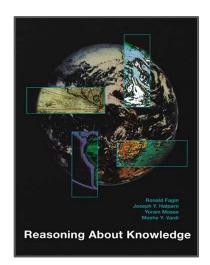


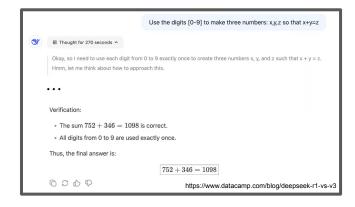
Symbolic Reasoning about Large Language Models

Guy Van den Broeck

9th Annual Center for Human-Compatible AI Workshop - Jun 7 2025

Reasoning with Symbolic Al

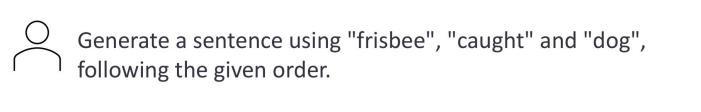

- Deductive reasoning algorithms
- Logic and probabilistic
- Correct on all problems
- Limited scope
- Intractable



Reasoning with Transformers

- Inductive reasoning from data
- Build chains of thought
- Correct on many problems
- Unlimited scope
- Tractable

Questions for this talk:



- 1. Do deductive reasoning algorithms still have a purpose in the age of transformers?
- 2. Where did reasoning algorithms go wrong? What should they look like today?
- 3. Can reasoning algorithms provide a path to language model alignment, safety?

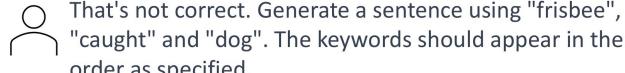
Questions for this talk:

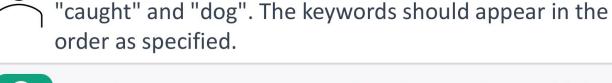
- 1. Do deductive reasoning algorithms still have a purpose in the age of transformers?
- 2. Where did reasoning algorithms go wrong? What should they look like today?
- 3. Can reasoning algorithms provide a path to language model alignment, safety?

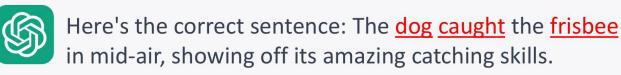
Generate a sentence using "frisbee", "caught" and "dog", following the given order.

After a perfect throw, the <u>frisbee</u> glided through the air, and the <u>dog</u>, with incredible agility, <u>caught</u> it mid-flight.

ChatGPT




Generate a sentence using "frisbee", "caught" and "dog", following the given order.

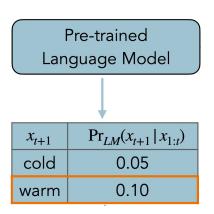


After a perfect throw, the <u>frisbee</u> glided through the air, and the dog, with incredible agility, caught it mid-flight.

ChatGPT

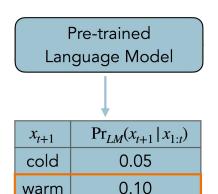
ChatGPT

A <u>frisbee</u> is <u>caught</u> by a <u>dog</u>. A pair of <u>frisbee</u> players are <u>caught</u> in a <u>dog</u> fight.


Ctrl-G

Lexical Constraint α : sentence contains keyword "winter"

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$


Lexical Constraint α : sentence contains keyword "winter"

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Lexical Constraint α : sentence contains keyword "winter"

Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Using Bayes rule,

 p_{IM} (next-token | α , prefix)

 ∞

 p_{LM} (next-token | prefix)

 $p_{LM}(\alpha \mid \text{next-token})$

Lexical Constraint α : sentence contains keyword "winter"

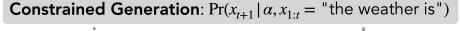
Constrained Generation: $Pr(x_{t+1} | \alpha, x_{1:t} = "the weather is")$

Pre-trained Language Model

x_{t+1}	$\Pr_{LM}(x_{t+1} \mid x_{1:t})$
cold	0.05
warm	0.10

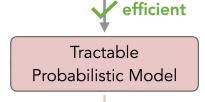
Using Bayes rule,

 p_{IM} (next-token | α , prefix)


 ∞

 p_{LM} (next-token | prefix)

 $p_{LM}(\alpha \mid \text{next-token}, \text{prefix})$ Intractable


Lexical Constraint α : sentence contains keyword "winter"

