs Circuits
Nodes: random variables unit of computations
Edges: dependencies order of execution
Inference: g conditioning B feedforward pass
P elimination B backward pass

B message passing

—> they are computational graphs, more like neural networks
60,92



Just sum, products and distributions?
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just arbitrarily compose them like a neural network!
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Just sum, products and distributions?

(1)
+
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=—> structural constraints needed for tractability 61/



Which structural constraints
to ensure tractability?



Decomposability

A product node is decomposable if its children depend on disjoint sets of variables
=—> just like in factorization!

(X) (X)
W @ W W W W
X X5 X3 X1 Xy X3

decomposable circuit non-decomposable circuit

Darwiche et al., “A knowledge compilation map”, 2002 63152



aka completeness

A sum node is smooth if its children depend of the same variable sets
—> otherwise not accounting for some variables

X1 X1 Xl X2

smooth circuit non-smooth circuit

=> smoothness can be easily enforced [Shih et al. 2019]

Darwiche et al., “A knowledge compilation map”, 2002 64/5



m ol decomposability g tractable MAR

Computing arbitrary integrations (or summations)
=> linear in circuit size!

E.g., suppose we want to compute Z:

/p(x)dx

65/92



Smootiness B decomposabilcy [

If p(x) = >, w;p;(x), (smoothness):

/p(X)dX= /Zwipz’(x)dXZ
:Zwi/pi(x)dx

—> integrals are “pushed down” to children

65/92



m ol decomposability gl tractable MAR
If p(x,y,2) = p(x)p(y)p(2), (decomposability):

/// p(x,y,z)dxdydz =
/// 2)dxdydz =
- [ plox / p(y)dy / p(z)dz

—> integrals decompose into easier ones

65/92



Smootiness B decomposabilcy [

Forward pass evaluation for MAR
=> linear in circuit size!

E.g. to compute p(x2, T4):

65/92



m ol decomposability g tractable MAR

Forward pass evaluation for MAR
=—> linear in circuit size!
E.g. to compute p(x2, T4):
B leafs over X; and X3 output Z; = [ p(x;)dz;
=—> for normalized leaf distributions:
B leafs over X5 and X output | 7///
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m ol decomposability g tractable MAR

Forward pass evaluation for MAR
=—> linear in circuit size!
E.g. to compute p(x2, T4):
B leafs over X; and X3 output Z; = [ p(x;)dz;
=—> for normalized leaf distributions:
B leafs over X5 and X output | 7///

B feedforward evaluation (bottom-up)

®
VA

o— -o

@/@ e\oi

& ¢ 6%

&6 oS

Xs X4 X3  Xu

65/92



m d decomposability gl tractable CON

Analogously, for arbitrary conditional queries:

o) _ Pla,e)
plale)=="5

1. evaluate p(q, e) —> one feedforward pass
2. evaluatep(e) => another feedforward pass

—> ...still linear in circuit size!

66/92



Tractable MAR X

Pixels for scenes and abstractions for maps
decompose along circuit structures.

(@ Learning (@ Inference
®rXY), 8

Fast and exact marginalization over unseen
_ S or “do not care” scene and map parts for
s \ hierarchical planning robot executions

Pronobis et al., “Learning Deep Generative Spatial Models for Mobile Robots”, 2016

Pronobis et al., “Deep spatial affordance hierarchy: Spatial knowledge representation for planning

in large-scale environments”, 2017

Zheng et al., “Learning graph-structured sum-product networks for probabilistic semantic maps”, 67
2018 192



m+ decomposability gl tractable MAP

We can also decompose bottom-up a MAP query:

argmax p(q | e)
q

6892



m ol decomposability g <:-=zt=z%/c AP

We cannot decompose bottom-up a MAP query:

argmax p(q | e)
q

since for a sum node we are marginalizing out a latent variable

argmax » w;p;(q,e) = argmax Zp(q, z,e) # Z argmax p(q, z, €)
q - q . " q

—> MAP for latent variable models is intractable [Conaty et al. 2017]

6992



aka selectivity

A sum node is deterministic if the output of only one children is non zero for any input
=—> e.g. iftheir distributions have disjoint support

D ()

w1 w2

X) X (X (X)
© ® © W OO ONO

X <0 Xs Xi>0 Xo X1 X5 X, X

deterministic circuit non-deterministic circuit 70



ol decomposability gl tractable MAP
S

Computing maximization with arbitrary evidence e
=> linear in circuit size!

