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The AI Dilemma

Pure LearningPure Logic

• Slow thinking: deliberative, cognitive, 
model-based, extrapolation

• Amazing achievements until this day
 

• “Pure logic is brittle”
noise, uncertainty, incomplete knowledge, …



The AI Dilemma

Pure LearningPure Logic

• Fast thinking: instinctive, perceptive, 
model-free, interpolation

• Amazing achievements recently
• “Pure learning is brittle”

 
 

fails to incorporate a sensible model of the world

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing labels, 
data efficiency, shift in distribution, general robustness and safety



• “Pure learning is brittle”
 

fails to incorporate a sensible model of the world

Pure LearningPure Logic Probabilistic World Models

A New Synthesis of 
Learning and Reasoning

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing 
labels, data efficiency, shift in distribution, general robustness and safety



Outline
1. Theoretical motivation

Tractability of SHAP explanations           [AAAI’21]
 

2. Tractable reasoning about classifier behavior
Reasoning about missing features        [NeurIPS’19]

Latent fair decisions                                [AAAI’21]

Probabilistic sufficient explanations        [IJCAI’21]
 

3. Practical neuro-symbolic verification
Learning monotonic neural networks    [NeurIPS’20]



Outline
1. Theoretical motivation

Tractability of SHAP explanations       [AAAI’21]
with Anton Lykov, Maximilian Schleich, Dan Suciu



Motivation: Explainable AI

● Why are particular bank loan requests rejected? 

● Which “features” have the biggest impact on the loan being rejected?

● How can the result of the loan be improved (i.e what needs to be changed)?

F(        ) = no loan

But why?

Instance x
with Features X1, ... ,Xn 

Classifier F
Input

Prediction F(x) + Explanation

Loan?

“Sorry, can’t do that …”

We study: 
Computational Complexity of SHAP Explanations



What are SHAP explanations?

Feature-Based Attribution Score
● How much does ith feature influence F(x)?
● Based on Shapley values from 

Game Theory 

Benefits
● Model-agnostic  
● Intuitive
● Successfully applied in practice

E[F] E[F | X1] E[F | X1,X2]F(x)

SHAP(X1) SHAP(X2) SHAP(X3)

Age

Income

Debt
Credit Score

# Inquiries
Payment History 

Capital Gains

0.1 0.2 0.3 0.4-0.1-0.2-0.3



Computing SHAP Explanations

SHAP-score for X2:
Average contribution of X2 over all 
possible permutations

Intuition:

● Assume a total order π of the features
● Compute effect on E[F] of presenting one feature at a time following π

Example:

● Assume π = [X1,X2,...,Xn] 
● Contribution of X2 w.r.t. π        



The Challenge 

Various algorithms proposed to compute SHAP explanations: 
approximately, exactly, efficiently, …, for different machine learning models

There is considerable confusion about the 
tractability of computing SHAP explanations

Example: TreeSHAP [ICML 2017]

How can we clear this up?

● Are the exact algorithms exact, correct, and efficient?
● Are the approximations needed?



The Main Actors
1.  The machine learning model class for function F

Linear regression, decision and regression trees, random forests, additive tree ensembles, logistic regression, neural nets with sigmoid 
activation functions, naive Bayes classifiers, factorization machines, regression circuits, logistic circuits, Boolean functions in d-DNNF, 
binary decision diagrams, bounded treewidth Boolean functions in CNF, Boolean functions in CNF or DNF, and arbitrary functions

Fully-factorized distributions

Empirical data distribution

Graphical models (naive Bayes)

2.  The data distribution Pr to compute E[F|y] = ∑x Pr(x|y) F(x)



Fully-factorized distributions 

For any classifier F, the following problems have the same complexity:
● Computing SHAP explanations of F
● Computing the expectation E of F

Key result:

Expectations E are efficient to compute for 
● linear regression
● decision trees, random forests, additive tree ensembles
● Boolean functions in d-DNNF form, bounded-treewidth CNF
● … and more

therefore 

SHAP explanations are efficient to compute on those same models!



Fully-factorized distributions 

For any classifier F, the following problems have the same complexity:
● Computing SHAP explanations of F
● Computing the expectation E of F

Key result:

We prove that expectations E are #P-hard to compute for 
● logistic regression
● naive Bayes classifiers
● neural networks with sigmoid activations
● Boolean functions in CNF or DNF

therefore 

SHAP explanations are #P-hard to compute on those same models!