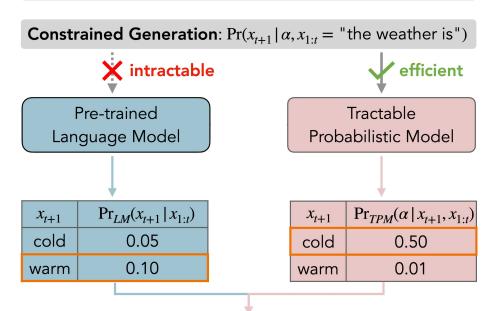
Pre-trained Language Model

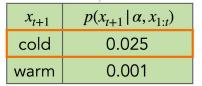
x_{t+1}	$\Pr_{LM}(x_{t+1} \mid x_{1:t})$
cold	0.05
warm	0.10

V			
x_{t+1}	$\Pr_{TPM}(\alpha \mid x_{t+1}, x_{1:t})$		
cold	0.50		
warm	0.01		

Using Bayes rule,

 p_{IM} (next-token | α , prefix)




 p_{LM} (next-token | prefix)

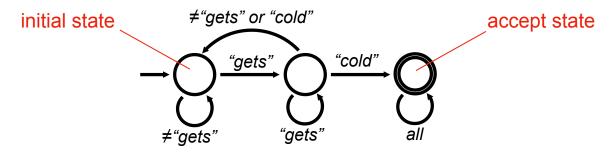
 $p_{LM}(\alpha \mid \text{next-token}, prefix)$ Intractable

Lexical Constraint α : sentence contains keyword "winter"

 p_{CTRL-G} (next-token | α , prefix)

 ∞

 p_{LM} (next-token | prefix)


 $p_{TPM}(\alpha \mid \text{next-token, prefix})$

Representing Logical Constraints

as a deterministic finite automaton (DFA)

Example. Check if a string contains "gets cold".

Can represent:

Phrases/words must/must not appear

Exactly k times. Must end a certain way

Anything over fixed sequence lengths (BDD)

From a restricted vocabulary.

Any regex

...

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

```
5 lines of code!
from CtrlG import
prefix = "First they defeated a ..."
suffix = "are few humans left ..."
dfa_list = [
  DFA_all_of("alien mothership",
             "far from over"),
  DFA_word_count(25, 30),
dfa = DFA_logical_and(dfa_list)
lp = CtrlGLogitsProcessor(
       dfa, hmm, prefix, suffix)
llm.generate(logits_processor=lp)
```

Interactive Text Editing

User: given the following context, generate infilling text for [BLANK] using key phrases "alien mothership", "far from over"; generated text must contain 25 - 30 words.

"First they've defeated a small squad [BLANK] are few humans left, and despite their magical power, their numbers are getting fewer."

```
from CtrlG import
prefix = "First they defeated a ..."
suffix = "are few humans left ..."
dfa_list = [
  DFA_all_of("alien mothership",
             "far from over"),
  DFA_word_count(25, 30),
dfa = DFA_logical_and(dfa_list)
lp = CtrlGLogitsProcessor(
       dfa, hmm, prefix, suffix)
llm.generate(logits_processor=lp)
```

"First they've defeated a small squad of aliens, then a larger fleet of their ships. Eventually they've even managed to take down the alien mothership. But their problems are far from over. There are few humans left, and despite their magical power, their numbers are getting fewer."

5 lines of code!

Interactive Text Editing with key phrase (K) or length (L) constraints

	K&L	L	K	None	
					Quality
→ How many stars by humans?	2.74	2.78	2.64	2.68	TULU2
, ,	2.31	2.27	2.22	2.27	GPT3.5
	3.10	3.53	3.33	3.79	GPT4
	3.59	3.73	3.56	3.77	Ctrl-G

Interactive Text Editing with key phrase (K) or length (L) constraints

	None	K	L	K&L	
Quality					
TULU2	2.68	2.64	2.78	2.74	→ How many stars by humans?
GPT3.5	2.27	2.22	2.27	2.31	,
GPT4	3.79	3.33	3.53	3.10	
Ctrl-G	3.77	3.56	3.73	3.59	
Success					
TULU2	-	12%	20%	3%	→ Follows instructions?
GPT3.5	-	22%	54%	10%	
GPT4	-	60%	20%	27%	
Ctrl-G	_	100%	100%	100%	