E.g., suppose we want to compute:

mgXp(q | e)

7192



ol decomposability gl tractable MAP

ifp(q,e) = >, wipi(q, e) = max; w;p;(q, e),
(deterministic sum node):

max p(q, e) = max Z w;ipi(q,e)
a a =

= max max w;p;(q, e)
q 7

= max max w;p;(q, e)
i aq

—> one non-zero child term, thus sum is max

7192



ol decomposability gl tractable MAP
S

Iif p(a,e) = p(dx, ex, Ay, €y) = P(ax, ex)P(dy, ey)
(decomposable product node):

mgxp(q |e) = IH(?XP(Q; e)
= éil’ég;p(Qxa €x,qy, e)’)

= max p(Qx, €x) - max p(dy, ey )
qx qy

—> solving optimization independently 3

7192



ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!
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ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!

E.g. forargmax, . p(z1, 23 | T2, 74):
1. turn sum into max nodes and
distributions into max distributions
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ol decomposability gl tractable MAP

Evaluating the circuit twice:

bottom-up and top-down  —> il jinear in circuit size!

E.g. forargmax, . p(z1, 23 | T2, 74):
1. turn sum into max nodes and
distributions into max distributions

2. evaluate p(z2, x4) bottom-up

7192



ol decomposability gl tractable MAP

Evaluating the circuit twice: / \
bottom-up and top-down = gjjj jinear in circuit size! @_,@ @<_°

E.g., forargmax, , p(z1, 23 | T2, x4): / \Xl
o o @@@@

1. turn sum into max nodes and
X2 X2

distributions into max distributions

2. evaluate p(z2, x4) bottom-up %
3. retrieve max activations top-down @ @ @ @

X3 Xy X3

7192



ol decomposability gl tractable MAP

Evaluating the circuit twice: / \
bottom-up and top-down = gjjj jinear in circuit size! @_,@ @<_9

Xy
E.g. forargmax, .. p(z1, T3 | T2, 4): / \
1. turn sum into max nodes and @/@ @\g

distributions into max distributions

2. evaluate p(z2, x4) bottom-up %

3. retrieve max activations top-down @ @ @ @
Xs  Xi X
4, compute JVIISEIEN for X and X3 at leaves : ! :

7192



MAP inference 3§ image segmentation

Input Image Multiscale Unary Potential Multiscale sum-product Superpixel-based refine
network

Semantic segmentation is MAP over joint pixel and label space

Even approximate MAP for non-deterministic circuits (SPNs) delivers good performances.
Rathke et al., “Locally adaptive probabilistic models for global segmentation of pathological oct
scans”, 2017

Yuan et al., “Modeling spatial layout for scene image understanding via a novel multiscale
sum-product network”, 2016

Friesen et al., “Submodular Sum-product Networks for Scene Understanding”, 2016 7215




ull decomposability gl tractable MMAP

Analogously, we could can also do a MMAP query:

argmax Zp(q, z|e)
g9 z

7392



ull decomposability gl 2-=ctz%!z MUIAP

We cannot decompose a MMAP query!

argmax Y p(q,z | )
a z
we still have latent variables to marginalize...

We need more structural properties!
=—> more advanced queries tomorrow...

7452



less expressive

efficient

more tractable queries

Fully factorized
] % [

?

¢ NADEs i BNs
il

less tractable queries

where are probabilistic circuits?

more expressive

efficient

7592



less expressive

efficient

more tractable queries

Fully factorized
o 1
=
¢ NADEs i BNs
—Y e
+ m

less tractable queries

tractability vs expressive efficiency

more expressive

efficient

76/52



Low-treewidh PGMs

Tree, polytrees and
Thin Junction trees
can be turned into

decomposable
B smooth
deterministic

circuits

Therefore they support
tractable

B EvI
B MAR/CON
B VAP

77152



Arithmetic Circuits (ACs)

ACs [Darwiche 2003] are They support tractable
decomposable B EVI
smooth B MAR/CON
B deterministic B MAP

=> parameters are attached to the leaves
=> ...but can be moved to the sum node edges [Rooshenas et al. 2014]

Lowd et al., “Learning Markov Networks With Arithmetic Circuits”, 2013 7815



Sum-Product Networks (SPNs)

SPNs [Poon et al. 2011] are They support tractable
decomposable B EVI
B smooth B MAR/CON
e T B MAR