Intuition: Expectation of Logistic Regression
Consider the number partitioning problem for {1,2,3,2}

● {1,3} and {2,2} partition the set into subsets with the same sum

● Counting such partitions is #P-hard

Consider the logistic regression model:

  F(X) = sigmoid(1000 X1 + 2000 X2 + 3000 X3 + 2000 X4 - 4500)

● x = [1,1,0,1] and x’ = [0,0,1,0] correspond to non-partitions:      F(x) ≈ 1 and F(x’) ≈ 0 

● Under a uniform distribution E[F] ≈ 0.5 

● x = [1,0,1,0] and x’ = [0,1,0,1] correspond to partitions:             F(x) = F(x’) ≈ 0 

● Missing probability mass 0.5 - E[F] tells us how many partitions there are

● Computing E[F] is #P-hard



Going Beyond Fully-Factorized Distributions
Idea: the real world is not fully-factorized: features depend on each other

Consider the simplest case:
1. Simplest possible classifier: F(X) = X1
2. Simplest tractable distribution: naive Bayes

SHAP explanations are NP-hard to compute.

SHAP explanations are NP-hard to compute for all probabilistic graphical models, 
even all tractable probabilistic models, even on simple function classes

Trivial function classes do not make SHAP tractable...



Empirical Distributions
Idea: Properties of distributions are often estimated on sampled data.
Perhaps the empirical data distribution is easier to work with?

The # of possible worlds is limited by the number of rows (samples) in data

Computing SHAP is #P-hard in the size of the empirical distribution.

The problem that TreeSHAP is trying to solve efficiently is in fact #P-hard



Summary of Contributions
Distribution Pr

Predictive Model F Fully Factorized Naive-Bayes Empirical 

Linear regression
Regression circuits
Factorization machines

Tractable Intractable Intractable

Decision Tree
Random Forest,Boosted Tree Tractable Intractable Intractable

Boolean functions in d-DNNF, 
BDD, Bounded treewidth CNF Tractable Intractable Intractable

Logistic regression
Logistic circuits, Naive Bayes Intractable Intractable Intractable

Neural Networks
with sigmoid activation Intractable Intractable Intractable

●

 
● Proved connections between SHAP and the expectation of classifiers
● … and more theoretical insights of independent interest



Then how can we reason about the behavior of 
classifiers under a non-trivial feature distribution?



Outline
1. Theoretical motivation

Tractability of SHAP explanations           [AAAI’21]
 

2. Tractable reasoning about classifier behavior









Input nodes are tractable (simple) distributions, 
e.g., univariate gaussian or indicator p(X=1) = [X=1]







Feedforward 



Feedforward 



Feedforward 



Why are these tractable models?

Let’s compute a marginal probability            .



[Darwiche & Marquis JAIR 2001, Poon & Domingos UAI11]









How expressive are probabilistic circuits?
density estimation benchmarks

dataset best circuit BN MADE VAE dataset best circuit BN MADE VAE

nltcs -5.99 -6.02 -6.04 -5.99 dna -79.88 -80.65 -82.77 -94.56
msnbc -6.04 -6.04 -6.06 -6.09 kosarek -10.52 -10.83 - -10.64
kdd -2.12 -2.19 -2.07 -2.12 msweb -9.62 -9.70 -9.59 -9.73
plants -11.84 -12.65 -12.32 -12.34 book -33.82 -36.41 -33.95 -33.19
audio -39.39 -40.50 -38.95 -38.67 movie -50.34 -54.37 -48.7 -47.43
jester -51.29 -51.07 -52.23 -51.54 webkb -149.20 -157.43 -149.59 -146.9
netflix -55.71 -57.02 -55.16 -54.73 cr52 -81.87 -87.56 -82.80 -81.33
accidents -26.89 -26.32 -26.42 -29.11 c20ng -151.02 -158.95 -153.18 -146.9
retail -10.72 -10.87 -10.81 -10.83 bbc -229.21 -257.86 -242.40 -240.94
pumbs* -22.15 -21.72 -22.3 -25.16 ad -14.00 -18.35 -13.65 -18.81