Interactive Text Editing with key phrase (K) or length (L) constraints

	COAdthor				
	None	K	L	K&L	
Quality					
TULU2	2.68	2.64	2.78	2.74	→ How many stars by humans?
GPT3.5	2.27	2.22	2.27	2.31	,
GPT4	3.79	3.33	3.53	3.10	
Ctrl-G	3.77	3.56	3.73	3.59	
Success					
TULU2	_	12%	20%	3%	→ Follows instructions?
GPT3.5	-	22%	54%	10%	
GPT4	-	60%	20%	27%	
Ctrl-G	-	100%	100%	100%	
Overall					
TULU2	-	7%	10%	1%	→ ★ ★ ★ ☆ ☆ & Up + Follows instructions?
GPT3.5	-	0%	5%	2%	- I all a subject to the state of the state
GPT4	-	41%	17%	14%	
Ctrl-G	-	76%	78%	82%	→ Ctrl-G based on Llama2-7B wipes the floor
					with GPT4, which is a >100x bigger LLM

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Grade School Math Benchmark

Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = \$3. So each set of two glasses actually costs 5 + 3 = \$8. He wants 16 / 2 = 8 sets of two. That means he needs to pay 8 * 8 = \$64. So the answer is 64.

Which constraint improves accuracy?

Grade School Math Benchmark

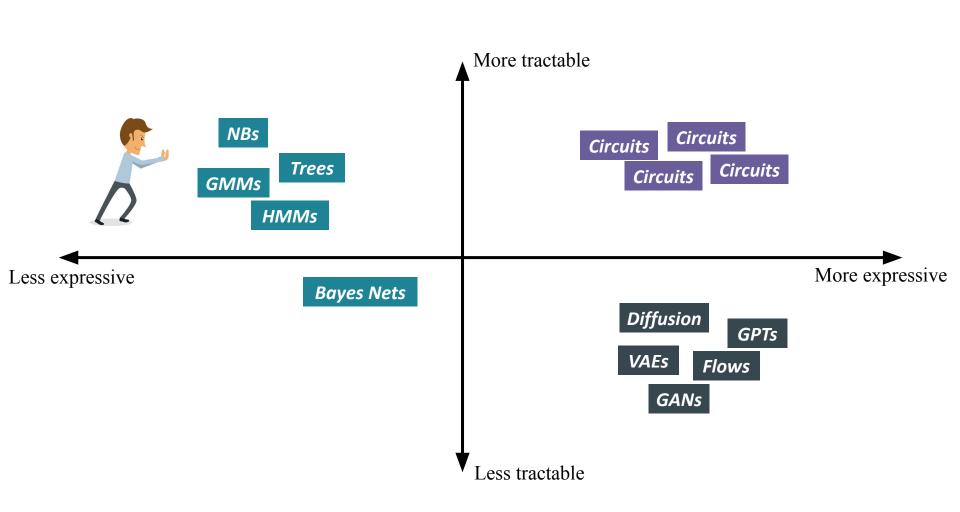
Question: Kylar went to the store to buy glasses for his new apartment. One glass costs \$5, but every second glass costs only 60% of the price. Kylar wants to buy 16 glasses. How much does he need to pay for them?

Vanilla LLM Answer: The price of the 2nd glass is (16 / 2) * 60% = 8 dollars. So one pair of glasses costs 16 + 8 = 24 dollars. So the answer is 24.

Ctrl-G Answer: The second glass costs 5 * .6 = \$3. So each set of two glasses actually costs 5 + 3 = \$8. He wants 16 / 2 = 8 sets of two. That means he needs to pay 8 * 8 = \$64. So the answer is 64.

Use all the numbers in the problem statement!

Advantages of Ctrl-G:


- 1. Constraint α is guaranteed to be satisfied: for any next-token x_{t+1} that would make α unsatisfiable, $p(x_{t+1} \mid x_{1:t}, \alpha) = 0$.
- 2. Generalizes well to <u>unseen reasoning tasks</u>, because all tasks are unseen :-) (baselines train on a distribution over reasoning tasks slow and brittle!)
- 3. Bayesian = <u>goal-oriented</u> (as opposed to structured generation tools)

You can control an intractable generative model using a generative model that is *tractable for symbolic reasoning*.

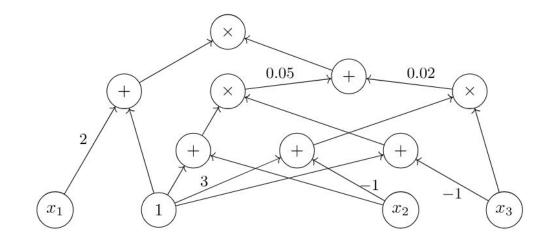
Questions for this talk:

- 1. Do deductive reasoning algorithms still have a purpose in the age of transformers?
- 2. Where did reasoning algorithms go wrong? What should they look like today?
- 3. Can reasoning algorithms provide a path to language model alignment, safety?