—> deterministic SPNs are also called selective [Peharz et al. 2014]
79192



Cutset Networks (CNets)

CNets They support tractable

[Rahman et al. 2014] are ! EVI /é\
[ decomposable B MAR/CON @/ \@
B smooth B MAP t C

B deterministic

o,
ag
e,
-

Rahman et al., “Cutset Networks: A Simple, Tractable, and Scalable Approach for Improving the
Accuracy of Chow-Liu Trees”, 2014

Di Mauro et al., “Learning Accurate Cutset Networks by Exploiting Decomposability”, 2015

8092



Probabilistic Sentential Decision Diagrams

PSDDs [Kisa et al. 2014] are They support tractable

B structured B EVI
decomposable B MAR/CON

B smooth B MAP

I deterministic B Complex queries!

Kisa et al., “Probabilistic sentential decision diagrams”, 2014

Choi et al., “Tractable learning for structured probability spaces: A case study in learning
preference distributions”, 2015

Shen et al., “Conditional PSDDs: Modeling and learning with modular knowledge”, 2018 8112



AndOrGraphs

AndOrGarphs They support tractable
[Dechter et al. 2007] are B EVI
B structured B MAR/CON
decomposable B MAP
B smooth

B Complex queries!

deterministic

Dechter et al., "AND/OR search spaces for graphical models”, 2007
Marinescu et al., “Best-first AND/OR search for 0/1 integer programming”, 2007 8215



less expressive

efficient

more tractable queries

Fully factorized PSDDs
m Trees % CNets | AoGs | ACs

SPNs

¢ NADEs i BNs
il

less tractable queries

tractability vs expressive efficiency

more expressive

efficient

8322



How expressive are probabilistic circuits?

Measuring average test set log-likelihood on 20 density estimation benchmarks

Comparing against intractable models:
Bayesian networks (BN) [Chickering 2002] with sophisticated context-specific CPDs
B MADEs [Germain et al. 2015]
VAEs [Kingma et al. 2014] (IWAE ELBO [Burda et al. 2015])

Gens et al., “Learning the Structure of Sum-Product Networks”, 2013

Peharz et al., "Random sum-product networks: A simple but effective approach to probabilistic
deep learning”, 2019

84/,



How expressive are probabilistic circuits?

density estimation benchmarks

dataset best circuit BN  MADE VAE dataset  best circuit BN MADE VAE
nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09  kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12  msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -1232 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15  -21.72 -22.3  -2516 ad -14.00 -18.35 -13.65 -18.81

85/,



Hybrid intractable gJ tractable EVI

VAEs as intractable input distributions, orchestrated by a circuit on top

IWAE vs SP-IWAE (Continuous Models)
B ey -2000-
7 4000

-6000- |
~8000 -

10000

Test Set ELBO

12000 -

14000 -

-16000

— decomposing a joint ELBO: better lower-bounds than a single VAE
=> more expressive efficient and less data hungry

Tan et al., “Hierarchical Decompositional Mixtures of Variational Autoencoders”, 2019 86/%2



Conclusions



Today 72th May

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable probabilistic modeling

8892



Today 72th May

Why tractable inference?

or expressiveness vs tractability

Probabilistic circuits

a unified framework for tractable probabilistic modeling

Thursday 74th May

Learning circuits

learning their structure and parameters from data

Advanced representations

tracing the boundaries of tractability and connections to other formalisms 88/



GANs X""""""""""""""X
VAEs x............................x
Flows H ..................... X

Trees

[ ]
|
Mixtures : x- .......... x
|
|

Factorized

FTTTE

takeaway #1: tractability is a spectrum
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more tractable queries

Fully factorized PSDDs
m Trees % T CNets | AoGs | Acs
¢ NADEs i BNs
NFs m
4 m

less tractable queries

efficient

less expressive
efficient
E
more expressive

takeaway #2: you can be both tractable and expressive
90,92



X1 X2 X3 Xl Xl

takeaway #3: probabilistic circuits are a foundation for
tractable inference and learning
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Probabilistic circuits: Representation and Learning
starai.cs.ucla.edu/papers/LecNoAAATI20.pdf

Foundations of Sum-Product Networks for probabilistic modeling
tinyurl.com/w65pobd

92/,


starai.cs.ucla.edu/papers/LecNoAAAI20.pdf
tinyurl.com/w65po5d
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