Want to learn more?

https://youtu.be/2RAG5-L9R70 

http://starai.cs.ucla.edu/papers/ProbCirc20.pdf 

Tutorial (3h) Overview Paper (80p)

https://youtu.be/2RAG5-L9R70
http://starai.cs.ucla.edu/papers/ProbCirc20.pdf


Training PCs in Julia with Juice.jl

Training maximum likelihood parameters of probabilistic circuits  

julia> using ProbabilisticCircuits;  
julia> data, structure = load(...);  
julia> num_examples(data)
17,412
julia> num_edges(structure)  
270,448
julia> @btime estimate_parameters(structure , data);
 63 ms

 
Custom SIMD and CUDA kernels to parallelize over layers and training examples.

[https://github.com/Juice-jl/]

https://github.com/Juice-jl/


Outline
1. Theoretical motivation

Tractability of SHAP explanations           [AAAI’21]
 

2. Tractable reasoning about classifier behavior
Reasoning about missing features    [NeurIPS’19]
with Pasha Khosravi, YooJung Choi, Yitao Liang, Antonio Vergari



Prediction with Missing Features

X1 X2 X3 X4 X5 Y 

x1 

x2 

x3 

x4 

x5 

x6 

x7 

x8 

Train Classifier

?

?

?

X1 X2 X3 X4 X5 

x1 

x2 

x3 

x4 

x5 

x6 

Test with missing features

Predict



Expected Predictions

Consider all possible complete inputs and reason about 
the expected behavior of the classifier 

[Khosravi et al. IJCAI19, NeurIPS19, Artemiss20]

How can this be tractable for a complex feature distribution?

● feature distribution is a probabilistic circuits
● classifier is a compatible regression circuit



 

Expectation of 
function m w.r.t. dist. n ?
 

Solve subproblems: 
(1,3), (1,4), (2,3), (2,4)

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]

Recursion that “breaks down” the computation



Probabilistic Circuits for Missing Data

[Khosravi et al. IJCAI19, NeurIPS20, Artemiss20]





Outline
1. Theoretical motivation

Tractability of SHAP explanations           [AAAI’21]
 

2. Tractable reasoning about classifier behavior
Reasoning about missing features        [NeurIPS’19]

Latent fair decisions                             [AAAI’21]
with YooJung Choi, Meihua Dang



Model-Based Algorithmic Fairness: FairPC
Learn classifier given
● features S and X
● training labels/decisions D

Group fairness by 
demographic parity:
 

Fair decision Df should be 
independent of 
the sensitive attribute S

Discover the latent fair 
decision Df by learning a PC.

[Choi et al. AAAI21]



Outline
1. Theoretical motivation

Tractability of SHAP explanations           [AAAI’21]
 

2. Tractable reasoning about classifier behavior
Reasoning about missing features        [NeurIPS’19]

Latent fair decisions                                [AAAI’21]

Probabilistic sufficient explanations   [IJCAI’21]
with Eric Wang, Pasha Khosravi



Local Explanation Approaches

Model agnostic: (e.g. LIME, SHAP, Anchors)
• Treat classifier as black box
• Evaluate on sampled perturbations

– Often ignores feature distribution 
(in favor of perturbation distribution)

– Evaluate on impossible or low likelihood instances 
• Can be fooled!  [Slack et al., 2020; Dimanov et al., 2020] 
• Might produce over-confident results [Ignatiev et al.]

• Very generally applicable
• No guarantees



Local Explanation Approaches

Logical explanations: 
(e.g, sufficient reasons, abduction, prime implicants)
• Give formal guarantees with 100% certainty
• Ensure minimality
• Hard to compute 

(e.g., reduce MNIST from 784 to 64 pixels)
• Ignores feature distribution (it is irrelevant!)
• Lead to complex explanations

To give a guarantee with 100% certainty, 
one needs to know almost all of the pixels...



Probabilistic Sufficient Explanations

[Khosravi et al. IJCAI19, Wang et al. IJCAI’21]

Explanation is a subset of features, s.t.
1. The explanation is “probabilistically sufficient”

Under the feature distribution, given the explanation, 
the classifier is likely to make the observed prediction.
=> Strong probabilistic guarantees

2. It is minimal and “simple”



Probabilistic Sufficiency Criteria

Same Decision Probability

C(.) is a threshold-based classifier, output is + or - 

Similar criteria used in Anchors. 