Generative Models

polynomials model joint distributions

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .05x_1x_3 - .05x_$$

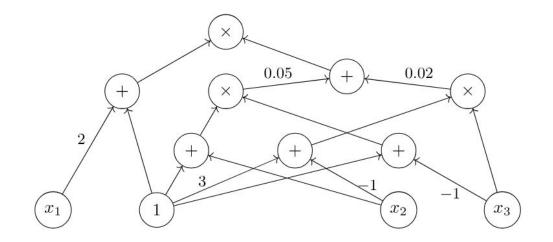

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12

Deep Generative Models

circuit polynomials model joint distributions compactly

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .05x_1x_3 - .05x_$$

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12



Tractable Deep Generative Models

Multilinear circuit polynomials model joint distributions compactly and allow efficient probabilistic reasoning

$$p(x_1, x_2, x_3) = .1x_1 + .05x_2 + .1x_1x_2 + .01x_3 - .07x_2x_3 + .02x_1x_3 - .14x_1x_2x_3 + .05x_1x_3 - .07x_2x_3 + .02x_1x_3 - .07x_2x_3 + .00x_1x_3 - .00x_$$

X_1	X_2	X_3	p
0	0	0	0.05
1	0	0	0.15
0	1	0	0.1
1	1	0	0.3
0	0	1	0.06
1	0	1	0.18
0	1	1	0.04
1	1	1	0.12

Abusing Bayes rule,

 p_{CTRI-G} (next-token | α , prefix)

states

 $\propto p_{TM}(\text{next-token} \mid \text{prefix}) \cdot p_{TPM}(\alpha \mid \text{next-token}, \text{prefix})$

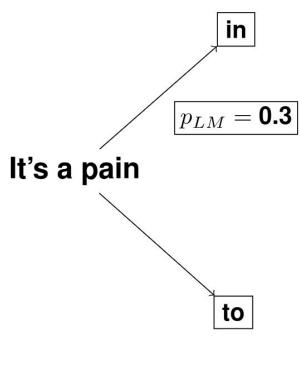
Theorem. Given

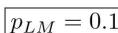
- 1. a deterministic finite automata constraint **α** with **m** edges and
- 2. a probabilistic circuit p(.) with h hidden (representing a Hidden Markov Model),

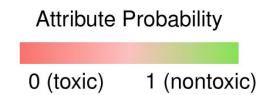
computing $p(\alpha \mid x_{1:t})$ over a sequence of n future tokens takes $O(nmh^2)$ time.

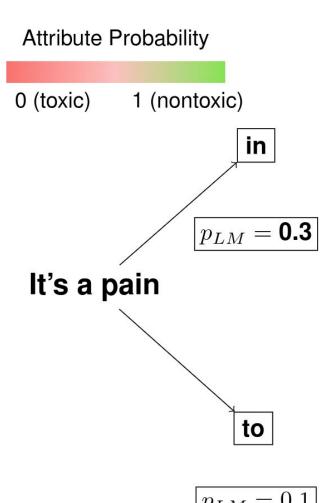
You Tricked Us

You promised us reasoning algorithms...


... and all we got was another lousy feedforward neural network!

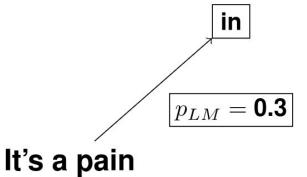

Theorem. If there exists a polynomial time (real RAM) algorithm that computes (virtual evidence) marginals for a family of distributions, then there exist poly-size circuits for their multilinear polynomials.


Questions for this talk:

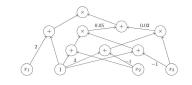

- 1. Do deductive reasoning algorithms still have a purpose in the age of transformers?
- 2. Where did reasoning algorithms go wrong? What should they look like today?
- 3. Can reasoning algorithms provide a path to language model alignment, safety?

- No longer a logical constraint (no DFA)
- A "soft' attribute with some probability
- a.k.a. an exponentiated reward function for alignment

future text	$p_{LM}(x_{>t} \mid x_{\leq t})$
the ass	0.3
the butt	0.15
the neck	0.05
***	***


Intractable to know future expected attribute probability (EAP)

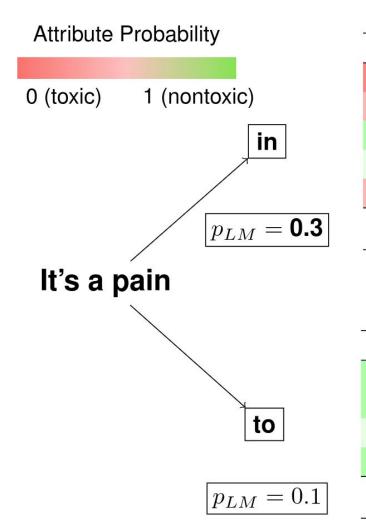
future text	$p_{LM}(x_{>t} \mid x_{\leq t})$
deal with	0.2
handle	0.1

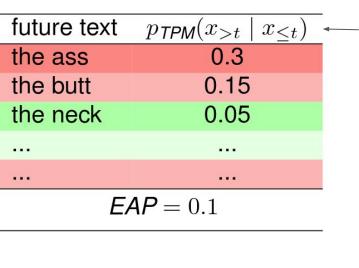

Attribute Probability

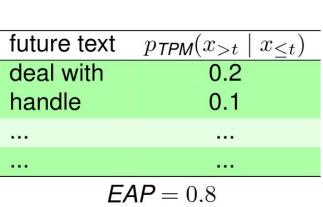
0 (toxic) 1 (nontoxic)

future text	$p_{TPM}(x_{>t} \mid x_{\leq t})$
the ass	0.3
the butt	0.15
the neck	0.05
	•••
•••	•••

Tractable	
Probabilistic	Model

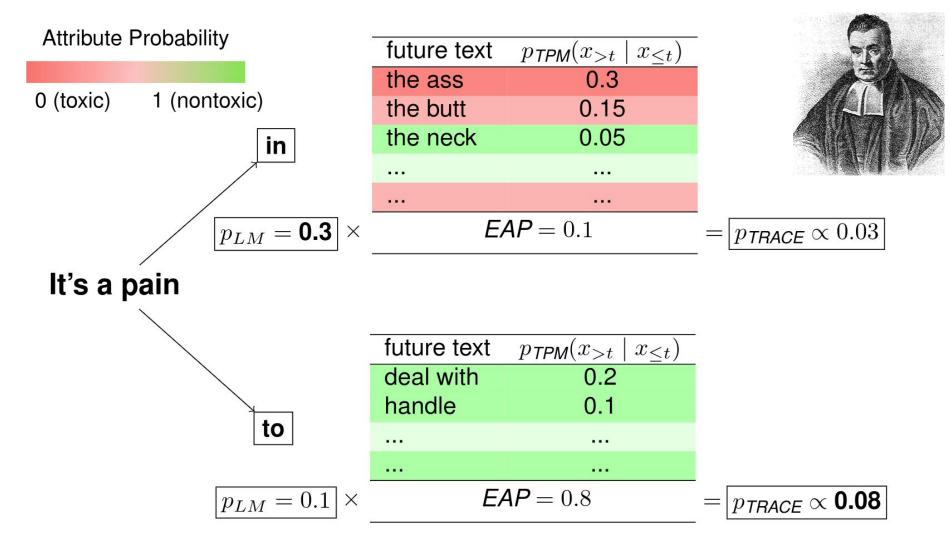


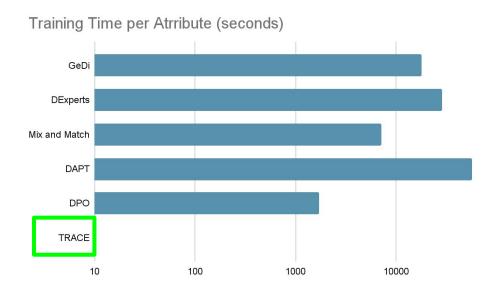

+ Log-Linear Attribute Classifier

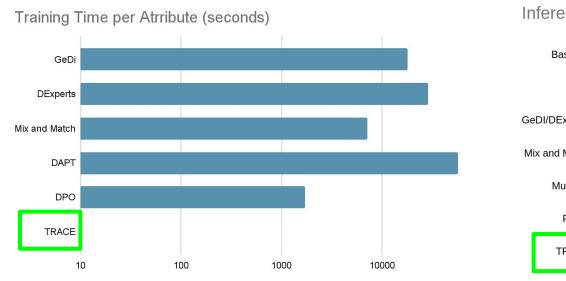

future text	$p_{TPM}(x_{>t} \mid x_{\leq t})$
deal with	0.2
handle	0.1

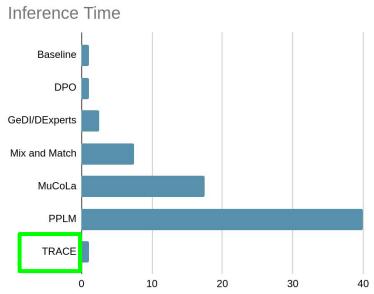
 $p_{LM} = 0.1$

to




Efficient Expected Attribute Probability!