Logical Reasoning approaches require SDP=1.

Hard to calculate (PP^PP-hard on Bayesian networks, NP-hard on Naive Bayes)



Probabilistic Sufficiency Criteria

Expected Prediction

f(.) is a probabilistic classifier, output is a class probability or log-probability 

Expected Prediction is tractable to compute for

1. Logistic regression with conformant Naive Bayes
2. Decision trees w.r.t. PC
3. Discriminative circuits w.r.t. PC
4. Feature distribution and classifier defined by same PC



Probabilistic Sufficient Explanation

Want to maximize the expected prediction while keeping explanations simple.

To also achieve minimality, we can choose the most likely ones.



Correctly Classified
Examples

Binary classification: 3 vs 5

Used decision forest classifier 
and probabilistic circuit feature 
distribution

Beam search - keep top b 
explanation candidates for each 
size

Sort by expected prediction, 
break ties by feature probability



Misclassified
Examples

Binary classification: 3 vs 5

Used decision forest classifier 
and probabilistic circuit feature 
distribution

Beam search - keep top b 
explanation candidates for each 
size

Sort by expected prediction, 
break ties by feature probability



Comparison with Anchors on MNIST (784 pixels)

● For same size of explanation
○ SE has more realistic explanations (higher marginal likelihood P(z))
○ SE has stronger guarantees (higher expected log-odds and SDP)

● For >10 pixels 
○ SE are almost logical explanations (around 100% SDP)
○ Yet they remain `simple`: small and with high marginal likelihood



Explanation Complexity vs Sufficiency Constraints

● Simple explanations (high likelihood) give strong probabilistic guarantees (EP)
● Steep around 0 and 1: making guarantees even slightly probabilistic 

will lead to significant simplification of the explanations



Outline
1. Theoretical motivation

Tractability of SHAP explanations           [AAAI’21]
 

2. Tractable reasoning about classifier behavior
Reasoning about missing features        [NeurIPS’19]

Latent fair decisions                                [AAAI’21]

Probabilistic sufficient explanations        [IJCAI’21]
 

3. Practical neuro-symbolic verification
Learning monotonic neural networks [NeurIPS’20]
with Aishwarya Sivaraman, Golnoosh Farnadi, Todd Millstein



Predict Loan Amount

Neural Network Model: Increasing income can decrease the approved loan amount

Monotonicity (Prior Knowledge): 
Increasing income should increase the approved loan amount



Counterexamples

Computed using SMT(LRA)

Maximal counterexamples 
(largest violation) using OMT 



Counterexample-Guided Predictions

Monotonic Envelope:

● Replace each prediction by its 
maximal counterexample

● Envelope construction is online
(during prediction)

● Guarantees monotonic predictions
for any ReLU neural net

● Works for high-dimensional input
● Works for multiple 

monotonic features



How to use monotonicity to improve model quality?
“Monotonicity as inductive bias”

63

Counterexample-Guided Learning

TrainData

Gen. 
Counterexample

f Counterexamples T Epochs



Counterexample-Guided Monotonicity 
Enforced Training (COMET)

64



Our Contributions
• Counterexample-guided algorithm that guarantees monotonicity at 

prediction time for an arbitrary ReLU neural network

• Counterexample-guided algorithm to incorporate monotonicity as 
an inductive bias during training

• Outperforms state-of-the-art monotonic learners in regression and 
classification tasks

• Counterexample-guided learning when used in conjunction with 
envelope improves accuracy and provides provable guarantees

65



Pure LearningPure Logic Probabilistic World Models

A New Synthesis of 
Learning and Reasoning

 

“Pure learning is brittle”
 

 
 

 We need to incorporate a sensible probabilistic/logic model of the world

bias, algorithmic fairness, interpretability, explainability, adversarial attacks, 
unknown unknowns, calibration, verification, missing features, missing labels, 
data efficiency, shift in distribution, general robustness and safety



Thanks

This was the work of many wonderful 
students/postdoc/collaborators!

References: http://starai.cs.ucla.edu/publications/ 

http://starai.cs.ucla.edu/publications/