TRACE is Blazingly Fast


Given a language model, and its tractable proxy model, train log-linear attribute classifier

TRACE is Blazingly Fast

Given a language model, and its tractable proxy model, train log-linear attribute classifier, then use Bayesian logits at decoding time

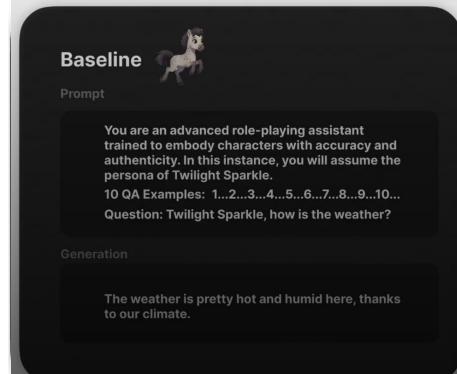
State-of-the-art LLM Detoxification

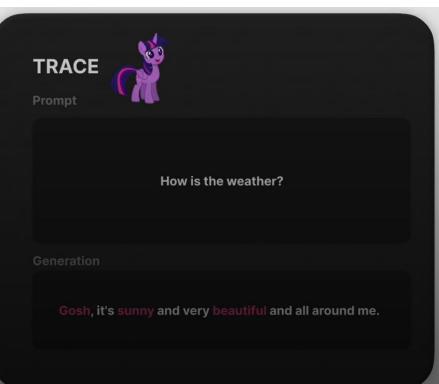
Model	Toxicity (↓)		Approach Type			
	avg. max.	prob.				
GPT-2 Large						
GPT2	0.385	0.254	Baseline			
DAPT ⁽¹⁾	0.428	0.360	Finetuning			
GeDi ⁽²⁾	0.363	0.217	Decoding (Trained Guide)			
FUDGE ⁽³⁾	0.302	0.371	Decoding (Trained Guide)			
DExperts ⁽⁴⁾	0.314	0.128	Decoding (Trained Guide)			
PPLM ⁽⁵⁾	0.520	0.518	Decoding (Logit Control)			
MuCoLa ⁽⁶⁾	0.308	0.088	Decoding (Sampling)			
$PPO^{(7)}$	0.218	0.044	RL			
Quark ⁽⁸⁾	0.196	0.035	RL			
$DPO^{(9)}$	0.180	0.026	RL			
TRACE	0.163	0.016	Decoding (HMM Reasoning)			
Gemma-2B Results						
Gemma-2B	0.359	0.23	Baseline			
DPO ⁽⁹⁾	0.222	0.06	RL			
TRACE	0.189	0.02	Decoding (HMM Reasoning)			

State-of-the-art LLM Detoxi

Model	Toxicity	(\downarrow)	Diversity (↑)		GP12-large			
	avg. max.	prob.	dist-2	dist-3	DPO			
GPT-2 Large Results					DIO			
GPT2	0.385	0.254	0.87	0.86	TRACE			
$DAPT^{(1)}$	0.428	0.360	0.84	0.84				
GeDi ⁽²⁾	0.363	0.217	0.84	0.83	Decoding (Trained Guide)			
FUDGE ⁽³⁾	0.302	0.371	0.78	0.82	Decoding (Trained Guide)			
DExperts ⁽⁴⁾	0.314	0.128	0.84	0.84	Decoding (Trained Guide)			
PPLM ⁽⁵⁾	0.520	0.518	0.86	0.86	Decoding (Logit Control)			
MuCoLa ⁽⁶⁾	0.308	0.088	0.82	0.83	Decoding (Sampling)			
$PPO^{(7)}$	0.218	0.044	0.80	0.84	RL			
Quark ⁽⁸⁾	0.196	0.035	0.80	0.84	RL			
$DPO^{(9)}$	0.180	0.026	0.76	0.78	RL			
TRACE	0.163	0.016	0.85	0.85	Decoding (HMM Reasoning)			
Gemma-2B Results								
Gemma-2B	0.359	0.23	0.86	0.85	Baseline			
$DPO^{(9)}$	0.222	0.06	0.74	0.77	RL			
TRACE	0.189	0.02	0.86	0.85	Decoding (HMM Reasoning)			

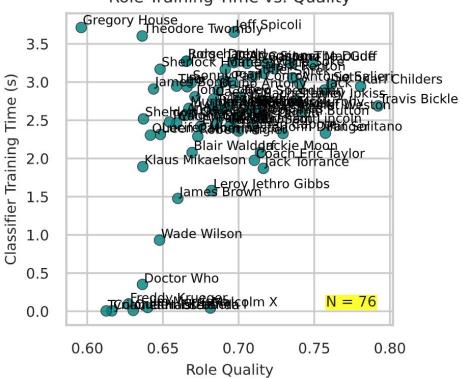
Method	Entropy (↑)
GPT2-large	52.06
DPO	39.52
TRACE	52.54

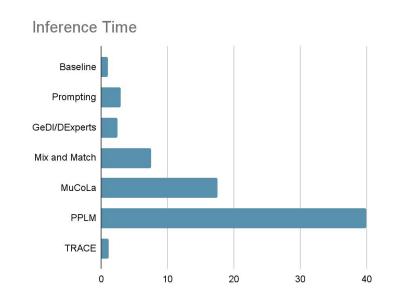


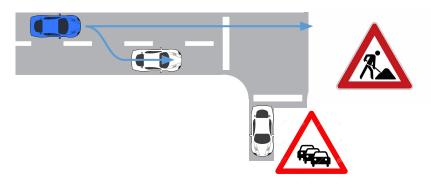

State-of-the-art LLM Detoxification

Model	Toxicity	· (\dagger)	Diversity (†)		Fluency (\psi)	Approach Type
	avg. max.	prob.	dist-2	dist-3		
GPT-2 Large	Results					
GPT2	0.385	0.254	0.87	0.86	25.57	Baseline
DAPT ⁽¹⁾	0.428	0.360	0.84	0.84	31.21	Finetuning
GeDi ⁽²⁾	0.363	0.217	0.84	0.83	60.03	Decoding (Trained Guide)
FUDGE ⁽³⁾	0.302	0.371	0.78	0.82	12.97 *	Decoding (Trained Guide)
DExperts ⁽⁴⁾	0.314	0.128	0.84	0.84	32.41	Decoding (Trained Guide)
PPLM ⁽⁵⁾	0.520	0.518	0.86	0.86	32.58	Decoding (Logit Control)
MuCoLa ⁽⁶⁾	0.308	0.088	0.82	0.83	29.92	Decoding (Sampling)
$PPO^{(7)}$	0.218	0.044	0.80	0.84	14.27 *	RL
Quark ⁽⁸⁾	0.196	0.035	0.80	0.84	12.47 *	RL
$DPO^{(9)}$	0.180	0.026	0.76	0.78	21.59 *	RL
TRACE	0.163	0.016	0.85	0.85	29.83	Decoding (HMM Reasoning)
Gemma-2B I	Results					
Gemma-2B	0.359	0.23	0.86	0.85	15.75	Baseline
DPO ⁽⁹⁾	0.222	0.06	0.74	0.77	14.39*	RL
TRACE	0.189	0.02	0.86	0.85	17.68	Decoding (HMM Reasoning)

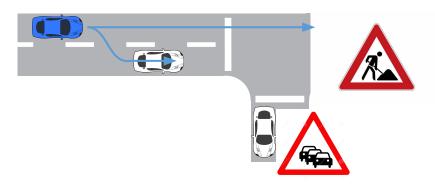
Personalized Language Model: Twilight Sparkle





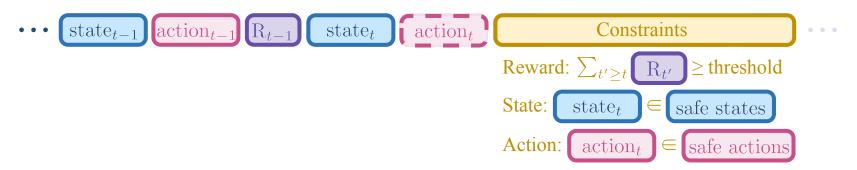

76 Personalized Language Models

Offline RL by Tractable Conditioning

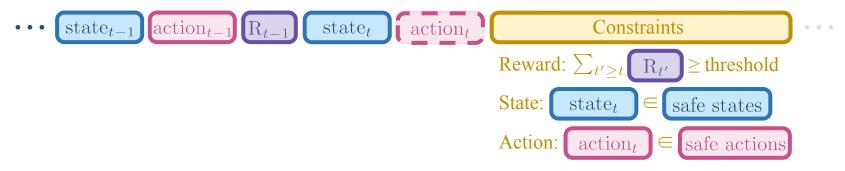


Training: model the joint distribution over states, actions, rewards, etc.

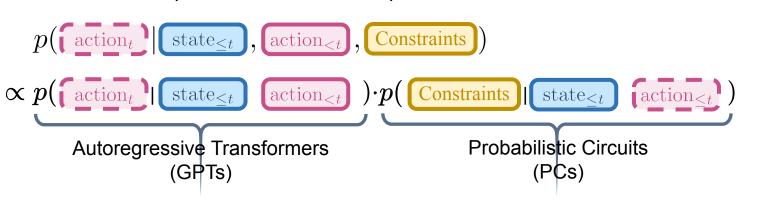
Inference: sample actions condition on past states and actions,



Offline RL by Tractable Conditioning



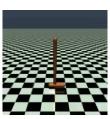
Training: model the joint distribution over states, actions, rewards, etc.


Inference: sample actions condition on past **states** and **actions**, as well as **constraints**.

Offline RL by Tractable Conditioning

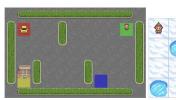
Inference: sample actions condition on past states and actions, as well as constraints.

Bayes'rule



Condition on Various Constraints in Offline RL

Condition on <u>high reward</u>: SoTA performance on standard offline RL benchmarks.


Dataset Environme	Environment	TT		TT(+Q)		DT		DD	IOI	COL	07.P.C	TD3(+BC)
Dataset	Liiviioiiiieit	base	Trifle	base	Trifle	base	Trifle	טט	D IQL (CQL	70 D C	трэ(твс)
Med-Expert Med-Expert Med-Expert			113.0±0.4		$\textbf{78.5} {\scriptstyle\pm6.4}$	$\begin{array}{c} 86.8{\pm}1.3 \\ 107.6{\pm}1.8 \\ 108.1{\pm}0.2 \end{array}$	/		,	91.6 105.4 108.8		90.7 98.0 110.1
Medium Medium Medium	HalfCheetah Hopper Walker2d	$\begin{array}{c} 46.9{\pm}0.4 \\ 61.1{\pm}3.6 \\ 79.0{\pm}2.8 \end{array}$		$\begin{array}{c} 48.7{\pm}0.3 \\ 55.2{\pm}3.8 \\ 82.2{\pm}2.5 \end{array}$	57.8 ±1.9	$42.6{\scriptstyle \pm 0.1}\atop 67.6{\scriptstyle \pm 1.0}\atop 74{\scriptstyle \pm 1.4}$	44.2±0.7 / 81.3±2.3	49.1 79.3 82.5	47.4 66.3 78.3	44.0 58.5 72.5	42.5 56.9 75.0	48.3 59.3 83.7
Med-Replay Med-Replay Med-Replay		41.9±2.5 91.5±3.6 82.6±6.9	45.0±0.3 97.8±0.3 88.3±3.8	48.2±0.4 83.4±5.6 84.6±4.5	87.6 ±6.1	$82.7{\scriptstyle\pm7.0}$	39.2±0.4 / 73.5±0.1	39.3 100.0 75.0	44.2 94.7 73.9	45.5 95.0 77.2	40.6 75.9 62.5	44.6 60.9 81.8
Averag	ge Score	78.9	83.1	74.3	77.4	74.7	/	81.8	77.0	77.6	74.0	75.3

Also works in stochastic environments

Methods	Taxi	FrozenLake					
Memous	Iaxi	$\epsilon = 0.3$	$\epsilon = 0.5$	$\epsilon = 0.7$			
m-Trifle	-57	0.61	0.59	0.37			
s-Trifle	-99	0.62	0.60	0.34			
TT [20]	-182	0.63	0.25	0.12			
DT [6]	-388	0.51	0.32	0.10			
DoC [47]	-146	0.58	0.61	0.23			

Condition on <u>safe actions</u>

Dataset	Environment	Trifle	TT
Med-Expert	Halfcheetah	81.9 ±4.8	77.8±5.4
Med-Expert	Hopper	109.6 ± 2.4	100.0 ± 4.2
Med-Expert	Walker2d	105.1 ± 2.3	$103.6{\scriptstyle\pm4.9}$

1. Do deductive reasoning algorithms still have a purpose in the age of transformers?

2. Where did reasoning algorithms go wrong?

What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers? Yes, more cool applications of reasoning algorithms than can fit on these slides!
- 2. Where did reasoning algorithms go wrong?

What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers? Yes, more cool applications of reasoning algorithms than can fit on these slides!
- 2. Where did reasoning algorithms go wrong?

 Learn at scale, be tractable

 What should they look like today?

- Do deductive reasoning algorithms still have a purpose in the age of transformers? Yes, more cool applications of deductive reasoning than can fit on these slides!
- 2. Where did reasoning algorithms go wrong?
 Learn at scale, be tractable
 What should they look like today?
 Circuits! Circuits! Circuits!

Thanks

This was the work of many wonderful students/postdocs/collaborators!

References: http://starai.cs.ucla.edu